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In croplands, the adoption of certain management practices may increase soil organic carbon (SOC) levels. In this
study, we evaluated the short-term impact of crop stover management and the interaction between crop stover
and irrigation method on SOC change in a continuous maize (Zea mays L.) system in Spain. Four years after the
beginning of the experiment, total SOC and C fractions (particulate organic matter carbon, POM-C; and mineral-
associated organic matter carbon, Min-C) contents, SOC stocks and SOC stock changes were measured in four
different soil layers (0—5, 5-10, 10—25 and 25—50 cm) in an experiment with two irrigation methods (sprinkler
and flood) and three stover management systems (conventional tillage with all the stover incorporated, CT; no-
tillage maintaining the stover, NTr; and no-tillage removing the stover, NT). Stover management resulted in
significant differences in SOC and POM-C but not in Min-C. In particular, NT reduced SOC and POM-C contents
compared with CT and NTr (about 10 and 60 %, respectively). After 4 years, SOC change was not affected by the
interaction between stover management and irrigation. Concurrently, both CT and NT showed SOC losses,
reaching 0.11 and 1.22 Mg ha™! yr! in CT and NT, respectively. However, NTr showed SOC gains at a rate of
0.09 Mg ha™! yr~!. Consequently, the removal of crop stover has been demonstrated as a detrimental strategy to

store SOC in the short-term in irrigated continuous maize systems.

1. Introduction

In croplands, different management practices have been identified to
increase soil organic carbon (SOC) levels (Bai et al., 2019; Francaviglia
et al., 2019). A significant number of practices that increase SOC stocks
are oriented towards the increase of carbon (C) inputs. Thus, addition of
exogenous C (biochar, compost, manures), crop residue management,
improved fertilization or irrigation are examples of management prac-
tices which enhance SOC accrual by means of maximizing the addition
of C to the soil (Paustian et al., 2016). In dryland systems, irrigation is an
excellent strategy to increase SOC levels through its positive effect on
crop production and, consequently, crop residues returned to the soil
(Trost et al., 2013). In semiarid Spanish conditions, a significant increase
in SOC levels was observed three years after the conversion from rainfed
to irrigated cropland (Pareja-Sanchez et al., 2020). In this last study, an
increase in C inputs under sprinkler irrigated conditions explained more
than 70 % of the variability in SOC change rates between rainfed and
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irrigated periods (Pareja-Sanchez et al., 2020). Similarly, in Central
Great Plains (USA) greater SOC levels were observed in irrigated agro-
ecosystems when different rainfed and irrigated fields were compared
(Denef et al., 2008). Even though, the conversion to irrigated land has
been evaluated in several experiments located in different parts of the
world (Trost et al., 2013), the impact of the irrigation method or man-
agement on SOC changes has been less studied. In particular, we have
not found any experiment in the literature studying the impact of irri-
gation method on SOC changes in the Mediterranean basin. Indeed, a
few years ago, in a comprehensive SOC meta-analysis for the all the
Mediterranean climate regions (Aguilera et al., 2013), irrigated systems
were considered as a management class in the analysis but the irrigation
method was not included.

Crop stover management is also an effective management practice to
increase SOC levels (Aguilera et al., 2013; Stewart et al., 2018). Two
recent meta-analysis have concluded that the removal of crop stover
results in a general decrease in SOC (Xu et al., 2019; Wang et al., 2020).
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Furthermore, the removal of crop residues not only reduces total SOC
levels but also labile C fractions such as the particulate organic matter
carbon (POM-C), particularly in high residue crops such as maize
(Stewart et al., 2016; Obrycki et al., 2018). Likewise, in situations with
high residue production, stover management may be linked to tillage in
order to facilitate field operations (Pareja-Sanchez et al., 2019). The
reduction of tillage intensity may affect SOC (Alvaro-Fuentes et al.,
2014; Ogle et al., 2019) but there is still an open scientific debate about
the real potential of no-tillage (NT) for sequestering C (Powlson et al.,
2014; VandenBygaart, 2016). Recent global studies have concluded that
the positive effect of NT on SOC sequestration depends not only on
climate (Sun et al., 2020), but also on climate and soil properties (Ogle
et al., 2019). Therefore, more information is still needed on the impacts
of tillage systems on SOC changes under different climate and soil types.
In this regard, in Mediterranean conditions, the number of studies in
which the impact of tillage systems on SOC has been studied under
rainfed conditions is significantly higher than under irrigated conditions
(Gonzalez-Sanchez et al., 2012). Furthermore, most of these studies are
concentrated on the beneficial effect of NT on soil water conservation,
this being an asset in dryland conditions (Lampurlanés et al., 2016).

