000109526 001__ 109526
000109526 005__ 20230519145405.0
000109526 0247_ $$2doi$$a10.1021/acs.energyfuels.0c03387
000109526 0248_ $$2sideral$$a123291
000109526 037__ $$aART-2021-123291
000109526 041__ $$aeng
000109526 100__ $$aBenés, M.
000109526 245__ $$aExperimental Study of the Pyrolysis of NH3under Flow Reactor Conditions
000109526 260__ $$c2021
000109526 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109526 5203_ $$aThe possibility of using ammonia (NH3), as a fuel and as an energy carrier with low pollutant emissions, can contribute to the transition to a low-carbon economy. To use ammonia as fuel, knowledge about the NH3 conversion is desired. In particular, the conversion of ammonia under pyrolysis conditions could be determinant in the description of its combustion mechanism. In this work, pyrolysis experiments of ammonia have been performed in both a quartz tubular flow reactor (900-1500 K) and a non-porous alumina tubular flow reactor (900-1800 K) using Ar or N2 as bath gas. An experimental study of the influence of the reactor material (quartz or alumina), the bulk gas (N2 or Ar), the ammonia inlet concentration (1000 and 10a 000 ppm), and the gas residence time [2060/T (K)-8239/T (K) s] on the pyrolysis process has been performed. After the reaction, the resulting compounds (NH3, H2, and N2) are analyzed in a gas chromatograph/thermal conductivity detector chromatograph and an infrared continuous analyzer. Results show that H2 and N2 are the main products of the thermal decomposition of ammonia. Under the conditions of the present work, differences between working in a quartz or non-porous alumina reactor are not significant under pyrolysis conditions for temperatures lower than 1400 K. Neither the bath gas nor the ammonia inlet concentration influence the ammonia conversion values. For a given temperature and under all conditions studied, conversion of ammonia increases with an increasing gas residence time, which results into a narrower temperature window for NH3 conversion.
000109526 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-17R$$9info:eu-repo/grantAgreement/ES/MCIU-FEDER/RTI2018-098856-B-100
000109526 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000109526 590__ $$a4.654$$b2021
000109526 592__ $$a0.822$$b2021
000109526 594__ $$a6.3$$b2021
000109526 591__ $$aENGINEERING, CHEMICAL$$b45 / 143 = 0.315$$c2021$$dQ2$$eT1
000109526 591__ $$aENERGY & FUELS$$b63 / 119 = 0.529$$c2021$$dQ3$$eT2
000109526 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000109526 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000109526 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109526 700__ $$aPozo, G.
000109526 700__ $$0(orcid)0000-0001-7559-9669$$aAbián, M.$$uUniversidad de Zaragoza
000109526 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Á.$$uUniversidad de Zaragoza
000109526 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, R.$$uUniversidad de Zaragoza
000109526 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000109526 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000109526 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000109526 773__ $$g35, 9 (2021), 7193–7200$$pEnergy fuels$$tEnergy and Fuels$$x0887-0624
000109526 8564_ $$s884988$$uhttps://zaguan.unizar.es/record/109526/files/texto_completo.pdf$$yPostprint
000109526 8564_ $$s3106068$$uhttps://zaguan.unizar.es/record/109526/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109526 909CO $$ooai:zaguan.unizar.es:109526$$particulos$$pdriver
000109526 951__ $$a2023-05-18-13:45:36
000109526 980__ $$aARTICLE