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ABSTRACT The use of energy storage systems in standalone photovoltaic installations is essential to supply
energy demands, independently of solar generation. Accurate prediction of the battery state is critical for the
safe, durable, and reliable operation of systems in this type of installations. In this study, an installation
located in the area of Aragon (Spain) has been considered. Two methods, based on different types of
Recurrent Neural Networks (RNN), are proposed to predict the battery voltage of the installation two days
ahead. Specifically, the Nonlinear Auto Regressive with Exogenous Input (NARX) network and the Long
Short-Term Memory (LSTM) network are studied and compared. The implemented algorithms process
battery voltage, temperature and current waveforms; and rely on the selection of different future scenarios
based on weather forecasting to estimate the future voltage of the battery. The proposed methodology is
capable of predicting the voltage with a Root Mean Squared Error (RMSE) error of 1.2V for batteries of 48 V,
in critical situations where the installation is running out of energy. The study contributes to the ongoing
research of developing preventive control systems that help reduce costs and improve the performance of
remote energy storage systems based on renewable energies with a positive outcome.

INDEX TERMS Battery management systems, LSTM, NARX, photovoltaic standalone, recurrent neural

networks, voltage prediction.

I. INTRODUCTION
In the search to generate energy in ways less harmful to
the environment, solar energy is considered one of the most
promising and reliable alternatives to reduce global carbon
emissions. Thus, photovoltaic (PV) systems have become
a very important aspect of sustainable development [1].
PV systems generate energy directly from sun irradiation
that reaches the solar panels. Some of the advantages of this
technology are minimal environmental impact and pollution,
not having moving parts, having less operational cost, and
overall being a cheap technology to manufacture [2].

This paper focuses on standalone stations, which are
not connected to the electrical grid. They are located far
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from urban centers and their only power source is solar
panels. These installations count with different energy
generation/consumption patterns. On the one hand, the sys-
tem must operate during the night. On the other hand, there is
a general uncertainty in the generated power, due to mete-
orological conditions (cloudy days or other environmental
phenomena). For these reasons, it is necessary to add a
battery system (Fig. 1) capable of storing the energy gener-
ated during periods of high irradiation and then supplying
the system at night or specific moments in the absence
of sun [3]. These battery systems undergo different issues
that worsen their performance in these installations. For
example, [4] studies the impact of Partial State-of-Charge
and its consequences on Lead-Acid batteries, whereas in [5],
the battery system of a PV installation is monitored during
six months and the same behavior is observed, especially
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FIGURE 1. Group of batteries of the PV standalone.

during low-irradiation winters. Finally, [6] explores a new
model that incorporates these effects plus temperature-
related effects that decrease the maximum available
capacity.

Different solutions to these problems have been proposed
in the literature.Typically, battery manufactures ([7], [8])
advice using a common and easy-to-implement technique
consisting of periodically overcharging the batteries. This
ensures a higher state of charge (SoC) in the battery before
a low irradiation period. However, these overcharges reduce
battery life, thus it is interesting to only overcharge the battery
packs when needed. Other more complex solutions have
been studied as in [9], where a hybridization between two
battery chemistries is used to improve the performance of the
installation.

For this reason, a system capable of predicting the energy
store in the batteries (obtained by the future voltage) several
days in advance would help to avoid critical installation
black-out, and acting accordingly (i.e., only overcharging the
batteries previously to several cloudy days), thus avoiding
unnecessary battery degradation. Among the possible bene-
fits would be an optimization of the performance of the instal-
lation and an extension of the useful life of all its elements.

The application of machine learning techniques to the PV
field has been explored before in the literature. For example,
in [10], a set of neural networks (NN) is used to make a
15-minute forecast of the energy yield of the installation.
Other studies such as [11] and [12] use more complex NN to
make a generation of the installation prediction, with a pre-
diction horizon up to 24 hours. As happens in these studies,
the vast majority focus on installations connected to the grid,
trying to predict the future power generation, based on irradi-
ation or other meteorological variables [13]. By contrast, the
field of standalone installations is less explored. In addition,
other investigations do not contemplate a two-day prediction
horizon as in this paper.

Regarding the outputs of the algorithms, most papers
focus on estimating unmeasurable battery parameters. In this
respect [14] has designed a battery model with which the

VOLUME 9, 2021

SoC of lead-acid or lithium batteries can be predicted. Works
like [15] or [16] use neural networks for the same purpose
of estimating or predicting the SoC of batteries for electric
car related applications. Another variable that is being dis-
cussed a lot lately is Remaining Useful Life (RUL). In this
regard [17] manages to predict this data using a neural net-
work model and improving the results through the use of
multiple sensory signals. Fewer studies are focused on pre-
dicting the voltage of the batteries, even though it is the most
critical variable regarding a possible failure of the system and
are mostly focused on applications not related to PV such as
unmanned aerial vehicles [18] or electric motorcycle [19].

