Resumen: In this note prove the following Berwald-type inequality, showing that for any integrable log-concave function f:Rn→[0, ∞)and any concave function h :L →[0, ∞), where L ={(x, t) ∈Rn×[0, ∞) :f(x) ≥e−t‖f‖∞}, then
p→⎛⎝1Γ(1 +p)∫Le−tdtdx∫Lhp(x, t)e−tdtdx⎞⎠1p
is decreasing in p ∈(−1, ∞), extending the range of pwhere the monotonicity is known to hold true.As an application of this extension, we will provide a new proof of a functional form of Zhang’s reverse Petty projection inequality, recently obtained in [2]. Idioma: Inglés DOI: 10.1016/j.jmaa.2020.123875 Año: 2020 Publicado en: Journal of Mathematical Analysis and Applications 486, 1 (2020), 123875 1-10 ISSN: 0022-247X Factor impacto JCR: 1.583 (2020) Categ. JCR: MATHEMATICS rank: 63 / 330 = 0.191 (2020) - Q1 - T1 Categ. JCR: MATHEMATICS, APPLIED rank: 109 / 265 = 0.411 (2020) - Q2 - T2 Factor impacto SCIMAGO: 0.95 - Applied Mathematics (Q1) - Analysis (Q1)