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Over half of the world’s population is estimated to be infected with Helicobacter pylori.
Chronic infection with this microbial class I carcinogen is considered the most important
risk factor for developing gastric cancer. The increasing antimicrobial resistance to first-
line antibiotics mainly causes the failure of current eradication therapies, inducing
refractory infections. The alarming increase in multidrug resistance in H. pylori isolates
worldwide is already beginning to limit the efficacy of existing treatments. Consequently,
the World Health Organization (WHO) has included H. pylori in its list of “priority
pathogens” for which new antibiotics are urgently needed. Novel strategies must be
followed to fight this antibiotic crisis, including properly exploiting the proven therapeutic
potential of medicinal plants and plant-derived phytochemicals. In this mini-review, we
overview the impressive properties of naturally occurring flavonoids as effective
antimicrobial agents against H. pylori, which support the use of these plant-derived
bioactive compounds as promising drug candidates for inclusion in novel and
personalized combinatory therapies against H. pylori infection.
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INTRODUCTION

Helicobacter pylori inhabits the gastric mucosa of almost 4.4 billion people worldwide (Hooi et al.,
2017). Without effective eradication therapy, infection usually persists lifelong, causing gastric
mucosal inflammation, which may gradually progress to peptic ulcer disease, gastric
adenocarcinoma, and mucosa-associated lymphoid-tissue (MALT) lymphoma (Kusters et al.,
2006; Yamaoka, 2010). Presently, the efficacy of one-week standard triple therapy containing
clarithromycin (CLR) and either metronidazole (MTZ) or amoxicillin (AMX) combined with a
proton-pump inhibitor (PPI) has dramatically dropped, showing eradication rates as low as 50% to
70% (Fallone et al., 2016). CLR-containing regimens are no longer suitable for unconditional
empiric use because of commonly high levels of antimicrobial resistance and inadequate eradication
rates, while the efficacy of the other alternative treatments varies greatly, which usually causes
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refractory infections. Given the rate at which clinically relevant
pathogens, such as H. pylori, are acquiring multidrug resistance,
the feared possibility that we cannot effectively treat these human
bacterial infections is becoming a reality (Boyanova et al., 2016).
In 2017, the World Health Organization (WHO) included
H. pylori in its first list of antibiotic-resistant “priority
pathogens”, a catalogue of 12 families of bacteria that presently
pose the greatest threat to human health (Tacconelli et al., 2018).
Nowadays, effective novel therapy against H. pylori is mandatory
to increase eradication rates and minimize both antimicrobial
resistance and side effects on normal microbiota.

Long before H. pylori infection was recognized as causing
chronic gastritis and peptic ulcers in 1982 (Marshall andWarren,
1984), natural products have been used by physicians and healers
to combat these illnesses based on empirical knowledge (Yesilada
et al., 1997). Today, over 240 plant species have demonstrated
anti-H. pylori activity (Salehi et al., 2018; Baker, 2020). With the
pressing need for novel therapeutic options to face the current
antibiotic crisis, the scientific community’s interest in traditional
medicine and the use of natural products as sources of novel
antibacterial drugs have been reinforced (Cheesman et al., 2017;
Anand et al., 2019). In this mini-review, we overview the
impressive findings obtained due to various studies that
focused on the anti-H. pylori properties of flavonoids. We also
discuss the promising roles of these natural products as potential
drug candidates. Finally, we revise the current strategies to
improve the bioavailability and efficacy of these phytochemicals.
FLAVONOIDS: A LARGE FAMILY
OF NATURALLY OCCURRING
BIOACTIVE COMPOUNDS

Flavonoids are polyphenolic, low-molecular-weight bioactive
compounds ubiquitous in plants (Buer et al., 2010). The
flavonoid family comprises over 9,000 species of molecules,
which mostly share a chemical structure based on a fifteen-
carbon (C6-C3-C6) skeleton comprising two benzene rings
denoted as A and B, linked through a heterocyclic pyran ring
referred to as ring C. The C6-C3-C6 skeleton is often
hydroxylated in positions 2, 3, 5, 7, 3´, 4´, and 5´. Methyl
ethers and acetyl esters of the alcohol groups are frequent,
although a plethora of other derivative groups, including
different alkyls, isoprenoids, and carboxylic groups, also
contribute to the vast diversity of these compounds (Kumar
and Pandey, 2013). Based on the oxidation state of the central
pyran ring, its degree of hydroxylation, and the connection
position of benzene ring B, flavonoids could be divided into
seven major classes: flavones, flavonols, flavanones, flavanonols,
flavanols (also known as flavan-3-ols), anthocyanidins, and
isoflavones (Table 1).

