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Abstract

This paper addresses the optimal allocation of water among competing stakeholders during a finite planning hori-
zon. We focus on those water systems where there are two levels of decision making organized according to a
hierarchical framework. At the upper level, a central authority allocates water to demand points having regard to
environmental and sustainability issues as well as balancing water users’ supply/demand. At the lower level of
the hierarchy, demand point managers allocate water to users prioritizing economic strategies. On the other hand,
when it comes to allocating limited resources that affect public welfare the authority in charge can also use dif-
ferent political instruments such as fees to influence the decisions made at those levels of decision making that
are not directly within its competence. We propose a multiobjective multi-follower bilevel optimization problem
which aims to fulfill the central authority goals while including the reaction of the demand point managers in terms
of optimization problems as constraints. Using the well-known Karush-Kuhn-Tucker approach, we transform the
bilevel model into an equivalent multiobjective mixed integer single-level model for which we provide tight big-M
values. For the purpose of showing the versatility of the model, extensive computational experiments on a set of
instances have been carried out. The results show that the optimization problem can be solved to optimality in
small computing times using off-the-shelf mixed-integer solvers even for complex water systems and long plan-
ning periods. In addition, they illustrate the effect of imposing fees on the achievement of the central authority’s
objectives.
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1. Introduction

Distributing water has become a very important issue due to its increasing uses and needs. In cases where
the demand for water is small compared to its availability, conflicts do not arise. However, in general,
water resources are too limited to meet all the needs of water users, and the use of water by one user
affects the availability for other users. Moreover, water users usually pursue different and even con-
flicting objectives. Therefore, water system managers face conflicts when users compete for water and
making decisions becomes increasingly complex. On the other hand, there is an increasing interest in
improving water resources management by taking into account sustainability and environmental protec-
tion of aquatic ecosystems as well as giving users the opportunity of participating in the decision making
process (Hassing et al., 2009; Ruiz-Villaverde and Garcı́a-Rubio, 2017). Optimization techniques have
provided support to deal with water system management. In the literature, the long-established model-
ing approach assumes centralized planning, i.e. the water distribution decision process is controlled by
a single decision maker. In some cases, multiple decision makers are allowed, who agree to collabo-
rate to achieve common goals in a decentralized coordinated planning process. Therefore, optimization
models with a single decision level and one or several criteria have been proposed in the literature.
See Brown et al. (2015); Calvete and Mateo (1995); Llopis-Albert et al. (2018); Mala-Jetmarova et al.
(2017); Roozbahani et al. (2013); Tayfur (2017); Udı́as et al. (2012) and references therein. Most of
these papers, when explicitly taking into account environmental issues besides economic issues, propose
a multiobjective model.

However, there are many practical problems in which the agents involved in water allocation are not
necessarily willing to cooperate. For some of them environmental issues must be considered a priority.
For others, obtaining the best economic performance is the only thing that matters. In order to deal with
this conflict, and bearing in mind that usually a hierarchy can be recognized in the decision making
process with a central authority having a prevailing role, a bilevel optimization approach for the optimal
allocation of water is more appropriate, such as that proposed in this paper. This approach allows the
central authority the achievement of environmental goals and the use of fees to encourage a balanced
allocation of water, while the demand points decide on this allocation. The idea of a central authority in-
fluencing decision makers has already been applied in different fields. Among others, Önal et al. (1995)
model the distribution of agricultural credits between farm groups aiming to improve the agriculture sec-
tor’s performance. Amouzegar and Moshirvaziri (1999) deal with managing hazardous waste aiming to
maximize social welfare via taxation. Zhao et al. (2013) study how to control water pollution to attain the
desired water quality at the lowest environmental cost. Bostian et al. (2015) aim to control Nitrogen load-
ing in the watershed to achieve a tradeoff between agricultural production and water quality. The review
by Sinha et al. (2018) includes several references which deal with the application of bilevel optimization
in environmental economics, where an authority or regulator at the upper level of decision making tax
those entities at the lower level that are polluting the environment as a result of their operations. In a
hierarchized sustainable supply chain network design, Chalmardi and Camacho-Vallejo (2019) propose
a bilevel model in which the government acts as the leader to incentivize the use of cleaner technologies
by offering financial incentives to the supply chain’s managers. For eco-industrial parks, Aviso et al.
(2010) propose a bilevel fuzzy optimization model to explore the effect of charging fees for the purchase
of freshwater and for the treatment of wastewater in optimizing the water exchange network of plants
and Bi et al. (2019) model the distribution of water to minimize overall water consumption.