Accordingly, the main aim of this study was to evaluate the short-
term impact of crop stover management and the interaction between
irrigation method and stover management on SOC changes in a
continuous maize system in semiarid conditions.

2. Material and methods
2.1. Site characteristics and experimental design

The experiment was established in 2015 in the EEAD-CSIC experi-
mental farm located in Zaragoza, Spain (41° 42'N, 0° 49" W, 225 m
altitude). The farm occupies 40 ha and it is entirely irrigated. The
climate is Mediterranean semiarid with 14.1 °C, 298 mm and 1243 mm
of mean annual air temperature, mean annual precipitation and refer-
ence evapotranspiration (ETo), respectively. The soil is classified as
Typical Xerofluvent (Soil Survey Staff, 2014), with a pH (H20, 1:5) of
7.9, electrical conductivity (1:5) of 0.31 dS m~! and sand, silt and clay
contents of 282, 534 and 184 g kg !, respectively, in the top 15 cm.

In March 2015 a 0.830 ha field was divided in two identical areas.
The field had been traditionally flood irrigated and intensively tilled
(maintaining all the stover in the field) and for the last 10 years maize
was the main crop. The two areas were used to differentiate the irriga-
tion system. Hence, one area remained with the traditional flood irri-
gation system and in the adjacent area, a hand-move sprinkler irrigation
system was established. In each of the two areas (0.415 ha), nine
6 x 18 m plots were demarcated. The following three stover manage-
ment treatments were laid out randomly within three blocks forming a
split-block design: conventional tillage with a pass of subsoiler to 30 cm
followed by a pass of rotary tiller and all the stover incorporated into the
soil (CT); no-tillage with all the crop stover left on the soil surface (NTr);
and no-tillage with all the crop stover removed from the field (NT). In
this last treatment, after every season harvest, the maize stover was
manually removed from the plots. From April 2015 to October 2018,
four continuous maize growing seasons were established with a five-
month fallow period (October-March) in between seasons. Maize cv.
Pioneer P1785 was planted in mid-April at a density of 89,500 plants
ha™! and harvested in the first week of October. Plots were equally
fertilized with 260 kg N ha™! split between planting and one top dres-
sing application at V6-V8 maize growth stage. The amount of irrigation
water applied was calculated according to climate data obtained from a
meteorological station located within the experimental farm and it was
the same amount in all tillage treatments within a same irrigation sys-
tem. The two irrigation methods presented differences in the amount of
water applied and in the irrigation frequency. The flood irrigation
received about 25 % more water than the sprinkler irrigation (707 vs.
882 mm per growing season, respectively) and irrigation events
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occurred every 10-14 days, whereas in the sprinkler method irrigation
occurred two times per week. More information about crop and irriga-
tion management can be found in Franco-Luesma et al. (2020a, 2020b).

2.2. Soil and crop stover sampling and C analyses

In February 2019, soil was sampled at 0—5, 5-10, 10—25 and
25—50 cm layers. A composite sample was obtained per plot and soil
layer. Once in the laboratory, soil was air dried and ground to pass a 2-
mm sieve. Soil physical fractionation was done to isolate the POM-C and
Min-C fractions following the method of Cambardella and Elliot (1992).
Briefly, 20 g of <2 mm air dried soil was dispersed in 100 mL of 5 g L ™!
sodium hexametaphosphate for 15 h on a reciprocal shaker. After this
time, samples were passed through a 53-pm sieve to separate silt + -
clay + Min-C (<53 pm size) from >53pum size particles
(sand + POM-C). The <53 pm fraction was collected in aluminium pans
and oven dried at 50 °C overnight. Organic C concentrations of the bulk
soil and the Min-C fraction were measured using a LECO analyser model
RC-612 (Leco Corp., St. Joseph, MI, USA) and the POM-C was calculated
by the difference between total SOC and Min-C.