With regard to the different machine learning techniques
used in PV installations and batteries, most works are cen-
tered in Recurrent Neural Networks (RNN). In [20] the
model Nonlinear Auto Regressive with Exogenous Input
models (NARX) is used to predict the output power of the
panels and a studio of different combinations of its inputs is
made. Other RNN used is Long Short-Term Memory (LSTM)
networks, for example in [21] this network is combined
with statistical methods to forecast PV power with a horizon
of 24 hours. In [22] an example of Convolutional Neural
Networks (CNN) is used to predict the output power of an
installation for the next 24 hours, based on past values of
temperature, solar irradiation and power generated. Gaussian
Process Regression (GPR) has also been considered in other
studies, but its increased complexity makes it worse posi-
tioned when trying to implement these techniques in a simple
battery management system (BMS) [23], [24].

In this paper, a novel methodology is proved to make a
voltage prediction based on NN, including historical data and
multiple future scenarios depending on weather forecasting.
A comparison between a simple and easily implemented
network (NARX) and another more complex and computa-
tionally more demanding (LSTM) is made to validate the
suitability of the methodology. The main contribution of
this paper is proving that energy disruption detection can
be effectively done in a PV standalone installation, with a
prediction window of 48h, a larger prediction horizon than
usually considered in the state-of-art. This margin has been
set by experts attending the time necessary to carry out
preemptive maintenance. The prediction is based on fuzzy
scenarios depending on the weather in the following days.
This tool has been deployed in a real-time system monitoring
real standalone PV installations. A preliminary study related
to this tool is available in [25].

The outline of the paper is as follows. Section II describes
the dataset, focusing on its origin and the features that
make it interesting. Then, Section III explains the method-
ology followed, detailing the NN models used, the algo-
rithm design process, and its training. Section IV delves
into the development that the system has undergone to be
implemented in a real-time application. Section V provides
the results obtained during the process and the final imple-
mentation in a real system. Finally, Section VI includes the
conclusions.
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FIGURE 2. PV installation in Morrén, region of Aragon, Spain.

Il. DATASET DESCRIPTION

The database used in the research comprises data from a
PV standalone installation that belongs to Confederacion
Hidrogréfica del Ebro (CHE) [26], a state entity in Spain.
The installation has been built and managed by Sociedad
Ibérica de Construcciones Eléctricas, S.A. (SICE) company
member of the international ACS group [27]. This installation
(Fig. 2) is used to provide energy supply to different com-
munication systems, metering stations and irrigation channel
controls close to the site. It is located in the region of Aragén,
Spain (latitude: 40,711563N, longitude: 0,347228W). The
importance of a continuous power supply for the devices to
which it transmits energy is high. If one of the facilities runs
out of power, a quick action is needed to bring a generator
set with which to feed the system until there is sun again.
Depending on the season of the year and the road conditions,
this action is very difficult or impossible, in addition to the
high cost of doing it. For these reasons a predictor would
avoid many problems and save costs.

The standalone installation has a battery bank of 40 Ni-Cd
cells (model Sunica plus SUN+920-1 by SAFT) with a nom-
inal voltage of 1.2V each, in series and for a total nominal
voltage of 48V and a capacity of 950Ah. The installation
energy source is 16 solar panels of 195W of rated power. This
installation provides energy to different electronic equipment
with an average consumption of 250W in total.

In Fig. 3, a block diagram of the PV installation is shown.
The panels are connected to the system through a Maximum
Power Point Tracking (MPPT) regulator [28]. This block
represents a DC-DC converter that optimizes the connection
between PV panels and the battery bank plus the load.

Additionally, there is data collecting and communications
equipment, capable of monitoring different variables: voltage
at the battery terminals (Vbat), ambient temperature, gen-
eration current (Igen), and current consumed by the load
(Iload). The current through the battery (Ibat), which is the
subtraction of Igen and Iload, is also measured. Almost 13
years of information have been recorded with a sample rate
of one sample every hour. The vast majority of the facilities
deployed in the territory only have data on voltage, current
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FIGURE 3. Components of a PV standalone station.

and temperature. There are no meteorological variables or the
health status of the materials, so we will only work with the
variables that are commonly available for these installations.

lll. METHODOLOGY

The main hypothesis of this study is that the future voltage
of the batteries can be predicted by using a window of past
observations, and an input based on the weather forecast for
the future days (implicit in the forms of artificial future cur-
rent). To demonstrate the applicability of this methodology,
two standard algorithms specifically designed for processing
real-time series, are going to be evaluated as options. The
first option seeks simplicity and low computational cost to
be easy to implement on a simple programable device for
deploying the algorithm locally, i.e., on the microcontroller
of the MPPT. The second option seeks greater benefits, with
higher computational complexity and deployed as cloud com-
puting. However, the selected algorithms do not have to be
the definitive ones since it is the methodology that is being
evaluated.

