000109453 001__ 109453
000109453 005__ 20220115145336.0
000109453 0247_ $$2doi$$a10.3390/membranes10120413
000109453 0248_ $$2sideral$$a125078
000109453 037__ $$aART-2020-125078
000109453 041__ $$aeng
000109453 100__ $$aAmeen, Ahmed W.
000109453 245__ $$aSuperglassy polymers to treat natural gas by hybrid membrane/amine processes: can fillers help?
000109453 260__ $$c2020
000109453 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109453 5203_ $$aSuperglassy polymers have emerged as potential membrane materials for several gas separation applications, including acid gas removal from natural gas. Despite the superior performance shown at laboratory scale, their use at industrial scale is hampered by their large drop in gas permeability over time due to physical aging. Several strategies are proposed in the literature to prevent loss of performance, the incorporation of fillers being a successful approach. In this work, we provide a comprehensive economic study on the application of superglassy membranes in a hybrid membrane/amine process for natural gas sweetening. The hybrid process is compared with the more traditional stand-alone amine-absorption technique for a range of membrane gas separation properties (CO2 permeance and CO2/CH4 selectivity), and recommendations for long-term membrane performance are made. These recommendations can drive future research on producing mixed matrix membranes (MMMs) of superglassy polymers with anti-aging properties (i.e., target permeance and selectivity is maintained over time), as thin film nanocomposite membranes (TFNs). For the selected natural gas composition of 28% of acid gas content (8% CO2 and 20% H2S), we have found that a CO2 permeance of 200 GPU and a CO2/CH4 selectivity of 16 is an optimal target.
000109453 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109453 590__ $$a4.106$$b2020
000109453 591__ $$aPOLYMER SCIENCE$$b21 / 88 = 0.239$$c2020$$dQ1$$eT1
000109453 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b125 / 333 = 0.375$$c2020$$dQ2$$eT2
000109453 591__ $$aCHEMISTRY, PHYSICAL$$b69 / 162 = 0.426$$c2020$$dQ2$$eT2
000109453 591__ $$aENGINEERING, CHEMICAL$$b45 / 143 = 0.315$$c2020$$dQ2$$eT1
000109453 592__ $$a0.608$$b2020
000109453 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ2
000109453 593__ $$aProcess Chemistry and Technology$$c2020$$dQ2
000109453 593__ $$aFiltration and Separation$$c2020$$dQ2
000109453 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109453 700__ $$aBudd, Peter M.
000109453 700__ $$0(orcid)0000-0002-6905-714X$$aGorgojo, Patricia
000109453 773__ $$g10, 12 (2020), 413 [24 pp.]$$pMembranes$$tMembranes$$x2077-0375
000109453 8564_ $$s3802340$$uhttps://zaguan.unizar.es/record/109453/files/texto_completo.pdf$$yVersión publicada
000109453 8564_ $$s2554273$$uhttps://zaguan.unizar.es/record/109453/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109453 909CO $$ooai:zaguan.unizar.es:109453$$particulos$$pdriver
000109453 951__ $$a2022-01-15-12:40:44
000109453 980__ $$aARTICLE