000109425 001__ 109425
000109425 005__ 20230519145514.0
000109425 0247_ $$2doi$$a10.3390/s21093117
000109425 0248_ $$2sideral$$a125355
000109425 037__ $$aART-2021-125355
000109425 041__ $$aeng
000109425 100__ $$0(orcid)0000-0003-1562-4433$$aMartínez, Javier
000109425 245__ $$aLightweight thermal compensation technique for MEMS capacitive accelerometer oriented to quasi-static measurements
000109425 260__ $$c2021
000109425 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109425 5203_ $$aThe application of MEMS capacitive accelerometers is limited by its thermal dependence, and each accelerometer must be individually calibrated to improve its performance. In this work, a light calibration method based on theoretical studies is proposed to obtain two characteristic parameters of the sensor’s operation: the temperature drift of bias and the temperature drift of scale factor. This method requires less data to obtain the characteristic parameters, allowing a faster calibration. Furthermore, using an equation with fewer parameters reduces the computational cost of compensation. After studying six accelerometers, model LIS3DSH, their characteristic parameters are obtained in a temperature range between 15 °C and 55 °C. It is observed that the Temperature Drift of Bias (TDB) is the parameter with the greatest influence on thermal drift, reaching 1.3 mg/°C. The Temperature Drift of Scale Factor (TDSF) is always negative and ranges between 0 and −400 ppm/°C. With these parameters, the thermal drifts are compensated in tests with 20 °C of thermal variation. An average improvement of 47% was observed. In the axes where the thermal drift was greater than 1 mg/°C, the improvement was greater than 80%. Other sensor behaviors have also been analyzed, such as temporal drift (up to 1 mg/h for three hours) and self-heating (2–3 °C in the first hours with the corresponding drift). Thermal compensation has been found to reduce the effect of the latter in the first hours after power-up of the sensor by 43%.
000109425 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109425 590__ $$a3.847$$b2021
000109425 592__ $$a0.803$$b2021
000109425 594__ $$a6.4$$b2021
000109425 591__ $$aCHEMISTRY, ANALYTICAL$$b29 / 87 = 0.333$$c2021$$dQ2$$eT2
000109425 593__ $$aAnalytical Chemistry$$c2021$$dQ1
000109425 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b19 / 64 = 0.297$$c2021$$dQ2$$eT1
000109425 593__ $$aBiochemistry$$c2021$$dQ1
000109425 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b95 / 277 = 0.343$$c2021$$dQ2$$eT2
000109425 593__ $$aInstrumentation$$c2021$$dQ1
000109425 593__ $$aInformation Systems$$c2021$$dQ1
000109425 593__ $$aElectrical and Electronic Engineering$$c2021$$dQ1
000109425 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109425 700__ $$0(orcid)0000-0003-3618-4940$$aAsiain, David
000109425 700__ $$0(orcid)0000-0002-7500-4650$$aBeltrán, José Ramón$$uUniversidad de Zaragoza
000109425 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000109425 773__ $$g21, 9 (2021), 3117 [23 pp.]$$pSensors$$tSensors$$x1424-8220
000109425 8564_ $$s18438308$$uhttps://zaguan.unizar.es/record/109425/files/texto_completo.pdf$$yVersión publicada
000109425 8564_ $$s2683999$$uhttps://zaguan.unizar.es/record/109425/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109425 909CO $$ooai:zaguan.unizar.es:109425$$particulos$$pdriver
000109425 951__ $$a2023-05-18-15:14:11
000109425 980__ $$aARTICLE