A. NEURAL NETWORK MODELS

Among the machine learning models, it has been seen that
RNNs are the ones that suit better this application. This
type of network has been widely used in prediction prob-
lems [29] with more accurate results than other forecasting
methods [30]. Two models of NN have been selected to
make a comparison between a simple and easily to implement
network (NARX), and another more complex and computa-
tionally more demanding (LSTM) to validate the good results
of the methodology.

1) NARX
NARX is a recurrent dynamic neural network that has feed-
back connections from the output to the inputs [31]. It has
been proved that this type of RNN model is well suited for
modeling nonlinear systems and especially time series [32].
The input data passes through a tapped delay block, pro-
viding the network with memory on the past inputs. There
is feedback from the output data, which also passes through
a tapped delay block, to provide memory on past outputs.
A NARX network usually follows one of the two fol-
lowing architectures: open-loop architecture or closed-loop
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FIGURE 4. NARX architecture.

architecture. This depends on whether true measurements of
past outputs are available at the time of the prediction and can
be used as input or, on the contrary, they are not available and
past estimates of the output need to be used as inputs. The
general equation of the NARX model is defined in (1),

Y1 =fn, ... Xn—d] (1)

where f is a non-linear function that relates the output at the
discrete moment n+-/ with the different inputs x and the out-
put itself y in the previous instants (from n to n-d). There are
multiple options to implement the kernel of a NARX model,
but the most used is the architecture based on a multilayer
perceptron (MLP), also known as a feed-forward network.
The common structure of an MLP is an input and an output
layer, and a variable number of hidden layers. Each layer
has a determined number of neurons interconnected with all
neurons of adjacent layers. The equation which defines the
output of each neuron is (2),

yi=f (Zj’;l Wij ‘xj) 2

where x; is the input vector. This value is multiplied by
the weights vector of the neuron w;;. The last factor f (the
activation function) models the behavior of the neuron.

The complete network structure is shown in Fig. 4. The
MLP is composed of as many hidden layers and neurons
as the problem requires. The last layer must have the same
number of neurons as outputs have the network. Since this
network is implemented for a regression problem the activa-
tion function of the output layers must be linear. The taped
delay lines which collect past instants of input and output
data have no restrictions of length, however when using large
temporal windows, the problem of vanishing gradient may
appear [33].

Like all NN, NARX needs a training process that consists
of modifying the weights iteratively to fit the training outputs.
During this process, both the inputs and the desired outputs
are introduced in the network. With this information, the
algorithm adjusts the weights, so the outputs generated by the
network are as close as possible to the desired target. Training
is fully detailed in Sect. II1.B.2.

,Yn—dsxns L]

2) LSTM
Long Short-Term Memory was proposed by Hochreiter and
Schimdhuber in 1997 [34]. It is a special type of recurring
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network that was designed to solve long-term dependency
and to overcome the problem of vanishing gradient that
appears in conventional RNN models. The structure of an
LSTM layer is shown in Fig. 5. Each layer has an input x",
an output h", and a memory term ¢", which are vectors that
change over time, being n the time variable. The vector x"
has dimensionality m, and both h" and c¢" have the same
dimensionality p.

The LSTM layer controls information through three sub-
networks, or “gates”: The forget gate f, the input gate i,
and the output gate o, which are also vectors of dimension-
ality p. The forget gate controls how much old information
is removed from the memory term. The input gate controls
how much new information in € passes to the memory term.
Finally, the output gate controls the impact the memory
term has on the output h. In the figure, the o layer and
tanh layer blocks represent complete neural layers with sig-
moid or hyperbolic tangent function as activation function
respectively.

