000109525 001__ 109525
000109525 005__ 20220405150419.0
000109525 0247_ $$2doi$$a10.1016/j.cep.2020.107830
000109525 0248_ $$2sideral$$a116877
000109525 037__ $$aART-2020-116877
000109525 041__ $$aeng
000109525 100__ $$0(orcid)0000-0001-7125-4997$$aGonzález, B.$$uUniversidad de Zaragoza
000109525 245__ $$aActivated olive mill waste-based hydrochars as selective adsorbents for CO2 capture under postcombustion conditions
000109525 260__ $$c2020
000109525 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109525 5203_ $$aPorous carbons are considered to be promising sorbents for carbon capture and sequestration. As precursors, the use of biomass materials has acquiring special interest due to its low cost and high availability. Among all the possibilities to convert low-value biomass into these interesting sorbents, hydrothermal carbonization has demonstrated several advantages such as lower energy consumption over pyrolysis. In this work, activated hydrochars using two-phase olive mill waste as precursor have been prepared through physical and chemical activation using CO2 and KOH, respectively. Additionally, with the aim to study the influence of the nitrogen on their adsorption capacity, N-doped adsorbents have been prepared through a one-step hydrothermal carbonization. The behaviour of these adsorbents has been studied in terms of CO2 uptake capacity at an absolute pressure of 15 kPa and temperatures of 0, 25 and 75 °C, apparent selectivity towards CO2 over N2, and isosteric heat of adsorption. Among all these samples, the physically activated hydrochar appears to be the best due to its higher CO2 uptakes, adsorption rates and values of selectivity at 25 °C. Therefore, considering these results, doping these materials with nitrogen does not appear to enhance their adsorption properties, contrary to what some authors have previously reported. © 2020 Elsevier B.V.
000109525 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-17R$$9info:eu-repo/grantAgreement/ES/MINECO/PCIN-2017-048
000109525 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000109525 590__ $$a4.237$$b2020
000109525 591__ $$aENGINEERING, CHEMICAL$$b41 / 143 = 0.287$$c2020$$dQ2$$eT1
000109525 591__ $$aENERGY & FUELS$$b51 / 114 = 0.447$$c2020$$dQ2$$eT2
000109525 592__ $$a0.827$$b2020
000109525 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000109525 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000109525 593__ $$aProcess Chemistry and Technology$$c2020$$dQ1
000109525 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000109525 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ1
000109525 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109525 700__ $$0(orcid)0000-0002-0118-3254$$aManyà, J. J.$$uUniversidad de Zaragoza
000109525 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000109525 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000109525 773__ $$g149, 107830 (2020), [9 pp]$$pChem. eng. process.$$tCHEMICAL ENGINEERING AND PROCESSING$$x0255-2701
000109525 8564_ $$s306678$$uhttps://zaguan.unizar.es/record/109525/files/texto_completo.pdf$$yPostprint
000109525 8564_ $$s610816$$uhttps://zaguan.unizar.es/record/109525/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109525 909CO $$ooai:zaguan.unizar.es:109525$$particulos$$pdriver
000109525 951__ $$a2022-04-05-14:38:47
000109525 980__ $$aARTICLE