Bilevel optimization models those problems having a hierarchical framework in which there are two
decision levels whose decision makers, besides having different goals, only have control over some
of the decisions to be made. The decision maker at the upper level of the hierarchy aims to optimize
his/her objective function under a set of constraints which take into account the reaction of the decision
maker at the lower level of the hierarchy to the plan of the leader. Therefore, bilevel programs are
formulated as optimization problems which involve another optimization problem in the constraint set.
Regarding the application of bilevel optimization in water allocation problems, Guo et al. (2012) propose
a bilevel model for a multi-reservoir operation model in an inter-basin water transfer-supply project. The
upper level controls the distribution of water resources among water exporting and importing regions
using a set of water-transfer rules. The individual reservoir manager, at the lower level of the hierarchy,
controls the water-supply process by hedging rules. The authors develop an improved particle swarm
optimization which is used to solve both the upper level and the lower level models transferring the
value of the corresponding variables from one model to another, and apply it to a three-reservoir system
in a province of Northeast China. Zhu et al. (2017) consider the problem of transferring and supplying
water and present a bilevel model which is solved by using an Adaptive Genetic Algorithm. The upper
level’s goal is to minimize the actual annual average transferred water while the lower level aims to
minimize water shortage for all users. A fuzzy approach is often taken to solve the bilevel problem when
the upper and lower decision makers are able to cooperate with each other. Under this hypothesis, the
bilevel problem can usually be solved sequentially and thus it is simpler to handle. This approach is
adopted by Lv et al. (2010) and Xu et al. (2012) for planning water resources management systems. The
aim is to balance the degree of satisfaction between the upper and the lower levels. Chen et al. (2017)
propose a bilevel model in which the upper level decision maker aims to minimize the discharge of
pollutants when deciding the water-allocation strategy, whereas the lower level representing the regional
authority maximizes the economic benefits. To solve the problem an interactive algorithm is developed
based on the concepts of satisfaction and tolerance membership functions of the fuzzy theory.

The contribution of this paper is to propose a model for water resources allocation in a general complex
non-cooperative hierarchical water system. The model is flexible enough to allow consideration of very
different water system configurations, the evolution over time of the system, and environmental and
economic issues. In addition, the model enables the use of fees that can be charged by the decision
maker at the highest level of the hierarchy to influence the decisions made at those levels of decision
making that are not directly within its competence. The result is a decision tool that can be used to
evaluate different strategies in the optimal allocation of the available water when the reaction of the
users is included in the decision process.

The study considers the management during a finite planning horizon, divided into time periods, of a
water resources system consisting of rivers, reservoirs, distribution channels, and water demand points,
each having several water users. Due to water shortages, conflicts arise among the demand points. The
aim is to determine how to allocate the available water taking into account the hierarchical structure of
the decision process. On the one hand, a central authority representing the government or water system
authorities decides on the global amount of water allocated to each demand point. It aims to distribute
water in accordance with environmental aspects and the overall satisfaction of user demand, having the
possibility of charging fees on water allocated to users. On the other hand, managers at the demand points
(which represent water users’ communities) decide on the different uses of the allocated water, i.e. on
the distribution to their water users based on maximizing the net economic return. Both decision levels



act under a hierarchical structure. This means that the central authority at the upper level of the decision
process has control of the water distribution to the demand points, but the reaction of the managers who
decide on water uses is taken into account in the model as a constraint.

