000109497 001__ 109497
000109497 005__ 20230519145510.0
000109497 0247_ $$2doi$$a10.3390/foods10071472
000109497 0248_ $$2sideral$$a125558
000109497 037__ $$aART-2021-125558
000109497 041__ $$aeng
000109497 100__ $$aVaquero, C.
000109497 245__ $$aPulsed electric fields to improve the use of non-saccharomyces starters in red wines
000109497 260__ $$c2021
000109497 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109497 5203_ $$aNew nonthermal technologies, including pulsed electric fields (PEF), open a new way to generate more natural foods while respecting their organoleptic qualities. PEF can reduce wild yeasts to improve the implantation of other yeasts and generate more desired metabolites. Two PEF treatments were applied; one with an intensity of 5 kV/cm was applied continuously to the must for further colour extraction, and a second treatment only to the must (without skins) after a 24-hour maceration of 17.5 kV/cm intensity, reducing its wild yeast load by up to 2 log CFU/mL, thus comparing the implantation and fermentation of inoculated non-Saccharomyces yeasts. In general, those treated with PEF preserved more total esters and formed more anthocyanins, including vitisin A, due to better implantation of the inoculated yeasts. It should be noted that the yeast Lachancea thermotolerans that had received PEF treatment produced four-fold more lactic acid (3.62 ± 0.84 g/L) than the control of the same yeast, and Hanseniaspora vineae with PEF produced almost three-fold more 2-phenylethyl acetate than the rest. On the other hand, 3-ethoxy-1-propanol was not observed at the end of the fermentation with a Torulaspora delbrueckii (Td) control but in the Td PEF, it was observed (3.17 ± 0.58 mg/L).
000109497 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096626-B-100
000109497 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109497 590__ $$a5.561$$b2021
000109497 592__ $$a0.726$$b2021
000109497 594__ $$a4.1$$b2021
000109497 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b35 / 144 = 0.243$$c2021$$dQ1$$eT1
000109497 593__ $$aFood Science$$c2021$$dQ1
000109497 593__ $$aPlant Science$$c2021$$dQ1
000109497 593__ $$aMicrobiology$$c2021$$dQ1
000109497 593__ $$aHealth Professions (miscellaneous)$$c2021$$dQ1
000109497 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109497 700__ $$aLoira, I.
000109497 700__ $$0(orcid)0000-0003-3957-9091$$aRaso, J.$$uUniversidad de Zaragoza
000109497 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez, I.$$uUniversidad de Zaragoza
000109497 700__ $$0(orcid)0000-0003-4744-8649$$aDelso, C.$$uUniversidad de Zaragoza
000109497 700__ $$aMorata, M.
000109497 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000109497 773__ $$g10 (2021), 10071472 [19 pp.]$$pFoods$$tFoods$$x2304-8158
000109497 8564_ $$s4850328$$uhttps://zaguan.unizar.es/record/109497/files/texto_completo.pdf$$yVersión publicada
000109497 8564_ $$s2776564$$uhttps://zaguan.unizar.es/record/109497/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109497 909CO $$ooai:zaguan.unizar.es:109497$$particulos$$pdriver
000109497 951__ $$a2023-05-18-15:10:47
000109497 980__ $$aARTICLE