In each time instant n, the equations for each element k of
the p elements in f, i, 0, and ¢ are:

o[ ] o
i = o ([w;;]T N } +b;;) 4)
& = tanh <[wi:_T [h; } + bi) 5)
o ([WZ]T [h;} +b§é> ®)

where vs/;is the array of m-+p weights associated with the k-th

O =

element in the f gate, and b;c is the bias term associated with
the k-th element in the f gate. The same is applicable for the
rest of the gates. After the gates have been calculated, the
updated memory term ¢”* and the output at the instant n, h”,
can be obtained as in (7) and (8),

=" l@f+e®i @)
h" = tanh (¢") ® 0 (8)

where ® represents the Hadamard product. Structures with a
higher complexity may be built by stacking multiple LSTM
layers, so the h” term of the previous cell acts as the input
x" to the following one. Additionally, post-processing linear
layers can be added to obtain a scalar output from the term h”
of the final LSTM cell. The LSTM network is trained using
backpropagation similarly to the process followed in conven-
tional NN. The internal weights of each cell are adjusted to
reduce the total error committed by the network. This process
is fully detailed in Sect. I1I1.B.2

B. ALGORITHM DESIGN

1) INPUTS AND OUTPUTS

As seen in previous sections, the available variables are volt-
age at the battery terminals, the ambient temperature, the cur-
rent generated by the solar panels, and the current consumed
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FIGURE 5. LSTM layer architecture.

by the load. From them, the battery current is obtained as the
subtraction of both currents. Starting from a time instant n,
the output is the voltage at time n+ 48h (corresponding to
the objective of predicting the voltage two days ahead). This
forecast horizon has been chosen after consulting experts in
the field, so the operator has time to carry out appropriate
solutions (i.e., overcharging the batteries the previous days,
or charging the batteries with a fuel-powered generator) to
avoid energy supply disruption. The input vectors are the val-
ues of the three variables (voltage, current, and temperature)
during the last two days, from n-48 to n. A preliminary study
has been made to select the length of the past inputs vector, the
final value selected is a compromise between minimal error
and computational cost. Additionally, to provide information
on the evolution of the system in the following 48 hours,
data of the current during this period is also going to be
used (Fig. 6). The future temperature was also considered
but discarded after some tests due to its low relevance to the
prediction.

Regarding using future current as an input, it is necessary to
distinguish between the training process and the final imple-
mentation, since for the training process future real current
will be available as an input, but for the final implementation,
it must be estimated. Other machine learning techniques will
be used to estimate this profile of future current. This topic
will be covered in depth in the following sections.

Once the input vectors are ready, the next step is to nor-
malize the features in the dataset. In this application, the
ranges of the input variables are very different due to their
diverse nature. It is convenient to normalize the data to a
range determined to accelerate and improve convergence at
the optimal point during the training process, obtaining an
increased accuracy. In this case, data of each variable (volt-
age, current and temperature) has been normalized to the
range [0,1] separately.

2) TRAINING PROCESS

Supervised training is used for this application. In this type
of training, both the input vectors and the true output value
(corresponding to each of the inputs) are used. During the
training process, the network adjusts the values of its weights
so that the error between the expected output value and
the estimation provided by the network is minimized. This
method is called backpropagation.
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The configurable parameters of the process in which spe-
cial attention must be paid are:

o Neurons/cells activation function: it returns an output
that will be generated by the neuron given an input or
set of inputs.

o Cost function: it measures the difference between the
estimated value and the real value.

« Optimizer: it oversees the update of the weights values
to minimize the error made.

The activation function of the neurons of the input and hid-
den layers has been selected by doing a parametric search and
selecting the best performing for each network: ReLu (Recti-
fied Linear Activation Function) for NARX and hyperbolic
tangent for LSTM, two functions widely used in this type
of network. Since the voltage estimation task is a regression
problem, the output layer of both models will have a linear
activation function. In both networks, the cost function used
to optimize the network parameters is the mean squared error
(MSE).

An important factor to consider is avoiding local minima
and get a globally optimal solution. For that, the use of
an algorithm/optimizer that randomly initiates the weights
and keeps only the one with the better results is considered.
From the different options of optimizers, ADAM (ADAptive
Moment estimation) is selected. ADAM [35] is a stochas-
tic optimizer with a variable learning rate that combines
the advantages of two algorithms that are extensions of the
stochastic gradient descent (SGD), such as AdaGrad (Adap-
tive Gradient Algorithm) and RMSProp (Root Mean Squared
Propagation). In Table 1 a summary of the hyperparameters
for the two models is shown. The dataset has been divided
into three subsets to train and validate the correct operation
of the neural network. The first is the training subset, made up
of 70% of the data. The second one is the validation subset,
made up of 15% of the data. The last one is the test subset,
made up of the remaining 15% of the data.

The data is divided by random shuffling for the training
and validation subset, while for the test subset the final 15 %
of the database has been set aside. The reason for doing this
division is to carry out the strategy of Early Stopping to avoid
overfitting. This phenomenon occurs when the network is
over-trained with a training set, causing it to learn the par-
ticularities and the noise of this data. An overfitted network
does not generalize well and has worse results when new data
is processed.
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TABLE 1. Comparison of both networks hyperparameters.