This issue is modeled as a multiobjective lexicographic linear bilevel optimization problem with a
leader and several followers, one for each demand point. First, taking into account that each follower
problem only involves its own variables and the variables controlled by the upper level, this model is
transformed into a multiobjective lexicographic linear bilevel problem with a single follower. Then, to
solve the problem we propose a procedure that takes advantage of the fact that, after the above mentioned
transformation, the lower level problem is a linear one. Hence, Karush-Kuhn-Tucker (KKT) conditions
are necessary and sufficient for optimality, and the multiobjective lexicographic bilevel problem can be
transformed into an equivalent multiobjective lexicographic mixed integer linear single level problem by
introducing additional binary variables. This linearization process involves the use of big-M constants
for which we provide tight valid values. The resulting optimization problem can be solved to optimality
using off-the-shelf mixed-integer solvers. It is worth pointing out that the model can efficiently handle
complex water systems with long planning periods. To illustrate the performance of this approach we
have generated a set of instances which handle a variety of water systems configurations under different
water availability scenarios. Extensive computational experiments on this set show the versatility of
the model as well as the short computing times required to solve it. As a result, this work provides a
mathematical model which can be used as a decision tool by the central authority to assess the degree
of fulfillment of its objectives and to quickly evaluate the consequences of different simulated scenarios
when deciding water allocation.

The rest of the paper is structured as follows. Following the Introduction section, section 2 provides a
brief summary of bilevel optimization. Section 3 describes in detail the formulation of the bilevel model
and the procedure used to solve it. Section 4 presents the results of the computational experiments carried
out. Finally, section 5 concludes the paper.

2. Background on bilevel optimization problems

As mentioned above, bilevel optimization has been proposed to deal with hierarchical decision processes
with two levels of decision. When there is a leader and a single follower, the bilevel optimization model
can be formulated as:

min
x

F (x, y)

subject to
Gj(x, y) ≤ 0, j = 1, . . . , q

where, for every x fixed, y solves

min
y

f(x, y)

subject to
gh(x, y) ≤ 0, h = 1, . . . , p

(1)

where x ∈ Rn are the upper level variables controlled by the leader, and y ∈ Rm are the lower level
variables controlled by the follower; F, f : Rn+m −→ R are the upper level and lower level objective



functions, respectively; and Gj(x, y) ≤ 0, gh(x, y) ≤ 0 refer, respectively, to constraints of the upper
and lower levels.

The bilevel problem is the leader’s problem, who must anticipate the follower’s reaction when looking
for his/her best decision. The follower is free to optimize his/her objective function once the leader sets
the value of the upper level variables. Therefore, for a given x, the follower solves the lower level
problem:

min
y

f(x, y)

subject to
gh(x, y) ≤ 0, h = 1, . . . , p

(2)

Let V = {(x, y) : Gj(x, y) ≤ 0, j = 1, . . . , q, gh(x, y) ≤ 0, h = 1, . . . , p}. Let M(x) be the optimal
solution set of problem (2). Let T = {(x, y) : (x, y) ∈ V, y ∈ M(x)}. A point (x, y) ∈ T is a so-called
bilevel feasible solution, i.e. a feasible solution of problem (1). A point x ∈ Rn is called permissible if a
point y ∈ Rm exists so that (x, y) ∈ T . Hence, the bilevel problem (1) can be equivalently formulated
as:

min
x

F (x, y)

s.t.
(x, y) ∈ T

The bilevel problem is nonconvex and difficult to deal with and solve. In fact, complications arise
when there are multiple optima in the lower level problem, that is to say, M(x) is not a singleton for
some permissible x. If the upper level objective function is sensitive to different values of y ∈ M(x), it
is necessary to give a rule to select y∗ ∈ M(x) in order to evaluate F . Several assumptions have been
proposed in the literature, the most common being the optimistic approach, which assumes that the upper
level decision maker has the right to influence the lower level decision maker so that the latter selects
y∗ to provide the best value of F . In this case, the upper level objective function is minimized over x
and y. This is the approach taken in this paper. It is also worth noting that even when all the functions
involved are linear, the bilevel problem is strongly NP-hard. Calvete et al. (2012) provide an overall
view of the main difficulties which arise when dealing with bilevel problems and distinguish them from
classical single level optimization problems. Bard (1998) and Dempe (2002) are textbooks which deal
with most of the theoretical issues on bilevel optimization. Colson et al. (2007), Dempe (2018), Sinha
et al. (2018), and Dempe and Zemkoho (2020) provide recent surveys which cover applications as well
as major theoretical developments.