Soil bulk density was measured for each soil layer using the soil
cylinder method (Grossman and Reinsch, 2002). The SOC stocks were
calculated considering the SOC concentration, the soil bulk density and
the sampling depth. All the SOC stock values were corrected for the
equivalent soil mass following the procedure explained in Ellert and
Bettany (1995). As the reference soil mass was considered the CT soil
management under flood irrigation as the historical management of the
field. The cumulative soil mass in the 0—50 cm soil layer was 7911 Mg
ha~!. The SOC stock change in each treatment was calculated from the
difference between the SOC stock in 2019 and the initial SOC stock
measured in 2015 right before the setup of the experiment. The SOC
stock measured at the beginning of the experiment for the 0—50 cm soil
layer was 59.43 Mg C ha™'.

In all four maize seasons, the stover yield was measured in three 2-m
rows per plot at the physiological maturity stage by separating the grain
from the rest of the plant (stover). Stover subsamples were oven dried at
60 °C for 48 h, weighed and ground. The C concentration was measured
on a LECO analyser model Truspec CN (Leco Corp., St. Joseph, MI, USA).

2.3. Statistical analyses

Analyses of variance (ANOVA) were performed to evaluate the effect
of the different factors (irrigation, stover management and soil layer)
and their interaction effects on the different soil variables measured. The
experimental design consisted in a strip block experiment in which the
stover management factor was replicated three times but the irrigation
factor was not replicated. Due to the lack of replication, the irrigation
factor was not evaluated, but the evaluation of the interaction between
the irrigation method and the stover management was possible (Federer
and King, 2007). In order to meet ANOVA assumptions, the homoge-
neity of variances was tested with the Levene test and the normality with
the Kolmogorov-Smirnov test. The POM-C content was squared- trans-
formed because it was the only measured variable that did not fulfil the
normality assumption. When significant differences were found at the
0.05 or 0.10 level, the post-hoc test Fisher’s Least Significant Difference
(LSD) was used to compare differences among treatments. All the sta-
tistical analyses were performed with the R software (R Core Team,
2017).

3. Results

The soil bulk density was affected by the stover management, the soil
depth and the interaction between irrigation and stover management
(data not shown). In both irrigation methods, soil bulk density increased
with soil depth with the lowest soil bulk density measured in the surface
soil layer (Table 1). Under both irrigation methods, with soil depth
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Table 1

Soil bulk density after four years of continuous maize as affected by stover
management (CT, conventional tillage; NT, no-tillage removing the maize sto-
ver; and NTr, no-tillage retaining the maize stover) under flood and sprinkler
irrigation.

Soil layer (cm)

Irrigation Stover management 0-5 5-10 10-25 25-50
Flood
CT 1.35 ab' 1.39 be 1.60 a 1.65
NT 1.44 a 1.36 ¢ 1.53a 1.66
NTr 1.32ab 1.46 abc 1.60 a 1.63
Average 1.37B 1.41 B 1.58 A 1.65A
Sprinkler
CT 1.24b 1.50 ab 1.39b 1.61

NT 1.39 ab 1.51 ab 1.67 a 1.57
NTr 1.44a 1.53a 1.64a 1.63
Average 1.36 B 1.52A 1.57A 1.60 A

T Within a soil layer, values followed by different lowercase letters are signi-
ficantly different at 0.05 level.

 Within an irrigation method, mean values followed by different uppercase
letters are significantly different at 0.05 level.

changes from the 0—5 to the 25-50 cm, soil bulk density increased
about 17 and 20 % for sprinkler and flood, respectively (Table 1). There
were no clear differences in soil bulk density of the soil layers due to
stover management. For example, in the 0—5 cm soil layer, the soil bulk
density in the CT under sprinkler irrigation was significantly lower than
in the NT and NTr under flood irrigation and sprinkler, respectively. But,
in the 5—10 cm layer, the NT under flood irrigation resulted in signifi-
cantly lower soil bulk density than the NTr under sprinkler irrigation
(Table 1). In the 10—25 soil layer, the CT under sprinkler irrigation had
the lowest soil bulk density, and in the 25—50 soil layer no significant
differences were found (Table 1).