Flavonoids are synthesized as secondary metabolites by all
plant organs. These natural polyphenols are critical in plants’
interaction with other organisms, such as microorganisms,
animals, and other plants, but they also participate in
responding to different abiotic stresses, including UV radiation,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
extreme temperatures, heavy metals, and droughts (Mierziak
et al., 2014). A major role of flavonoids in plants is their function
as a second line of defense against oxidative stress. Flavonoids
can inhibit the generation of reactive oxygen species (ROS) by
several mechanisms (Kumar and Pandey, 2013), but they also
quench ROS once they are produced. Some environmental
stresses, such as drought, salinity, extreme temperatures, and
nutrient scarcity, may significantly reduce the activity of ROS-
detoxifying enzymes in chloroplasts. As an adaptive response,
plants upregulate the biosynthesis of ROS-scavenging flavonoids.
These polyphenols will not only absorb the most energetic solar
wavelengths (i.e., UV-B and UV-A) but will also scavenge free
metal ions, peroxyl, superoxide, and peroxynitrite radicals,
thereby avoiding lipid peroxidation and oxidative damage to
other biomolecules (Kumar and Pandey, 2013; Del Valle
et al., 2020).
MECHANISMS OF ANTIMICROBIAL
ACTION—A CLOSE RELATIONSHIP
BETWEEN STRUCTURE AND ACTIVITY

As with other phytochemicals, the antimicrobial activity of
flavonoids appears multifactorial while acting against different
molecular targets in the pathogen instead of having one specific
action site. However, the presence of certain structural features in
the flavonoid molecule enhances its pharmacological effects,
reinforcing one or another action mechanism, suggesting a
relationship between the flavonoid structure and its antiviral
and/or antimicrobial activities (Cushnie and Lamb, 2005; Kumar
and Pandey, 2013; Wang et al., 2018; Farhadi et al., 2019;
Górniak et al., 2019). Thus, while a greater abundance in
hydroxyl groups increases the antioxidant effects of flavonoids
due to a higher number of functional sites for scavenging free
radicals and chelating metal ions, this high degree of
hydroxylation diminishes simultaneously with flavonoid
lipophilicity, thereby limiting the influx of these molecules
across the pathogen cell membranes. Hence, lipophilic
flavonoids, such as herperetin, naringenin, sophoraflavanone
G, and catechins with gallate groups, could penetrate the lipid
bilayer membrane up to the zone under phosphate groups and
laterally diffuse into the bilayer plane, causing alterations in
membrane fluidity and permeability (Tsuchiya and Iinuma,
2000; Tarahovsky et al., 2014). Other flavonoids such as
quercetin cause a decrease in the proton-motive force
impairing the production of adenosine triphosphate (ATP),
while apigenin and morin induce destabilization of the
membrane structure by the disordering and disorientation of
membrane lipids (Górniak et al., 2019).

Also, hydrophilic flavonoids could interact at the membrane
surface and/or in the cytosol with proteins involved in different
essential functions, including adhesins, cell envelope
transporters, transcriptional regulators, enzymes, and toxins,
inactivating these biomolecules by forming flavonoid-protein
complexes through hydrophobic interactions, hydrogen, and/or
covalent bonds (Kumar and Pandey, 2013; Górniak et al., 2019).
July 2021 | Volume 11 | Article 709749
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Notably, little difference in the molecular structure of two
flavonoids could be responsible for different effectivities in
their capability to inhibit the biological activity of the same
protein target. For instance, both apigenin and quercetin
inhibited the function of D-alanine:D-alanine ligase (Ddl)
using the same inhibition mechanism as competing with the
substrate ATP (Wu D. et al., 2008). Although these two
flavonoids only differ in the two additional hydroxyl groups
that quercetin possesses at positions 3 and 3´, this little difference
induces a substantial increase in the affinity of quercetin by the
active site of the enzyme, resulting in at least a three-fold increase
in its inhibitory activity against Ddl regarding apigenin.
However, quercetin exhibited lower antibacterial activity than
apigenin, which could be a consequence of poorer transport
across cell membranes due to lower lipophilicity (Wu D.
et al., 2008).
NATURAL FLAVONOIDS AGAINST
HELICOBACTER PYLORI INFECTION