3. A multiobjective multi-follower bilevel optimization model for water system management

In this section we mathematically describe the problem addressed by the central authority when allocat-
ing water and formulate the bilevel problem which models it. Water enters the system at various locations
and is distributed to demand points or stored in reservoirs; otherwise, it leaves the system. From the de-
mand points, the water is allocated to water users aiming to satisfy their demands. To take into account
that demand and inflows change over time, we consider the evolution of the water system during a finite



planning horizon divided into periods. For the water system management it is necessary to know not
only if there is enough water overall to satisfy demand, but if water is available for allocation during the
required period. We assume that in each period of the planning horizon the inflows to the system and
every water user demand are known or can be properly estimated. Moreover, minimum downstream re-
quirements and minimum storage in reservoirs are also known and must be prioritized when determining
the optimal water distribution to meet environmental and sustainability issues. The goal is to determine
the best way of allocating available water. The central authority, playing the role of leader, controls the
water which is allocated to the demand points, as well as minimum needs and the flows leaving the
system. Each demand point, acting as a follower, controls the allocation of water to its water users.

3.1. Assumptions, notations and variables

Let T denote the set of periods of the planning horizon. Let R be the set of reservoirs, W be the set of
demand points and K be the set of water users. Each reservoir r ∈ R is connected to other reservoirs
and/or to demand points. Let Rr ⊆ R and Wr ⊆ W be, respectively, the sets of reservoirs and demand
points to which r is connected. This means that water can flow from the reservoir r to any node in
Rr ∪Wr. Each demand point w ∈ W is only connected to the set Kw ⊆ K of water users to which w
can allocate water. We assume that the sets of water users associated with different demand points are
disjoints, i.e. Kw ∩Kw̃ = ∅ if w 6= w̃. Hence, {Kw}w∈W constitute a partition of K.

Let Itr be the inflow in reservoir r ∈ R during period t ∈ T . For each water user k ∈ Kw, w ∈ W ,
let Dt

wk denote the total demand during period t ∈ T and btwk be the economic return obtained by the
demand point w per unit of water allocated to the user k during period t. Let P twk, w ∈ W,k ∈ Kw, t ∈
T , be an upper bound on the price which the central authority can charge the demand point w for the
allocation of water to the water user k during period t. We assume that P twk ≤ btwk, w ∈W,k ∈ Kw, t ∈
T , i.e. the prices are never greater than the economic return of the corresponding water user.

Each reservoir r ∈ R has a capacity and a minimum level of storage to be guaranteed at each period
as required by the central authority. We denote x0rr the amount of water available at the reservoir r ∈ R
at the beginning of the planning period. Moreover, the links between reservoirs and demand points
represent either a river or a channel. Hence, in general, a link representing a river has a lower bound
meaning a minimum downstream requirement and does not have an upper bound. This also applies to
the water exiting the system. Conversely, a channel has an upper bound referring to its capacity and
a lower bound equal to zero. We denote the lower bounds by L and the upper bounds by U , with the
proper indices in each case. For example, Lrr and Urr denote, respectively, the minimum level of storage
and the capacity of reservoir r ∈ R, while Lrw and Urw are, respectively, zero and the capacity of the
channel if there is a channel connecting the reservoir r ∈ R and the demand point w ∈W .

It is worth noting that, for a particular planning period, it cannot be guaranteed a priori that enough
water will be available to satisfy all the needs. In fact, even if overall enough water were available during
the planning horizon, depending on the characteristics of the water system, it is possible that not enough
water would be available to ensure even the minimum level of storage and the minimum downstream
requirements in some periods of the planning horizon. Also, water users can request more water than
available in some periods. Therefore, to enforce minimum requirements and to maintain potential de-
mands as mandatory demands which must be supplied would lead to an infeasible problem. However, in



these cases where there is not enough water, it is even more important for the central authority to know
how to distribute water according to its goals. Hence, the possibility of deficits is considered.

