000109386 001__ 109386
000109386 005__ 20230519145444.0
000109386 0247_ $$2doi$$a10.1007/s00604-020-04662-4
000109386 0248_ $$2sideral$$a122393
000109386 037__ $$aART-2021-122393
000109386 041__ $$aeng
000109386 100__ $$aHernández, D.
000109386 245__ $$aDetection, size characterization and quantification of silver nanoparticles in consumer products by particle collision coulometry
000109386 260__ $$c2021
000109386 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109386 5203_ $$aSilver nanoparticles (AgNPs) are widely used in industrial and consumer products owing to its antimicrobial nature and multiple applications. Consequently, their release into the environment is becoming a big concern because of their negative impacts on living organisms. In this work, AgNPs were detected at a potential of + 0.70 V vs. Ag/AgCl reference electrode, characterized, and quantified in consumer products by particle collision coulometry (PCC). The electrochemical results were compared with those measured with electron microscopy and single-particle inductively coupled plasma mass spectrometry. The theoretical and practical peculiarities of the application of PCC technique in the characterization of AgNPs were studied. Reproducible size distributions of the AgNPs were measured in a range 10–100 nm diameters. A power allometric function model was found between the frequency of the AgNPs collisions onto the electrode surface and the number concentration of nanoparticles up to a silver concentration of 1010 L-1 (ca. 25 ng L-1 for 10 nm AgNPs). A linear relationship between the number of collisions and the number concentration of silver nanoparticles was observed up to 5 × 107 L-1. The PCC method was applied to the quantification and size determination of the AgNPs in three-silver containing consumer products (a natural antibiotic and two food supplements). The mean of the size distributions (of the order 10–20 nm diameters) agrees with those measured by electron microscopy. Graphical abstract: [Figure not available: see fulltext.].
000109386 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E29-17R$$9info:eu-repo/grantAgreement/EUR/FEDER/INTERREG-V-A-POCTEFA-2014-2020$$9info:eu-repo/grantAgreement/EUR/INTERREG-POCTEFA/OUTBIOTICS-EFA183/16$$9info:eu-repo/grantAgreement/ES/MCIU-MICINN-FEDER/RTI2018-096111-B-I00
000109386 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000109386 590__ $$a6.408$$b2021
000109386 592__ $$a0.957$$b2021
000109386 591__ $$aCHEMISTRY, ANALYTICAL$$b13 / 87 = 0.149$$c2021$$dQ1$$eT1
000109386 593__ $$aAnalytical Chemistry$$c2021$$dQ1
000109386 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109386 700__ $$0(orcid)0000-0003-4599-796X$$aVidal, J.C.$$uUniversidad de Zaragoza
000109386 700__ $$0(orcid)0000-0002-4169-0357$$aLaborda, F.$$uUniversidad de Zaragoza
000109386 700__ $$0(orcid)0000-0002-4681-3934$$aPérez-Arantegui, J.$$uUniversidad de Zaragoza
000109386 700__ $$0(orcid)0000-0002-9181-2105$$aGiménez-Ingalaturre, A.C.$$uUniversidad de Zaragoza
000109386 700__ $$0(orcid)0000-0002-4070-8607$$aCastillo, J.R.
000109386 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000109386 773__ $$g188, 1 (2021), 12 [10 pp]$$pMikrochim. acta$$tMicrochimica Acta$$x0026-3672
000109386 8564_ $$s1093832$$uhttps://zaguan.unizar.es/record/109386/files/texto_completo.pdf$$yPostprint
000109386 8564_ $$s2120442$$uhttps://zaguan.unizar.es/record/109386/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109386 909CO $$ooai:zaguan.unizar.es:109386$$particulos$$pdriver
000109386 951__ $$a2023-05-18-14:36:39
000109386 980__ $$aARTICLE