Although many published studies have described the therapeutic
potential of different plant extracts and other flavonoid-rich
natural products (Ankolekar et al., 2011; Njume et al., 2011;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Takeuchi et al., 2014; Wang, 2014; Boyanova et al., 2015; Salehi
et al., 2018; Baker, 2020; Mendonca et al., 2020), we focused this
mini-review on the advances in the knowledge of the
antimicrobial activities of natural purified flavonoids against H.
pylori (Table 2). Notably, several flavonoids have exhibited
potent antimicrobial activities (MIC ≤ 8 µg/mL) against H.
pylori. These in vitro antimicrobial potencies are comparable
with those exhibited by some conventional antibiotics
traditionally used in anti-H. pylori therapies, such as
metronidazole, against sensitive strains (Loo et al., 1997).
Although the anti-H. pylori activity exhibited by these
flavonoids is probably multifactorial, an increasing number of
studies have successfully identified specific molecular targets of
these bioactive compounds in H. pylori, unravelling both
antimicrobial and antivirulence mechanisms. Thus, several
bactericidal flavonoids noticeably inhibited the essential
function of HsrA (González et al., 2019), an OmpR-like
orphan response regulator (Lee et al., 2006), which acts as a
global homeostatic regulator synchronizing metabolic functions
and virulence with the availability of nutrients and cell division,
also mediating the response to oxidative stress (Olekhnovich
et al., 2013; Olekhnovich et al., 2014; Pelliciari et al., 2017).
Isothermal titration calorimetry studies indicated that chrysin,
apigenin, kaempferol, and hesperetin bind to HsrA with
dissociation constants in the micromolar range, showing a 1:1
TABLE 1 | Flavonoid classes and their major natural sources.

Flavonoid class Structure backbone Examples Major natural sources

Flavones Apigenin
Chrysin
Luteolin
Tangeritin

Celery, parsley, red peppers, chamomile, mint, ginkgo biloba

Flavonols Kaempferol
Quercetin
Myricetin
Fisetin

Onions, kale, lettuce, tomatoes, apples, grapes, berries, tea, red wine

Flavanones Hesperetin
Naringenin
Eriodictyol
Butin

Citrus fruits, grapes, rice

Flavanonols Taxifolin
Aromadedrin
Engeletin
Astilbin

Citrus fruits, tea, rice

Flavanols
(Flavan-3-ols)

Catechin
Epicatechin
Gallocatechin
Proanthocyanidins

Tea, cocoa, bananas, apples, blueberries, peaches, pears, grapes, red wine

Anthocyanidins Malvidin
Cyanidin
Delphinidin
Petunidin

Berries, black currants, red grapes, merlot grapes

Isoflavones Daidzein
Genistein
Glycitein
Formononetin

Legumes
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stoichiometry. Molecular docking analyses suggest that
interactions between these flavonoids and HsrA preferably
occur by the C-terminal effector domain of the response
regulator, thereby blocking its interaction with DNA (González
et al., 2019). Notably, apigenin, kaempferol, and hesperetin also
affected other recognized molecular targets in H. pylori,
including enzymes (Wu D. et al., 2008; Zhang et al., 2008),
secretion systems (Yeon et al., 2019), and cell membranes (Moon
et al., 2013).
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Many naturally occurring flavonoids exhibit anti-urease
activity (Table 2). Molecular docking studies and structure–
activity relationship analyses proved that 3-OH, 5-OH, and 3′,4′-
dihydroxyl groups of quercetin generate hydrogen bonds with
amino acid residues of H. pylori urease, which appear essential
for the inhibitory activity exerted by this flavonoid. Removing or
substituting any of these functional hydroxyl groups from the
quercetin structure significantly decreases its urease inhibitory
activity (Xiao et al., 2012). The critical impact of OH groups on
TABLE 2 | Natural flavonoids with antimicrobial activities against H. pylori.