In order to formulate the Multiobjective Lexicographic Multi-Follower Bilevel optimization Prob-
lem (MLMF-BP), we define the following upper level decision variables, which are controlled by the
central authority:

xtrr, r ∈ R, t ∈ T : storage at reservoir r at the end of period t

xtrr̃, r ∈ R, r̃ ∈ Rr, t ∈ T : flow from reservoir r to reservoir r̃ during period t

xtrw, r ∈ R,w ∈Wr, t ∈ T : water sent from reservoir r to demand point w during period t

xtr, r ∈ R, t ∈ T : water leaving the system from reservoir r during period t

strr, r ∈ R, t ∈ T : storage deficit at reservoir r at the end of period t

strr̃, r ∈ R, r̃ ∈ Rr, t ∈ T : minimum downstream requirement deficit from reservoir r to
reservoir r̃ during period t

str, r ∈ R, t ∈ T : minimum downstream requirement deficit for the water exiting the
system from reservoir r during period t

ptwk, w ∈W,k ∈ Kw, t ∈ T : price charged to the demand point w per unit of water allocated to
the water user k during period t

Note that the variables xtr and str are only defined for those reservoirs r from which the water can leave
the system. Also, it must be noticed that the aim of the central authority when using the variables ptwk is
not to maximize the return achieved from these prices, but to influence the water allocation of demand
points.

The lower level decision variables controlled by the demand point w ∈W are defined as follows:

ytwk, k ∈ Kw, t ∈ T : water allocated to the water user k during period t

As an illustration, a simple water system is shown at the top of Figure 1. This consists of a sequential
water system with two reservoirs, three demand points and seven users. To help understand the evolution
of the system over time and the variables involved, at the bottom of the same figure we have represented
a diagram of the system over two periods. The variables associated to each arc are shown next to the arc.

3.2. The multiobjective lexicographic multi-follower bilevel optimization model

The MLMF-BP can be formulated as follows:

min
x,s,p,y

f11 =
∑
t∈T

∑
r∈R

(
strr + str +

∑
r̃∈Rr

strr̃

)
(3a)

max
x,s,p,y

f21 =
∑
t∈T

∑
w∈W

∑
k∈Kw

ytwk
Dt
wk

(3b)



t=2

t=1

Fig. 1: A simple water system on top together with a representation of the flows and the variables in-
volved when there are two periods of time, T = {1, 2}. In this case, R = {r1, r2}, W = {w1, w2, w3},
K = {k1, . . . , k7}, Rr1 = {r2}, Wr1 = {w1, w2}, Kw1

= {k1, k2}.



min
x,s,p,y

f31 =
∑
t∈T

∑
w∈W

∑
k∈Kw

ptwk (3c)

s.t.

xt−1rr + Itr +
∑
r̃:r∈Rr̃

xtr̃r = xtrr + xtr +
∑
r̃∈Rr

xtrr̃ +
∑
w∈Wr

xtrw, r ∈ R, t ∈ T (3d)

xtrr + strr ≥ Lrr r ∈ R, t ∈ T (3e)

xtr + str ≥ Lr r ∈ R, t ∈ T (3f)

xtrr̃ + strr̃ ≥ Lrr̃ r ∈ R, r̃ ∈ Rr, t ∈ T (3g)

xtrr ≤ Urr r ∈ R, t ∈ T (3h)

xtrr̃ ≤ Urr̃ r ∈ R, r̃ ∈ Rr, t ∈ T (3i)

xtrw ≤ Urw r ∈ R,w ∈Wr, t ∈ T (3j)

ptwk ≤ P twk w ∈W,k ∈ Kw, t ∈ T (3k)

xtr, x
t
rr, x

t
rr̃, x

t
rw, s

t
r, s

t
rr, s

t
rr̃ ≥ 0 r ∈ R, r̃ ∈ Rr, w ∈Wr, t ∈ T (3l)

ptwk ≥ 0 w ∈W,k ∈ Kw, t ∈ T (3m)

where, for each demand point w ∈W , the variables ytwk, k ∈ Kw, t ∈ T , solve:

max
yw

f2w =
∑
t∈T

∑
k∈Kw

(btwk − ptwk)ytwk (3n)

s.t. ∑
k∈Kw

ytwk ≤
∑

r∈R:w∈Wr

xtrw, t ∈ T (3o)

ytwk ≤ Dt
wk, k ∈ Kw, t ∈ T (3p)

ytwk ≥ 0, k ∈ Kw, t ∈ T (3q)