TABLE 2. Comparison of error committed by the NN according to
neurons/cells per layer.

NARX LST™M Number of Number of Error Error
— - neurons/cells, 1% neurons/cells, 2™ with with
Actl‘va_t on function ReLu Tanh hidden layer hidden layer NARX LSTM
Optimizer ADAM ADAM 25 g 0.66 0310
Cost function MSE MSE 667 ’
Training time 10 sec 2h 15 sec 30 25 0.595 0.269
Execution time 0.22 sec 8.03 sec 100 50 0.430 0222
Trainable parameters 24401 71851 200 100 0.568 0.246
300 150 0.632 0.240
Training process error predicted voltage). To choose the dimension of the hidden
3.0 —— Training layers, a comparison has been made by training the model
T— Velldtion with different numbers of neurons. Table 2 shows the MSE
@ s error of the different NN combinations. The option of 100
g and 50 neurons has been chosen in both cases because it
€201 shows the best results.
g To reduce possible overfitting, a dropout layer has been
7154 added after each hidden layer.
g ‘ The dropout [36] is a technique in which different neurons
E 104 \ are randomly selected to not update their weights in different
A iterations of the training phase. With this technique, a network
. ' bt less dependent on a particular neuron is achieved and there-
! : ; . : ; fore it generalizes better. For this case, a dropout rate of 10%
0 100 200 300 400 500

Epochs

FIGURE 7. Error evolution of train and validation dataset.

The Early Stopping strategy consists of training the net-
work (obtaining an error metric and updating the weights)
only with the training set and at the same time checking its
behavior with the validation set. The training process stops
when the network stops improving its performance over the
validation set, achieving a network with a correct general-
ization. The training process of both networks is compared
using a computer with an Intel i7-9700K CPU of 3.60 GHz.
As Table 1 manifests, preliminary tests shows that the dura-
tion of the training process for the LSTM network is larger,
as well as the modifiable parameters, which are 3.6 times
more than in NARX network. Finally, the test set is used to
benchmark different algorithms or different hyperparameters
fairly, since this set has not been used in any stage of the
training process.

In Fig. 7, the evolution of the training and validation set is
done, the point where the model stops to improve and there-
fore the training process must cease is around 200 epochs.

3) NETWORK SIZING

With the dataset and the training process selected, the next
step is network sizing and actual training. Both networks
(NARX and LSTM) have been trained following the same
procedure. For both networks, after trying with a varied
number of hidden layers, the option that offered the best
tradeoff between precision and network complexity was two,
in addition to the input and output layer. The dimension of
the input layer (number of neurons) must be equal to the
number of inputs, in this case, 192. The output layer has
one neuron since there is only one output (the value of the
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is chosen, meaning that 10% of the neurons are randomly
dropped on each iteration.

The final structure of the network is shown in Table 3. The
process followed to train both NN models is summarized in
Algorithm 1.

Algorithm 1 Training Stage of Each NN Model
(1) Obtain a training dataset, D = (X, y), where X are past
voltage, current, and temperature measurements of the
battery, and y are the corresponding real future voltage
values to be predicted.
(2) Select the NN structure (layers, neurons/cells. .. )
(3) Initialize hyperparameters
(4) while (NOT (EarlyStopping condition) AND (number
of epochs < max epochs))
(5)  Propagate the input forward though the network.
(6)  Calculate the output for each neuron/cell
(7)  Calculate the error signal
(8)  Propagate the errors backward through the network
(9)  Update the weights of each neuron/cell
(10)  Calculate the global error based on the cost function
(11) end while

IV. IMPLEMENTATION
A. SYSTEM OVERVIEW
The final voltage prediction system contains one of these
trained neural network models, among other different blocks.
This system is implemented in Python code language and is
installed in a local server in the CHE’s facilities.

Fig. 8 shows a diagram with all the parts that make
up the entire system. The neural network block (voltage
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TABLE 3. Neural network final structure.

Layer NARX LSTM
Type Parameters Type Parameters
No. neurons: 100 No. cells: 100
! Dense Drop out: 10% LST™M Drop out: 10%
No. neurons: 50 No. cells: 50
n Dense Drop out: 10% LST™M Drop out: 10%
Output  Dense No. neurons: 1 Dense  No. neurons: 1
i Sey,
(%3 /E'IE
" Tt Training
rainin,
oo proccssg process
current
predictor
Synthetic
current Processed Output/

inputs prediction
Real-time Preprocessing Neural
inputs block Network

FIGURE 8. Scheme of the real system implemented.

prediction algorithm) has been trained with the dataset, and
the preprocessing block groups and normalizes the inputs
(both real-time inputs and future current inputs) as explained
in the previous section. However, during training, the algo-
rithms have used known future current as input. In the imple-
mentation phase, this information is not available. This is
depicted in the figure with the “Future current predictor”
block. In this section, an estimation for the future current
waveforms, based on weather forecasting, is presented. The
details of this estimation are explained below.

