000109415 001__ 109415 000109415 005__ 20230519145511.0 000109415 0247_ $$2doi$$a10.3390/universe7050128 000109415 0248_ $$2sideral$$a125429 000109415 037__ $$aART-2021-125429 000109415 041__ $$aeng 000109415 100__ $$0(orcid)0000-0002-5575-6775$$aCavero-Peláez, Inés$$uUniversidad de Zaragoza 000109415 245__ $$aQuantum vacuum energy of self-similar configurations 000109415 260__ $$c2021 000109415 5060_ $$aAccess copy available to the general public$$fUnrestricted 000109415 5203_ $$aWe offer in this review a description of the vacuum energy of self-similar systems. We describe two views of setting self-similar structures and point out the main differences. A review of the authors’ work on the subject is presented, where they treat the self-similar system as a many-object problem embedded in a regular smooth manifold. Focused on Dirichlet boundary conditions, we report a systematic way of calculating the Casimir energy of self-similar bodies where the knowledge of the quantum vacuum energy of the single building block element is assumed and in fact already known. A fundamental property that allows us to proceed with our method is the dependence of the energy on a geometrical parameter that makes it possible to establish the scaling property of self-similar systems. Several examples are given. We also describe the situation, shown by other authors, where the embedded space is a fractal space itself, having fractal dimension. A fractal space does not hold properties that are rather common in regular spaces like the tangent space. We refer to other authors who explain how some self-similar configurations “do not have any smooth structures and one cannot define differential operators on them directly”. This gives rise to important differences in the behavior of the vacuum. 000109415 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E21-20R$$9info:eu-repo/grantAgreement/ES/MCI-AEI-FEDER/PGC2018-095328-B-I00 000109415 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000109415 590__ $$a2.813$$b2021 000109415 592__ $$a0.684$$b2021 000109415 594__ $$a3.2$$b2021 000109415 591__ $$aASTRONOMY & ASTROPHYSICS$$b32 / 69 = 0.464$$c2021$$dQ2$$eT2 000109415 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ2 000109415 591__ $$aPHYSICS, PARTICLES & FIELDS$$b16 / 29 = 0.552$$c2021$$dQ3$$eT2 000109415 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000109415 700__ $$aParashar, Prachi 000109415 700__ $$aShajesh, K. V. 000109415 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica 000109415 773__ $$g7, 5 (2021), 128 [21 pp.]$$pUniverse (Basel)$$tUniverse$$x2218-1997 000109415 8564_ $$s477691$$uhttps://zaguan.unizar.es/record/109415/files/texto_completo.pdf$$yVersión publicada 000109415 8564_ $$s2748402$$uhttps://zaguan.unizar.es/record/109415/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000109415 909CO $$ooai:zaguan.unizar.es:109415$$particulos$$pdriver 000109415 951__ $$a2023-05-18-15:12:06 000109415 980__ $$aARTICLE