The objective functions (3a)-(3c) lexicographically optimize the three ranked objectives of the central
authority. Lexicographic optimality (Ehrgott, 2005) implies a ranking of the objectives. That is to say, it
is assumed that the first objective is more important by far than the second one, which in turn is more im-
portant by far than the third objective, and so on. Thus, the optimization of an objective is not considered
until the optimality of the objectives which precede it in importance has been established. Concerning
the MLMF-BP, the goal with the highest priority (3a) is to provide water to satisfy environmental and
sustainability issues, i.e. to meet the minimum requirements (minimum storage in reservoirs and min-
imum downstream requirements). Hence the total deficit is minimized. If the central authority has to
differentiate among those needs in case of not having enough water available to satisfy all of them, an
additional weight coefficient can be associated with the deficit variables. This coefficient would allow us
to emphasize the relevance of each need.



The second prioritized goal (3b) refers to the satisfaction of water users. In this paper, the concept
of satisfaction proposed by Babel et al. (2005) as the ratio of water allocated over the demand is used.
In addition, we propose to consider the utilitarian approach in which the goal is to maximize the total
satisfaction of demand users measured by the sum of the individual satisfaction of each of them. As
mentioned above, an additional weight coefficient can be associated with the individual satisfaction to
emphasize its relevance. Other approaches which propose different strategies to deal with the allocation
of resources across multiple users can be seen in Karsu and Erkan (2020) and references therein.

As mentioned above, the aim of the central authority in setting the prices is not to collect as much as
possible but to be able to influence the allocation of water to the water users. Hence, from the, generally
large, set of prices which provide the outcome sought by the central authority, we propose to select a set
of low prices, and so a third prioritized goal (3c) is introduced which minimizes the sum of the prices.
This will allow the demand points to be charged prices that together add up to as little as possible, always
ensuring that the overall satisfaction represented by the second objective is maximized. In order to keep
the model as simple as possible, within the complexity which is inherent in bilevel models, we have
assumed that all the objective functions should be linear. Thus, the third objective function minimizes
the total sum of prices instead of the total paid by users. The function

∑
t∈T
∑

w∈W
∑

k∈Kw
ptwky

t
wk is

not linear and we think that f31 defined in (3c) fairly well captures the aim of the central authority. Nev-
ertheless, it is important to note that other objective functions can be considered, which gives versatility
to the proposed model. For instance, the central authority may want to minimize the highest price.

To continue with the description of the model, constraints (3d) ensure the conservation of flow. Con-
straints (3e) refer to the minimum level of storage in the reservoirs. Constraints (3f) refer to the minimum
downstream requirements of the water leaving the water system. Constraints (3g) refer to the minimum
downstream requirements of the link connecting r and r̃. Constraints (3h) ensure that the capacity of
reservoirs is not exceeded. Constraints (3i) and (3j) allow us to guarantee that the capacity of each
channel is not exceeded if the link corresponds to a channel, otherwise the upper bound is infinite. Con-
straints (3k) establish upper bounds on the prices ptwk, which seems appropriate to avoid unreasonable
values for the prices. These upper bounds could be expressed, for instance, as a percentage of the eco-
nomic return. Other price related constraints could also be included in the model such as equal prices for
certain water users even if they depend on different demand points. Constraints (3l) and (3m) guarantee
that all variables controlled by the central authority are non negative.

The lower level problem associated with the demand point w ∈ W is defined by (3n)-(3q). After
knowing the amount of water available, the manager of each demand point distributes the water in
such a way as to maximize the net economic return (revenues less costs) from water allocated to water
users (3n). Constraints (3o) ensure that at most the available water at demand point w ∈W is distributed
among its water users k ∈ Kw. Constraints (3p) guarantee that no water user receives more than he/she
demands. Constraints (3q) establish the non-negativity of the lower level variables.