Algorithm 2 Prediction Stage of the NN Based System

(1)  Obtain the future current pattern based on the elec-
tion of an expert or the local weather prediction.

(2)  Extract the past values of voltage, current and tem-
perature of the PV station batteries.

(3)  Matching input vectors with past and future data

(4)  Preprocess the input to suit the NN.

(5)  Compute the NN to obtain the prediction (voltage 48h
into the future) and save that value.

Algorithm 2 explains step by step the process followed by
the final implementation of the system to make the prediction.

B. ESTIMATION OF FUTURE CURRENT

The key idea is that a forecast of the weather for the future
days is selected, then an artificial current waveform corre-
sponding with that scenario is generated by the “Future cur-
rent predictor’ block. To do so, a study on the different daily
irradiation patterns that can appear in the installation has been
carried out. Each of these types of day has a representative
current pattern. A weather forecast system, or a specialized
operator selects the type of day more likely to happen for the
forecasting horizon and the corresponding current patterns
are used as future current inputs to the NN.
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To obtain the day-type classification, different features
have been extracted from voltage, current, and temperature
waveforms of the same day. Then, these features have been
processed by clustering techniques. The selected features
have been based on previous work made by the research
group [24]:

« The voltage at the beginning of the discharge: voltage of
the battery at the beginning of the night when the solar
panels stop producing energy.

o The voltage at the end of the discharge: voltage of the
batteries at the end of the night when the solar panels
begin producing energy.

« Stored charge: integral of the charge during the charging
process.

To determine the day classification, Self-Organizing Maps
(SOM) [37], and clustering K-means algorithm [38], [39]
have been used. SOM is an unsupervised classification algo-
rithm that is commonly used for pattern recognition, database
visualization, and preliminary analysis of datasets [40], [41].

A SOM has been trained with the features described before
as inputs using the SOM Toolbox MATLAB library [42].
A standard size of 10 x 6 neurons has been selected. The map
has two operation modes: training and inference. During the
training process, the neurons adjust so that for each example
exists a region of the map that better fits it.

The resulting trained SOM can be considered a two-
dimensional, non-linear picture of the database, where the
map groups similar data patterns (or type of days) in closer
regions. After the training, a K-means has been applied to
the SOM map to establish different clusters for each different
type of day (Fig. 9).

This algorithm needs as an input the number of clusters into
which the database will be separated, so a parametric search
with this parameter has been carried out. After classifying
each of the days of the dataset into one of the clusters, the
current pattern corresponding to that type of day has been
obtained by averaging the current waveform of all the days
belonging to that cluster. The results show that by using four
clusters, most of the days can be classified without commit-
ting large errors.
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FIGURE 10. Mean waveforms of the four types of days, obtained by
clustering tools.

Fig. 10 is the result of this process. Each cluster has been
assigned a label related to its characteristics:

o High irradiation day without reaching the maximum
voltage (red): This type of profile usually happens when
a high sunshine day occurs after a bad day (low irradia-
tion). As the voltage levels are low, during the charging
process the maximum voltage of the batteries is not
reached, and therefore the battery absorbs maximum
irradiation.

« Prototypical good day (light blue): This type of profile
usually occurs when a high irradiation day occurs after
another good day. The starting voltage levels are high,
and the maximum voltage is reached soon, thus the
current decreases, and the batteries cannot absorb as
much current.

o Medium irradiation day (dark blue): This type of profile
appears on light cloudy days, with medium irradiation.

« Low irradiation day (yellow): This type of profile occurs
when there is very low absorption of solar energy. They
could be rainy or foggy days.

Additionally, the fifth type of day without any irradiation
(“Day with extremely low irradiation’”) has been included.

This fifth cluster would represent days where there are
heavy storms, or snow blocking the panels, or any critical
system failures. This new type of day has been included
artificially because there are almost no identifiable patterns
of this situation in the dataset.

These artificial current patterns are the ones that are
entered into the predictive system as information of the future
days. Depending on the expected type of day, an operator will
choose the current profile that best suits that scenario

V. RESULTS
A. EVALUATION INDEXES
To evaluate the two types of RNN, three metrics widely used

in regression problems are chosen: Root Mean Squared Error
(RMSE) (9), Mean Absolute Error (MAE) (10), and Mean
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TABLE 4. Comparison of NARX and LSTM errors.

