000109494 001__ 109494
000109494 005__ 20230210140618.0
000109494 0247_ $$2doi$$a10.3390/ecsa-8-11299
000109494 0248_ $$2sideral$$a125638
000109494 037__ $$aART-2021-125638
000109494 041__ $$aeng
000109494 100__ $$0(orcid)0000-0003-1562-4433$$aMartínez, Javier
000109494 245__ $$aFactory Oriented Technique for Thermal Drift Compensation in MEMS Capacitive Accelerometers
000109494 260__ $$c2021
000109494 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109494 5203_ $$aCapacitive MEMS accelerometers have a high thermal sensitivity that drifts the output when subjected to changes in temperature. To improve their performance in applications with thermal variations, it is necessary to compensate for these effects. These drifts can be compensated using a lightweight algorithm by knowing the characteristic thermal parameters of the accelerometer (Temperature Drift of Bias and Temperature Drift of Scale Factor). These parameters vary in each accelerometer and axis, making an individual calibration necessary. In this work, a simple and fast calibration method that allows the characteristic parameters of the three axes to be obtained simultaneously through a single test is proposed. This method is based on the study of two specific orientations, each at two temperatures. By means of the suitable selection of the orientations and the temperature points, the data obtained can be extrapolated to the entire working range of the accelerometer. Only a mechanical anchor and a heat source are required to perform the calibration. This technique can be scaled to calibrate multiple accelerometers simultaneously. A lightweight algorithm is used to analyze the test data and obtain the compensation parameters. This algorithm stores only the most relevant data, reducing memory and computing power requirements. This allows it to be run in real time on a low-cost microcontroller during testing to obtain compensation parameters immediately. This method is aimed at mass factory calibration, where individual calibration with traditional methods may not be an adequate option. The proposed method has been compared with a traditional calibration using a six-sided orthogonal die and a thermal camera. The average difference between the compensations according to both techniques is 0.32 mg/°C, calculated on an acceleration of 1 G; the maximum deviation being 0.6 mg/°C.
000109494 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109494 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109494 700__ $$0(orcid)0000-0003-3618-4940$$aAsiain, David
000109494 700__ $$0(orcid)0000-0002-7500-4650$$aBeltrán, José Ramón$$uUniversidad de Zaragoza
000109494 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000109494 773__ $$g10, 1 (2021), 8-11299 [7 pp.]$$pEng. proc. (Basel)$$tEngineering proceedings (Basel)$$x2673-4591
000109494 8564_ $$s878925$$uhttps://zaguan.unizar.es/record/109494/files/texto_completo.pdf$$yVersión publicada
000109494 8564_ $$s2642660$$uhttps://zaguan.unizar.es/record/109494/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109494 909CO $$ooai:zaguan.unizar.es:109494$$particulos$$pdriver
000109494 951__ $$a2023-02-10-14:00:29
000109494 980__ $$aARTICLE