Class Flavonoid MIC
(µg/mL)

Target1 Additive
or

synergy2

References

Flavones Chrysin 4 HsrA CLR,
MTZ

(González et al., 2019)

Apigenin 8 HsrA, FabZ,
Ddl

(Isobe et al., 2006; Wu D. et al., 2008; Zhang et al., 2008; Wang and Huang, 2013;
Kuo et al., 2014; González et al., 2019)

Luteolin 32 HsrA, NAT,
Urease

(Chung et al., 2001; Isobe et al., 2006; Moon et al., 2013; González et al., 2019; Tran
Trung et al., 2020)

Nobiletin PDF (Rajesh et al., 2013; Ouyang et al., 2020)
Diosmin Urease (Kataria and Khatkar, 2019a)
Baicalin 450 Urease,

VacA
AMX,
TET

(Wu J. et al., 2008; Huang et al., 2015; Yu et al., 2015; Chen et al., 2018)

Baicalein 33.7 VacA (Matsumoto et al., 2008; Chen et al., 2018)
Isoorientin (Yuan et al., 2018)
Acacetin 62.5 (Gomez-Chang et al., 2018)
Diosmetin (Gomez-Chang et al., 2018)
Scutellarin Urease (Yu et al., 2015; Chledzik et al., 2018)
Oroxindin 50 Urease AMX (Fong et al., 2019)
Galangin (Skiba et al., 2016)
Sudachitin (Nakagawa et al., 2006)
Cirsimaritin 6.3 (Isobe et al., 2006)
Cirsilineol 3.2 (Isobe et al., 2006)
Sinensetin 25 (Isobe et al., 2006)
Eupatorin 12.5 (Isobe et al., 2006)
Pedalitin 25 (Isobe et al., 2006)

Flavonols Quercetin 64 HsrA, FabZ,
Ddl, Urease

(Shin et al., 2005; Gonzalez-Segovia et al., 2008; Wu D. et al., 2008; Zhang et al.,
2008; Martini et al., 2009; Brown et al., 2011; Xiao et al., 2012; Brown and Jiang,
2013; Moon et al., 2013; Macomber et al., 2015; Haghi et al., 2017; Zhang et al., 2017;
González et al., 2019)

Kaempferol 8 HsrA, VacA,
T4SS, T5SS

(Martini et al., 2009; Bisignano et al., 2013; Moon et al., 2013; González et al., 2019;
Yeon et al., 2019)

Myricetin 128 HsrA,
Urease,
spiral-to-
coccoid
transition

CLR,
MTZ,
LVX,
TET,
AMX

(González et al., 2019; Tran Trung et al., 2020; Krzyzek et al., 2021)

Morin Urease (Kataria and Khatkar, 2019b)
Isorhamnetin 3.9 (Ustun et al., 2006; Bisignano et al., 2013)

Flavanones Hesperetin 4 HsrA, cell
membrane

MTZ,
CLR

(Lee et al., 2012; Moon et al., 2013; González et al., 2019)

Naringenin 128 Urease,
biofilm

(Shin et al., 2005; Bisignano et al., 2013; Moon et al., 2013; Tran Trung et al., 2020)

Sakuranetin 25 FabZ (Zhang et al., 2008; Stompor, 2020)
Flavanols Catechin (Bisignano et al., 2013; Silvan et al., 2020)

Epicatechin 128 (Bisignano et al., 2013)
Epigallocatechin Urease (Macomber et al., 2015)
Proanthocyanidins Urease (Wittschier et al., 2007; Hribova et al., 2014; Pastene et al., 2014; Silvan et al., 2020)

Anthocyanidins Cyanidin SecA, T5SS (Kim et al., 2012; Kim et al., 2014; Kim et al., 2018)
Isoflavones Daidzein Urease (Ndemangou et al., 2013)
1FabZ, b-hydroxyacyl-acyl carrier-protein dehydratase; Ddl, D-Alanine:D-alanine ligase; NAT, N-acetyltransferase; PDF, Peptide deformylase. T4SS and T5SS: bacterial type IV and type V
secretion systems.
2Additive or synergistic effect according to the checkerboard assay (White et al., 1996). CLR, clarithromycin; MTZ, metronidazole; TET, tetracycline; AMX, amoxicillin; LVX, levofloxacin.
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the affinity and half maximal inhibitory concentration (IC50) of
flavonoids against H. pylori enzymes has also been demonstrated
in other studies (Wu D. et al., 2008; Yu et al., 2015). Flavonoids’
value as effective anti-H. pylori therapeutic drugs is not only
supported by their proven bactericidal effect but also due to their
antivirulence actions, which in many cases reduce damage to the
host and alleviate associated diseases. Some H. pylori virulence
factors, including cytotoxin-associated gene A (CagA) and
vacuolating cytotoxin A (VacA), are critical in the
inflammation process associated with infection with this
pathogen. Cytotoxin CagA (Ansari and Yamaoka, 2020),
encoded by the cag pathogenicity island, is translocated to host
cells via the type IV secretion system (T4SS), a sophisticated
transmembrane protein complex that directly injects the toxin
into gastric epithelial cells (Backert et al., 2017). Once into the
target cells, CagA activates NF-kB, a master regulator of immune
and inflammatory responses that modulates the gene expression
of pro-inflammatory cytokines, such as IL-8, TNF-a, and IL-1b
(Lamb and Chen, 2013). Additionally, the cytotoxin VacA
(Palframan et al., 2012), which is secreted from H. pylori via
the type V secretion system (T5SS), acts on the host cell,
inducing vacuolation and apoptosis, and also increases IL-8
production by activating the p38 MAPK via intracellular Ca2+

