000109580 001__ 109580
000109580 005__ 20230519145356.0
000109580 0247_ $$2doi$$a10.3390/ijms22179351
000109580 0248_ $$2sideral$$a125737
000109580 037__ $$aART-2021-125737
000109580 041__ $$aeng
000109580 100__ $$aMur, R.
000109580 245__ $$aSupercritical antisolvent fractionation of antioxidant compounds from Salvia officinalis
000109580 260__ $$c2021
000109580 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109580 5203_ $$aThe increasing interest towards greener antioxidants obtained via natural sources and more sustainable processes encourages the development of new theoretical and experimental methods in the field of those compounds. Two advanced separation methods using supercritical CO2 are applied to obtain valuable antioxidants from Salvia officinalis, and a first approximation to a QSAR model relating molecular structure with antioxidant activity is explored in order to be used, in the future, as a guide for the preselection of compounds of interest in these processes. Separation experiments through antisolvent fractionation with supercritical CO2 were designed using a Response Surface Methodology to study the effect of pressure and CO2 flow rate on both mass yields and capability to obtain fractions enriched in three antioxidant compounds: chlorogenic acid, caffeic acid and rosmarinic acid which were tracked using HPLC PDA. Rosmarinic acid was completely retained in the precipitation vessel while chlorogenic and caffeic acids, though distributed between the two separated fractions, had a major presence in the precipitation vessel too. The conditions predicted for an optimal overall yield and enrichment were 148 bar and 10 g/min. Although a training dataset including much more compounds than those now considered can be recommended, descriptors calculated from the sigma-profiles provided by COSMO-RS model seem to be adequate for estimating the antioxidant activity of pure compounds through QSAR.
000109580 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E39-20R$$9info:eu-repo/grantAgreement/ES/FEDER/POCTEFA-SPAGYRIA-EFA188-16
000109580 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000109580 590__ $$a6.208$$b2021
000109580 592__ $$a1.176$$b2021
000109580 594__ $$a6.9$$b2021
000109580 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b69 / 297 = 0.232$$c2021$$dQ1$$eT1
000109580 593__ $$aComputer Science Applications$$c2021$$dQ1
000109580 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b50 / 180 = 0.278$$c2021$$dQ2$$eT1
000109580 593__ $$aInorganic Chemistry$$c2021$$dQ1
000109580 593__ $$aSpectroscopy$$c2021$$dQ1
000109580 593__ $$aOrganic Chemistry$$c2021$$dQ1
000109580 593__ $$aPhysical and Theoretical Chemistry$$c2021$$dQ1
000109580 593__ $$aMolecular Biology$$c2021$$dQ1
000109580 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000109580 700__ $$aPardo, J. I.
000109580 700__ $$aPino-Otin, M. R.
000109580 700__ $$aUrieta, J. S.
000109580 700__ $$0(orcid)0000-0001-9379-8047$$aMainar, A. M.$$uUniversidad de Zaragoza
000109580 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000109580 773__ $$g22, 17 (2021), 9351 [22 pp]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000109580 8564_ $$s2705883$$uhttps://zaguan.unizar.es/record/109580/files/texto_completo.pdf$$yVersión publicada
000109580 8564_ $$s2785422$$uhttps://zaguan.unizar.es/record/109580/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000109580 909CO $$ooai:zaguan.unizar.es:109580$$particulos$$pdriver
000109580 951__ $$a2023-05-18-13:33:30
000109580 980__ $$aARTICLE