000109378 001__ 109378
000109378 005__ 20230519145432.0
000109378 0247_ $$2doi$$a10.1016/j.energy.2020.119715
000109378 0248_ $$2sideral$$a122207
000109378 037__ $$aART-2021-122207
000109378 041__ $$aeng
000109378 100__ $$aPascual, Sara$$uUniversidad de Zaragoza
000109378 245__ $$aDesign and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants
000109378 260__ $$c2021
000109378 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109378 5203_ $$aCalcium-looping thermochemical energy storage associated to concentrating solar plants appears as promising technology given its potential to increase the storage period and energy density of the stored material. Up to now, research efforts focused on the global efficiency of the TCES associated to different power cycles under fixed modes of operation: day or night. However, TCES will never operate under a stationary situation but will experience different operation points to adapt to solar availability and energy demand from the power cycle. The aim is to analyse the influence of those variables which define the operation points, under energy storage and release modes, in the design of the heat exchangers network, storage tanks and reactors involved in the TCES system. The equipment in the conceptual plant have been modelled accounting variable storage/discharge fractions in the mass balances. The results show a suitable capture efficiency, quantifies the stored power and define the size and performance of the heat exchangers required to operate the system. The behaviour of each heat exchanger and their relevance in heat integration with a power plant is derived. The novelty relies in the analysis of potential situations arising from different combinations of charge/discharge fractions of storage tanks.
000109378 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R$$9info:eu-repo/grantAgreement/EC/H2020/727348/EU/SOlar Calcium-looping integRAtion for Thermo-Chemical Energy Storage/SOCRATCES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 727348-SOCRATCES$$9info:eu-repo/grantAgreement/ES/MCIU/FPU17-03902
000109378 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000109378 590__ $$a8.857$$b2021
000109378 592__ $$a2.041$$b2021
000109378 594__ $$a13.4$$b2021
000109378 591__ $$aTHERMODYNAMICS$$b3 / 63 = 0.048$$c2021$$dQ1$$eT1
000109378 591__ $$aENERGY & FUELS$$b24 / 119 = 0.202$$c2021$$dQ1$$eT1
000109378 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000109378 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000109378 593__ $$aBuilding and Construction$$c2021$$dQ1
000109378 593__ $$aCivil and Structural Engineering$$c2021$$dQ1
000109378 593__ $$aRenewable Energy, Sustainability and the Environment$$c2021$$dQ1
000109378 593__ $$aManagement, Monitoring, Policy and Law$$c2021$$dQ1
000109378 593__ $$aMechanical Engineering$$c2021$$dQ1
000109378 593__ $$aModeling and Simulation$$c2021$$dQ1
000109378 593__ $$aFuel Technology$$c2021$$dQ1
000109378 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109378 700__ $$0(orcid)0000-0002-2306-6729$$aLisbona, Pilar$$uUniversidad de Zaragoza
000109378 700__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000109378 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis$$uUniversidad de Zaragoza
000109378 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000109378 773__ $$g220 (2021), 119715 [11 pp.]$$pEnergy$$tEnergy$$x0360-5442
000109378 8564_ $$s1129981$$uhttps://zaguan.unizar.es/record/109378/files/texto_completo.pdf$$yPostprint
000109378 8564_ $$s2430513$$uhttps://zaguan.unizar.es/record/109378/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109378 909CO $$ooai:zaguan.unizar.es:109378$$particulos$$pdriver
000109378 951__ $$a2023-05-18-14:19:26
000109378 980__ $$aARTICLE