NARX LSTM
RMSE (V) 0.670 0.555
MAE (V) 0.464 0.332
MAPE (%) 0.863 0.626

Absolute Percentage Error (MAPE) (11).

1 N
RMSE = | .3 (vi = 5i)° ©

i=1
1 N
MAE = ﬁ;j [vi = 3i (10)

1 N
MAPE = N'Z

i=1

Vi — i
Vi

Y

where N is the number of examples in the test dataset, y; is
the predicted voltage for the i-th example, and y; is the actual
voltage value for the i-th example.

B. RESULTS OF TRAINING WITH REAL CURRENT AS
FUTURE INPUT

The first result is a comparison between both NN models,
following the training process, using the test dataset to evalu-
ate the performance of NARX against LSTM. The predicted
and the real voltage are shown in Fig. 11 where both NN
models achieve accurate predictions for different types of
days. In the first four days, the solar panels receive high
irradiation but from then on, some cloudy/rainy days appear
and the predictions in these critical situations are also correct.

The error achieved by NARX and LSTM is shown in
Table 4. Both models have similar values, but the LSTM has
higher precision.

From Fig. 11, it can be seen a better performance of LSTM
in the higher voltage levels. On the contrary, the NARX algo-
rithm does not reach the actual voltage values in these ranges.
Nevertheless, these instants of operation are not critical since
the critical values to predict are in the lower voltage levels.
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TABLE 5. Evaluation of NN MAPE error in different PV standalone
stations.

TABLE 6. Errors obtained from replacing future current for artificial
waveforms.

NARX LSTM NARX LST™M
Acequia Ontinena 0.811 1.048 RMSE (V) 0.986 0.883
Cartuja Monegros 0.549 0.481 MAE (V) 0.656 0.550
Almenara Arba Luesia 0.879 0.956 MAPE (%) 1.214 1.029
Pluviometro Candanchu 0.624 0.607
Repetidor Camero Nuevo 0.814 0.853
Repetidor Majalino 0.706 0.687 Prediction when a installation fault ocurrs

Prediction using artificial current
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FIGURE 12. Results obtained from implement the predictor with synthetic
current.

To make sure the prediction algorithms are suitable for
this application, a more exhaustive evaluation has been done
in multiple PV standalone installations with different battery
voltages and chemistries. Since the features of each installa-
tion are different, the MAPE is the most adequate index to
compare the results.

As Table 5 shows the errors are similar or even better in
the different stations. The election of Morrdn to continue the
study over the other installations is because it has had more
installation failures in recent years, and it is a higher priority
installation for the client.

C. CHANGE FROM REAL TO ARTIFICIAL CURRENT

To check how the behavior changes when introducing the
synthetic current as future input, the same window of days
shown in Fig. 11 is used. The new results are shown in Fig. 12.
For this evaluation, future current values for the next two days
are selected based on the five types calculated in the previous
section. Table 6 presents worse results, but the system is still
capable of reproducing with high accuracy the behavior of
the batteries. At this point in the implementation, the LSTM
network still has a more precise estimation in the higher levels
of the waveform, but for the lower ranges, the NARX network
seems to get closer to the actual values.

D. PERFORMANCE IN A LOW ENERGY SITUATION

To verify the performance of the implemented system, detri-
mental situations have been selected, in which it would
be convenient to foresee what is going to happen. These
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FIGURE 13. Example of prediction selecting “Day with extremely low
irradiation” as hypothesis before the installation run out of energy.

detrimental situations have been defined as those with volt-
ages below the threshold of 50V, as marked with an orange
line in the Figures 13,14 and 15. In this example, one of the
facilities studied runs out of power due to several adverse
weather days. In Fig. 13 the real and the predicted values
obtained by NARX and LSTM are shown.

After a few days of normal irradiation, a first low-
irradiation period occurs, but the installation manages to
recover with two days of good irradiation. After those two
days, three low irradiation days take place, and voltage plum-
mets, so the installation stops working.

During the days before the two main low-irradiation
events, the predicted waveforms are similar to what has been
seen in previous tests. When the voltage begins to drop below
47.5V, the estimates begin to differ from the actual data. This
divergence happens because the database contains very few
complete examples of waveforms in these voltage ranges,
and therefore, the network is not able to learn the exact
behavior of these failure situations. However, the trend of
the dropping voltage is captured, and an alert message could
be sent, warning that the installation may fall. If an operator
observes this trend, pertinent precautions should be taken.
Table 7 shows a comparison between the errors obtained
for the full waveform and the errors obtained for voltage
values below 50V (a risky situation). The results obtained
show no clear benefit from using one or another NN, and
the computational cost of LSTM is much higher than NARX,
so the final implementation is made with the NARX model.

