000109414 001__ 109414
000109414 005__ 20230519145511.0
000109414 0247_ $$2doi$$a10.3390/en14216865
000109414 0248_ $$2sideral$$a125183
000109414 037__ $$aART-2021-125183
000109414 041__ $$aeng
000109414 100__ $$aGarcía-Mariaca, Alexander
000109414 245__ $$aReview on Carbon Capture in ICE Driven Transport
000109414 260__ $$c2021
000109414 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109414 5203_ $$aThe transport sector powered by internal combustion engines (ICE) requires novel approaches to achieve near-zero CO2 emissions. In this direction, using CO2 capture and storage (CCS) systems onboard could be a good option. However, CO2 capture in mobile sources is currently challenging due to the operational and space requirements to install a CCS system onboard. This paper presents a systematic review of the CO2 capture in ICE driven transport to know the methods, techniques, and results of the different studies published so far. Subsequently, a case study of a CCS system working in an ICE is presented, where the energy and space needs are evaluated. The review reveals that the most suitable technique for CO2 capture is temperature swing adsorption (TSA). Moreover, the sorbents with better properties for this task are PPN-6-CH2-DETA and MOF-74-Mg. Finally, it shows that it is necessary to supply the energy demand of the CCS system and the option is to take advantage of the waste heat in the flue gas. The case study shows that it is possible to have a carbon capture rate above 68% without affecting engine performance. It was also found that the total volume required by the CCS system and fuel tank is 3.75 times smaller than buses operating with hydrogen fuel cells. According to the review and the case study, it is possible to run a CCS system in the maritime sector and road freight transport.
000109414 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R
000109414 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109414 590__ $$a3.252$$b2021
000109414 592__ $$a0.653$$b2021
000109414 594__ $$a5.0$$b2021
000109414 591__ $$aENERGY & FUELS$$b80 / 119 = 0.672$$c2021$$dQ3$$eT3
000109414 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000109414 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000109414 593__ $$aFuel Technology$$c2021$$dQ1
000109414 593__ $$aControl and Optimization$$c2021$$dQ1
000109414 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1
000109414 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109414 700__ $$0(orcid)0000-0002-6103-7136$$aLlera-Sastresa, Eva$$uUniversidad de Zaragoza
000109414 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000109414 773__ $$g14, 21 (2021), 6865 [30 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000109414 8564_ $$s1595001$$uhttps://zaguan.unizar.es/record/109414/files/texto_completo.pdf$$yVersión publicada
000109414 8564_ $$s2762949$$uhttps://zaguan.unizar.es/record/109414/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109414 909CO $$ooai:zaguan.unizar.es:109414$$particulos$$pdriver
000109414 951__ $$a2023-05-18-15:11:57
000109414 980__ $$aARTICLE