000109545 001__ 109545
000109545 005__ 20240319080947.0
000109545 0247_ $$2doi$$a10.1038/s41565-021-01027-7
000109545 0248_ $$2sideral$$a125990
000109545 037__ $$aART-2022-125990
000109545 041__ $$aeng
000109545 100__ $$aDonnelly, C
000109545 245__ $$aComplex free-space magnetic field textures induced by three-dimensional magnetic nanostructures
000109545 260__ $$c2022
000109545 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109545 5203_ $$aThe design of complex, competing effects in magnetic systems-be it via the introduction of nonlinear interactions(1-4), or the patterning of three-dimensional geometriesm-is an emerging route to achieve new functionalities. In particular, through the design of three-dimensional geometries and curvature, intrastructure properties such as anisotropy and chirality, both geometry-induced and intrinsic, can be directly controlled, leading to a host of new physics and functionalities, such as three-dimensional chiral spin states(7), ultrafast chiral domain wall dynamicss(8-10) and spin textures with new spin topologies(7, 11). Here, we advance beyond the control of intrastructure properties in three dimensions and tailor the magnetostatic coupling of neighbouring magnetic structures, an interstructure property that allows us to generate complex textures in the magnetic stray field. For this, we harness direct write nanofabrication techniques, creating intertwined nanomagnetic cobalt double helices, where curvature, torsion, chirality and magnetic coupling are jointly exploited. By reconstructing the three-dimensional vectorial magnetic state of the double helices with soft-X-ray magnetic laminography(12, 13), we identify the presence of a regular array of highly coupled locked domain wall pairs in neighbouring helices. Micromagnetic simulations reveal that the magnetization configuration leads to the formation of an array of complex textures in the magnetic induction, consisting of vortices in the magnetization and antivortices in free space, which together form an effective B field cross-tie wall''s. The design and creation of complex three-dimensional magnetic field nanotextures opens new possibilities for smart materials(15), unconventional computing(2, 16), particle trapping(17, 18) and magnetic imaging(19).
000109545 536__ $$9info:eu-repo/grantAgreement/EC/H2020/701647/EU/International, Interdisciplinary and Intersectoral Postdocs/PSI-FELLOW-II-3i$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 701647-PSI-FELLOW-II-3i$$9info:eu-repo/grantAgreement/EC/H2020/746958/EU/Perpendicular Magnetic Anisotropy: from Topological Defects to Reconfigurable Magnetic Devices/MAGTOPRECON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 746958-MAGTOPRECON$$9info:eu-repo/grantAgreement/ES/MINECO-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033
000109545 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109545 590__ $$a38.3$$b2022
000109545 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b2 / 107 = 0.019$$c2022$$dQ1$$eT1
000109545 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b5 / 343 = 0.015$$c2022$$dQ1$$eT1
000109545 593__ $$aAtomic and Molecular Physics, and Optics$$c2022$$dQ1
000109545 593__ $$aBioengineering$$c2022$$dQ1
000109545 593__ $$aBiomedical Engineering$$c2022$$dQ1
000109545 593__ $$aNanoscience and Nanotechnology$$c2022$$dQ1
000109545 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000109545 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000109545 593__ $$aCondensed Matter Physics$$c2022$$dQ1
000109545 594__ $$a54.6$$b2022
000109545 592__ $$a13.141$$b2022
000109545 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109545 700__ $$aHierro-Rodriguez, A
000109545 700__ $$aAbert, C
000109545 700__ $$aWitte, K
000109545 700__ $$aSkoric, L
000109545 700__ $$aSanz-Hernandez, D
000109545 700__ $$aFinizio, S
000109545 700__ $$aMeng, FF
000109545 700__ $$aMcVitie, S
000109545 700__ $$aRaabe, J
000109545 700__ $$aSuess, D
000109545 700__ $$aCowburn, R
000109545 700__ $$0(orcid)0000-0002-4303-9525$$aFernandez-Pacheco, A$$uUniversidad de Zaragoza
000109545 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000109545 773__ $$g17 (2022), 136–142$$pNat. Nanotechnol.$$tNATURE NANOTECHNOLOGY$$x1748-3387
000109545 8564_ $$s4028853$$uhttps://zaguan.unizar.es/record/109545/files/texto_completo.pdf$$yVersión publicada
000109545 8564_ $$s3568634$$uhttps://zaguan.unizar.es/record/109545/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109545 909CO $$ooai:zaguan.unizar.es:109545$$particulos$$pdriver
000109545 951__ $$a2024-03-18-12:42:30
000109545 980__ $$aARTICLE