The SOC and POM-C contents were affected by the stover manage-
ment and soil depth and the interaction between stover management
and soil depth (Table 2). No-till resulted in a reduction of SOC and POM-
C contents compared to CT and NTr, which showed similar values
(Table 2). Soil depth not only affected SOC and POM-C contents but also
Min-C content. All three soil variables decreased with soil depth. Soil
organic C, POM-C and Min-C contents at the 25—50 cm soil depth rep-
resented only the 57, 23 and 65 %, respectively, of that in the topsoil

Table 2

Analysis of variance of soil organic carbon (SOC), particulate organic matter C
(POM-C) and mineral-associated organic matter C (Min-C) contents as affected
by stover management (CT, conventional tillage; NT no-tillage removing the
maize stover; and NTr, no-tillage retaining the maize stover) and soil layer, and
the interactions between both factors and the irrigation method (Irrigation).

Treatment SOC POM-C Min-C
g C kg soil !

Stover CT 8.85a 143 a 7.42
NT 791b 0.87 b 7.04
NTr 8.73a 1.38a 7.35

Soil layer 0-5 11.21a 237 a 8.84a

(cm) 5-10 8.77 b 1.27b 7.50 b
10-25 7.65 ¢ 0.71c 6.94 ¢
25-50 6.35d 0.55¢ 5.80d

ANOVA p values
Stover (Stv) <0.01 <0.05 ns
Soil layer (Layer) <0.001 <0.001 <0.001
Irrigation x Stv ns ns ns
Irrigation x Layer ns ns 0.03
Stv x Layer 0.03 0.04 ns
Irrigation x Stv x Layer ns ns ns

ns, non-significant.
T Values followed by different letters are significantly different at 0.05 level.
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(Table 2). The Min-C was also affected by the interaction between irri-
gation and soil depth. In general, both irrigation methods showed a
decreased in Min-C with soil depth. But in the 25—50 soil depth, the
Min-C content was significantly lower under flood than under sprinkler
irrigation (data not shown).

In flood irrigation, significant differences among stover management
systems were only found in the 5—10 cm soil depth where CT presented
greater SOC than NT (Fig. 1). However, in sprinkler irrigation, signifi-
cant differences were only observed in the topsoil layer (0—5 cm) where
NTr resulted in greater SOC content than NT (Fig. 1). The POM-C frac-
tion in the 0—5 cm soil depth was greater in NTr than in NT under flood
irrigation (Fig. 2). However, in sprinkler irrigation, stover management
systems affected POM-C contents at both the 5—10 and 10—25 cm soil
depths where this fraction was significantly greater in CT than in NT and
NTr, respectively (Fig. 2).

The SOC stocks were affected by the stover management and soil
depth, and the interactions between irrigation and soil depth and be-
tween stover management and soil depth (data not shown). For flood
irrigation, significant differences among stover management systems
were found in the 5—10 soil layer where NTr resulted in lower SOC
stocks than CT, and in the 25—50 cm soil layer where NT resulted in
lower SOC stocks than NTr (Fig. 3). When the entire 0—50 cm soil depth
was considered, NT had the lowest SOC stock. Significant differences in
SOC were only found in the 0—5 cm depth under sprinkler irrigation
where SOC was significantly greater in NTr compared with NT (Fig. 3).
Furthermore, in flood irrigation, significant differences existed when the
entire 0—50 cm soil layer was considered. In this case, NTr showed
significantly greater SOC stocks than NT (Fig. 3).

After 4 years of continuous maize, SOC changes in the 0—50 cm soil
layer were only affected by the stover management and only at the 0.10
significance level (p-value = 0.073). The CT and NT treatments showed
SOC losses of -0.11 and -1.22 Mg ha~! yr™!, respectively (Fig. 4). On the
contrary, NTr accumulated SOC during the experiment at a rate of
0.09 Mg ha™! yr'! (Fig. 4).

4. Discussion

Changes in soil tillage may have a significant impact on SOC changes
depending on climate and soil conditions (Ogle et al., 2019). In our
study, after four years, differences in SOC between tillage systems were
only observed when stover was removed from the field (Table 2). The
shift from CT to NTr (with both tillage systems maintaining crop stover)
did not affect SOC contents. In contrast, when the shift was from CT or

SOC (g C kg™) SOC (g C kg™)

0 2 4 6 8 1012 0 2 4 6 8 10 12 14
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Fig. 1. Soil organic carbon (SOC) content after four years of continuous maize
under flood and sprinkler irrigation methods as affected by stover management
(CT, conventional tillage; NT, no-tillage removing the maize stover; and NTr,
no-tillage retaining the maize stover). Within a soil layer and irrigation method,
values followed by different letters are significantly different at 0.05 level.
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Fig. 2. Particulate organic matter C (POM-C) content after four years of
continuous maize under flood and sprinkler irrigation methods as affected by
stover management (CT, conventional tillage; NT, no-tillage removing the
maize stover; and NTr, no-tillage retaining the maize stover). Within a soil layer
and irrigation method, values followed by different letters are significantly
different at 0.05 level.