release, thereby activating the transcription factors, ATF-2,
CREB, and NF-kB (Hisatsune et al., 2008). Several flavonoids,
including apigenin (Wang and Huang, 2013), kaempferol (Yeon
et al., 2019), quercetin (Gonzalez-Segovia et al., 2008; Zhang
et al., 2017), nobiletin (Ouyang et al., 2020), baicalin, baicalein
(Chen et al., 2018), galangin (Skiba et al., 2016), and genistein
(Siriviriyakul et al., 2020) have shown protection against gastric
inflammation associated with H. pylori infection by reducing
pro-inflammatory cytokine expression. Thus, kaempferol
decreased the mRNA levels of IL-8, TNF-a, and IL-1b in
gastric adenocarcinoma cells infected with H. pylori by
inhibiting vacA expression and suppressing CagA and VacA
translocation to target cells by inhibiting the expression of several
T4SS and T5SS components (Yeon et al., 2019). Quercetin
significantly reduced in vivo gastric inflammation in H. pylori-
infected mice by reducing IL-8 secretion and downregulating the
p38 MAPK signaling pathway (Zhang et al., 2017). Apigenin
decreased the levels of IL-8 by inhibiting the activation of NF-kB
(Wang and Huang, 2013). Adding to their anti-inflammatory
actions, several flavonoids have been demonstrated to protect
against vacuolation, apoptosis, and lipid peroxidation induced by
H. pylori in gastric mucosa (Shin et al., 2005; Gonzalez-Segovia
et al., 2008; Zhang et al., 2017).

A further benefit of flavonoids as antimicrobials against H.
pylori infections lies in their capacity for synergism combined
with anti-H. pylori first-line antibiotics, including CLR, MTZ, or
AMX (Table 2). Notably, chrysin induced an eight-fold decrease
in the MIC value of CLR (FIC = 0.125), and caused a 16-fold
decrease in the MIC value of MTZ (FIC = 0.0625) (González
et al., 2019). Likewise, hesperetin led to a 4-fold increase in the
inhibitory activity of MTZ and a two-fold increase in the CLR
anti-H. pylori in vitro activity (González et al., 2019). Although
the molecular mechanisms by which flavonoids enhance the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
antimicrobial activities of conventional antibiotics remain poorly
understood, some experimental evidence unravels putative
synergistic interactions. Thus, the increased inhibitory activities
of AMX and TET in multidrug-resistant strains of H. pylori after
baicalin action appeared to be associated with a decrease in the
expression of the efflux pump gene hefA (Huang et al., 2015).
hefA encodes a TolC-like outer membrane channel tunnel
protein that interacts with different inner-membrane
translocases to form efflux systems involved in drug resistance
(Liu et al., 2008). Myricetin strongly inhibited the expression of
genes involved in the morphological transition of H. pylori from
spiral to coccoid forms, thereby avoiding the increase in
antimicrobial resistance associated with cel l shape
transformation, which has been observed in this pathogen.
Consequently, myricetin induced a 4–16-fold reduction in the
MIC values of CLR, MTZ, LVX, TET, and AMX (Krzyzek et al.,
2021). In addition, several authors suggest that the proven
damage triggered by certain flavonoids in the cytoplasmic
membrane and/or cell wall could enhance the susceptibility of
bacterial pathogens to the action of antibiotics (Amin et al., 2015;
Sanhueza et al., 2017).
CHALLENGES AND PERSPECTIVES
IN USING FLAVONOIDS
AS ANTIMICROBIALS

Low solubility, poor permeability, relative chemical instability,
rapid release, and susceptibility to environmental influences, but
mainly low bioavailability, contribute to the fact that the in vivo
exposure levels of flavonoids are usually inconsistent and much
below the effective concentrations observed in the in vitro
studies. Most flavonoids undergo sulfation, methylation, and
glucuronidation in the small intestine and liver due to phase 2
metabolism reactions, resulting in more hydrophilic conjugated
metabolites, which show reduced bioactivity compared to parent
compounds (D’Archivio et al., 2010; Thilakarathna and
Rupasinghe, 2013; Hu et al., 2017; Yang et al., 2020).