E. FAULT TOLERANCE
The forecast horizon has been set at two days. When choosing
the future scenario that will occur during those two days,
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TABLE 7. Errors obtained in a risky situation for the installation.

Errors in the full waveform  Errors in <50 voltage

NARX LSTM NARX LST™M
RMSE (V) 0.986 0.883 1.128 1.298
MAE (V) 0.656 0.550 0.898 1.060
MAPE (%) 1.214 1.029 1.898 2.231
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FIGURE 14. Results if two “low irradiation days” were chosen.
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FIGURE 15. Results if two “medium irradiation days” were chosen.

the operator will choose an artificial current profile based on
weather forecasts and his experience.

In this section, a preliminary study against possible minor
errors in the selection of the scenario is presented. Figures 14,
15, and Table 8 collect some results for the cases where the
operator does not estimate the day properly, choosing a wrong
pattern. Specifically, rather than a “Day with extremely low
irradiation”” scenario, the “Low irradiation day”’ scenario has
been chosen in Fig. 14, and the “Medium irradiation day”
scenario has been chosen in Fig. 15.

Although the waveform prediction is worse, it is still pos-
sible to estimate that there is a chance of failure in the system
when selecting “low irradiation day”’, especially looking at
the trend of the curve rather than the exact waveform. The
errors increase by 0.2V approximately, which is acceptable
for this application. If the day selected is medium, due to the
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TABLE 8. Prediction errors if two “low irradiation days” and two
“medium irradiation days” were chosen during the installation crash.

Choosing “Low
irradiation day”

Choosing “Medium
irradiation day”

NARX LSTM NARX LST™M
RMSE (V) 1.662 1.546 2918 2.724
MAE (V) 1.336 1.282 2.295 2.112
MAPE (%) 2.851 2.717 4.892 4.515
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FIGURE 16. Aspect of the final application working.

substantial difference in the current waveform the prediction
becomes much more unprecise.

This allows inferring that there will be some fault tolerance
in the selection of days by the operator.

F. PRELIMINARY IMPLEMENTATION OF THE SYSTEM

A preliminary example of the behavior obtained with the
final system implemented in the servers of CHE is shown
in Fig. 16. For the final implementation, in addition to the
48-hour prediction, a 24-hour prediction was also imple-
mented. In Fig. 16 the red line is the real value, the green
line is the prediction 24-hour ahead and the orange line
is the prediction 48-hour ahead. The future current can be
selected manually or by consulting a local weather forecast
system. The results obtained are very promising, but the final
evaluation needs to be done with a larger amount of data, of at
least one year running in real time.

VI. CONCLUSION

This paper study the issue of future voltage estimation in
energy storage system batteries with a new methodology that
relies on standard algorithms such as NARX and LSTM. The
purpose is to predict future failures cause by low energy dis-
ruption in PV standalone installations. The prediction horizon
has been lengthened until two days ahead in the future. The
algorithms rely on past voltage and current measurements,
and in future current estimations to make the predictions.
To provide these future estimations, a model based on the
classification of future irradiation scenarios has been devel-
oped. The machine learning techniques applied to perform
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the prediction are NARX and LSTM, and their performance
has been compared. Both models obtain good estimation
results, with average RMSE metrics of 0.906 V and 0.870 V
respectively, for batteries with nominal voltages of 48V. In the
case of a risky scenario, the RMSE metrics are 1.128 V and
1.298 V respectively. Although the error is greater, the trend
can be clearly observed when a failure is about to occur, and
an operator could take preventive measures accordingly. This
phenomenon is reasonable due to the scarcity of these events
in the database, but it is acceptable for the application. The
sensitivity of the proposed model to errors in the classification
of the future days is also evaluated, concluding that a certain
level of misclassification could be allowed. The algorithms
have been deployed in real installations, with a positive
outcome.

The results are very promising, achieving good estima-
tion results. However, the proposed prediction algorithms
are still sensitive to long-term variations: battery aging, cell
cracks, hotspots, finger failures, corrosion, or changes in
other elements of the installation such as solar panels, battery
chargers. .. To mitigate this sensitivity, future lines of work
include adaptive algorithms, capable of learning and being
retrained online, after been deployed in the installation. With
this modification of the algorithm its performance in new
situations will be improved. In order to make available the
deployment of these algorithms in new installations without
history data, a future line of work is to train a representative
set of several installations so that the tool is not exclusive
to one installation, and it can be used for every PV station.
Then, the adaptive algorithm will improve its approximation.
Finally, other future lines are to add new functionalities like a
waveform anomaly detector, to alert that something out of the
normal behavior may have happened and any of the system
components may have suffered a breakage.
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