NTr to NT (NT with all the stover removed) a significant decrease in SOC
was observed. It is well established the positive relationship between C
inputs and SOC gains (Virto et al., 2012; Luo et al., 2017). In our
experiment, in only four years, SOC content decreased by 10 % with only
removing crop residues from the soil surface. In a global meta-analysis,
it was estimated that SOC decrease due to maize stover removal was 8%
(Xu et al., 2019). In this same study, it was observed that the greatest
reduction in SOC levels were observed for short-term experiments (<5
years) (Xu et al., 2019). In our study, as expected, the reduction in SOC
contents due to the removal of stover was mainly observed in the upper
soil layers (Fig. 1), as observed in other studies (Chowdhury et al.,
2015). Indeed, the analysis of variance showed that the SOC and the
other two C fractions measured (POM-C and Min-C) significantly
decreased with soil depth.

Besides total SOC, stover management also affected only POM-C not
the Min-C fraction. As observed for total SOC, the removal of stover
decreased POM-C. The POM is a C fraction derived from partially un-
decomposed plant-derived materials while Min-C is mostly of microbial
origin (Lavallee et al., 2020). Compared with the Min-C fraction, POM-C
is not associated with soil minerals, and more accessible to microbial
decomposition and cycling (Cotrufo et al., 2019). Consequently, crop
residue inputs directly contribute to the formation and build-up of
POM-C in the topsoil which would explain the decrease found in this C
fraction when the residue was not left on the soil in the 0—5 cm soil
depth (Fig. 2). Several studies have also shown decreases in POM-C
levels when maize stover is removed (Osborne et al., 2014; Stewart
et al., 2016; Obrycki et al., 2018). Indeed, this decrease in the content of
POM-C occurs rapidly as observed in two experiments located in USA
where, three years after the start of the experiment, differences in
POM-C between stover management treatments already existed (Sin-
delar et al., 2014; Ruis et al., 2018). The POM-C fraction is an early
indicator of SOC changes due to changes in management (Plaza-Bonilla
et al., 2014). In our study, both total SOC and POM-C contents showed
significant reductions when the maize stover was removed. However,
when the percentage of reduction was compared between fractions there
existed differences. When the maize stover was removed the SOC
decreased about 10 % compared with the treatments in which the crop
residues were left on the soil (NTr and CT). However, when comparing
the POM-C, this proportion reached almost 38 %. In an experiment
located under similar Mediterranean conditions, the POM-C fraction was
identified as an early indicator of SOC changes when a rainfed cropping
system was converted to irrigated maize (Pareja-Sanchez et al., 2020). In
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Fig. 3. Soil organic carbon (SOC) stock after four years of continuous maize
under flood and sprinkler irrigation methods as affected by stover management
(CT, conventional tillage; NT, no-tillage removing the maize stover; and NTr,
no-tillage retaining the maize stover). Bars represent standard error. Within a
soil layer and irrigation method, values followed by different letters are signi-
ficantly different at 0.05 level.

particular, these same authors observed increases of about 75 % in
POM-C levels when rainfed systems were converted to irrigated maize
systems (Pareja-Sanchez et al., 2020). Similar values of Min-C among
stover management treatments were observed (Table 2) since this
fraction is characterized by its inherent high mean residence time and
thereby less affected by management compared with POM-C (Cambar-
della and Elliot, 1992).