In recent years, many advanced nanoparticles have been
developed not only to improve polyphenol bioavailability but
also to control/target their release. Liposomes, phospholipid
complexes, niosomes, protein-based nanoparticles, micelles,
emulsions, and metal nanoparticles have been demonstrated to
significantly increase bioavailability and improve the
pharmacokinetics of polyphenols, becoming promising options
for flavonoid delivery systems (Chen et al., 2020; Riaz et al., 2020;
Yang et al., 2020). Another approach to improving the
bioavailability of flavonoids is the rational modification of their
molecular structures to bypass phase 2 metabolism during
absorption. Some chemical modifications of bioactive
molecules generate inactive forms, known as prodrugs, which
can usually be transformed into their active forms by a single-
step reaction after ingestion. Designing different synthetic
prodrugs of polyphenols by capping phenolic hydroxyls with
different protecting groups could increase bioavailability and
July 2021 | Volume 11 | Article 709749
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reinforce the therapeutic properties of these bioactive
compounds (Biasutto and Zoratti, 2014; Biasutto et al., 2017).
Finally, phyto-phospholipid complexes have emerged as a
promising strategy for enhancing the bioavailability of
bioactive polyphenols. Phytosomes are obtained by complexing
phytochemicals with phospholipids at defined molar ratios and
under certain conditions. The resulting complexes are more
readily absorbed and exhibit higher bioavailability than free
bioactive compounds (Lu et al., 2019; Riva et al., 2019).
DISCUSSION

Antibiotic resistance is among the greatest threats to global
health in this century. An impressive accumulation of
antibiotic resistance genes by clinically relevant bacterial
pathogens, jointly with the present slowdown in developing
new antibiotics, is inducing untreatable infections worldwide.
H. pylori is a carcinogenic bacterium that infects over half of the
global population, causing chronic progressive gastric
inflammation and various diseases, including gastric and
duodenal ulcers and gastric cancer. This malignancy
constitutes the fifth most common cancer and the third
leading cause of cancer-related mortality globally, representing
9% of all cancer-related deaths worldwide. Although the
eradication of H. pylori infection has been proven to
significantly reduce gastric cancer incidence, the efficacy of
current eradication therapies has dramatically decreased,
mainly because of an increasing development of antibiotic
resistance. In this context, different R&D strategies must be
urgently considered to fast-track novel, effective therapeutic
options against H. pylori infection. Hence, validating novel
therapeutic targets, repurposing the existing drugs, using
synergistic combinatory therapies, and properly exploiting the
proven therapeutic potential of medicinal plants and other
natural products could accelerate the delivery of new
antimicrobials and the design of novel and personalized
treatments against H. pylori refractory infections.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Since most of the currently prescribed antibiotics have been
obtained from microbial sources or derivatives thereof, using
bioactive phytochemicals to develop new antibiotics could
overcome the circulating resistome and slowdown the
emergence and dissemination of novel antibiotic resistance
mechanisms. Among these naturally occurring substances,
flavonoids stand out for their multiple and remarkable
beneficial effects on human health. Several flavonoids have
revealed potent antimicrobial activities against H. pylori, in
some cases, at the level achieved by first-line antibiotics, such
as metronidazole. In addition, some of these polyphenolic
molecules exhibited synergistic effects combined with
conventional antibiotics, thereby reverting antibiotic resistant
phenotypes. Furthermore, the antivirulence actions of these
compounds against H. pylori contribute to protecting against
gastric inflammation, vacuolation, apoptosis, and lipid
peroxidation, reducing the damage exerted by the pathogen to
the host cells, and decreasing the progression of associated
diseases. Although low bioavailability contributes to decreasing
the in vivo effectivity of natural flavonoids, the current
development of novel delivery systems, such as prodrugs,
phytosomes, and several nanotechnology approaches, enables
the inclusion of flavonoids as novel therapeutic tools against
H. pylori infection.
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