The comparison between CT and NTr (NT maintaining maize stover)
did not show differences in either SOC contents nor SOC stocks. Changes
in SOC are the result of the balance between C inputs and losses
(Paustian et al., 2016). In our case, no differences in above-ground C
inputs were observed among the three stover management systems
tested. During the 2015-2018 period, the total stover C yield was 20.04,
18.92 and 19.15Mg C ha™! in CT, NT, NTr, respectively (data not
shown). Consequently, it might be assumed that, in order to compensate
the balance between C inputs and losses, decomposition rates did not
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Fig. 4. Soil organic carbon (SOC) stock change after four years of continuous
maize as affected by stover management (CT, conventional tillage; NT, no-
tillage removing the maize stover; and NTr, no-tillage retaining the maize
stover) Vertical bars represent standard error. Values followed by different
letters are significantly different at 0.10 level.

change between CT and NTr. However, in the same experimental plots,
during the 2015, 2016 and 2017 maize seasons, Franco-Luesma et al.
(2020a) observed about 25 % higher soil CO2 emissions under CT than
under NTr which would be partly explained by a higher decomposition
rate in CT. Despite this difference in soil CO2 emissions, we still found
similar SOC stocks between both management systems. Thereby, we
could hypothesize that the higher decomposition rates under CT might
be offset by higher root C inputs in CT as observed in some studies
(Barber, 1971; Li et al., 2017) or, simply, that more time needs to pass to
determine whether C changes between tillage systems really exist
(Smith, 2004). Therefore, it is important to highlight that several dis-
cussion papers have been published in the last decade questioning the
potential for SOC sequestration when NT is adopted (Powlson et al.,
2014; VandenBygaart, 2016). Consequently, it would be likely that after
several years of the establishment of the experiment, similar SOC levels
still exist between tillage systems.

During the four years of experiment, SOC stocks changed differently
depending on the stover management system. However, after 4 years,
SOC change was not affected by the interaction between stover man-
agement and irrigation (data not shown). The average SOC change
values of the irrigation and stover management treatments presented a
significant relationship with the amount of stover C yield produced in
the 4 years (Fig. 5). But, after this time, differences between irrigation
and stover management treatments were not still enough great to be
statistically significant in neither yield C stover nor SOC change.

The historical crop and soil management of the field (CT maize)
resulted in a slight decrease of SOC during the 4-yr period (Fig. 4). It
would be expected a situation in which no changes in SOC stocks
occurred, but in reality, the historical management was not in steady
state conditions. The sequestration duration is controlled by several
factors such as soil properties, climate, C inputs level and management
(West and Six, 2007). In a modelling study, Alvaro-Fuentes and Paustian
(2011) estimated that, under Mediterranean conditions, shifting from
rainfed to irrigated in a continuous barley system would need 90 years to
achieve steady state conditions.

In our study, after four years, NTr resulted in slightly gains in SOC
stocks. But the most abrupt change was observed in the NT treatment
with a mean SOC loss rate of 1.22 Mg C ha™! yr~!. Compared to other
studies in Mediterranean conditions, the annual SOC loss rate obtained
in our study for NT is high (Alvaro-Fuentes and Paustian, 2011; Aguilera
et al., 2013). After a shift in management, the greatest SOC change rates
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Fig. 5. Linear relationship between soil organic carbon (SOC) change and total
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agement treatments: conventional tillage under flood irrigation (white circle);
conventional tillage under sprinkler irrigation (black circle); no-tillage
removing the maize stover under flood irrigation (white triangle); no-tillage
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tillage retaining the maize stover under flood irrigation (white square); no-
tillage retaining the maize stover under sprinkler irrigation (black square).

are usually observed during the first years right after the new manage-
ment practice is adopted (West and Six, 2007). In Spain under rain-fed
Mediterranean conditions, the greatest SOC change rates were
observed 4 years after the change from CT to NT (Alvaro-Fuentes and
Paustian, 2011). Consequently, in our experiment, the short period for
evaluation have contributed to the high SOC losses measured in the
stover removal treatment. Therefore, it would be necessary to continue
evaluating the impact of these management strategies over the
long-term and to identify possible future variations in the rate of SOC
changes.

5. Conclusions

After four years, stover management has resulted in significant SOC
changes in a maize monoculture system. In the two irrigation methods
studied (flood and sprinkler), the removal of maize stover is a detri-
mental practice for SOC sequestration since, after four years, it resulted
in a decrease in SOC and POM-C contents and SOC stocks compared with
the maintenance of crop stover. At the same time, SOC and fraction
contens and SOC stock changes were not affected by the interaction
between irrigation method and stover management. The removal of crop
stover has been demonstrated as a detrimental strategy to store SOC in
the short-term in irrigated maize systems.
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