Problem (3) is a multiobjective lexicographic multi-follower bilevel optimization problem with |W |
followers, where |W | stands for the cardinality of W . Moreover, each follower problem involves only
its own variables and the upper level variables. Hence, in accordance with the definition introduced
in Calvete and Galé (2007), the followers are independent. By directly extending Theorem 3.1 from that
paper to problem (3), this problem is equivalent to a multiobjective lexicographic bilevel optimization
problem with one follower. The new lower level problem is obtained by considering the sum of the
objective functions f2w of the |W | lower level problems as the objective function, and putting together



all the lower level constraints. Consequently, problem (3) can be reformulated as follows:

lex [min f11 , max f21 , min f31 ] (4a)
s.t.

(3d)− (3m) (4b)

where the variables ytwk, w ∈W,k ∈ Kw, t ∈ T , solve:

max
y

f2 =
∑
w∈W

∑
t∈T

∑
k∈Kw

(btwk − ptwk)ytwk (4c)

s.t. ∑
k∈Kw

ytwk ≤
∑

r∈R:w∈Wr

xtrw, w ∈W, t ∈ T (4d)

ytwk ≤ Dt
wk, w ∈W,k ∈ Kw, t ∈ T (4e)

ytwk ≥ 0, w ∈W,k ∈ Kw, t ∈ T (4f)

where lex means to lexicographically optimize the three objectives.

3.3. Solving the MLMF-BP

In this section we propose to reformulate problem (4) as a single level optimization problem by using
the KKT conditions of the lower level problem. For linear optimization, KKT conditions are necessary
and sufficient for optimality. Hence, they can substitute the lower level problem (4c)-(4f) providing an
equivalent problem.

Let us denote by πtw, w ∈ W , t ∈ T , and δtwk, w ∈ W , k ∈ Kw, t ∈ T , the dual variables associated
with the constraints (4d) and (4e), respectively. Then, the dual problem of (4c)-(4f) is:

min
π,δ

∑
t∈T

∑
w∈W

( ∑
r∈R:w∈Wr

xtrw

)
πtw +

∑
t∈T

∑
w∈W

∑
k∈Kw

Dt
wkδ

t
wk (5a)

s.t.

πtw + δtwk ≥ btwk − ptwk, w ∈W,k ∈ Kw, t ∈ T (5b)

πtw ≥ 0, w ∈W, t ∈ T (5c)

δtwk ≥ 0, w ∈W,k ∈ Kw, t ∈ T (5d)

Therefore, in addition to the feasibility of primal and dual solutions (constraints (4d)-(4f), (5b)-(5d),
the KKT conditions are:

(πtw + δtwk − btwk + ptwk)y
t
wk = 0, w ∈W,k ∈ Kw, t ∈ T (6a)( ∑

r∈R:w∈Wr

xtrw −
∑
k∈Kw

ytwk

)
πtw = 0, w ∈W, t ∈ T (6b)



(Dt
wk − ytwk)δtwk = 0, w ∈W,k ∈ Kw, t ∈ T (6c)

Nonlinear constraints (6a)-(6c) can be linearized by introducing binary variables vtwk, vtw and ṽtwk as:

ytwk ≤M t
wkv

t
wk, w ∈W,k ∈ Kw, t ∈ T (7a)

πtw + δtwk − btwk + ptwk ≤ N t
wk(1− vtwk), w ∈W,k ∈ Kw, t ∈ T (7b)

πtw ≤M t
wv

t
w, w ∈W, t ∈ T (7c)∑

r∈R:w∈Wr

xtrw −
∑
k∈Kw

ytwk ≤ N t
w(1− vtw), w ∈W, t ∈ T (7d)

δtwk ≤ M̃ t
wkṽ

t
wk, w ∈W,k ∈ Kw, t ∈ T (7e)

Dt
wk − ytwk ≤ Ñ t

wk(1− ṽtwk), w ∈W,k ∈ Kw, t ∈ T (7f)

vtwk, ṽ
t
wk ∈ {0, 1}, w ∈W,k ∈ Kw, t ∈ T (7g)

vtw ∈ {0, 1}, w ∈W, t ∈ T (7h)

where M t
wk, N t

wk, M t
w, N t

w, M̃ t
wk, Ñ t

wk are big enough constants.
Substituting the lower level problem in (4) by its KKT conditions, we obtain the equivalent single

level multiobjective lexicographic mixed integer problem:

lex [min f11 , max f21 , min f31 ]
s.t.

(3d)− (3m), (4d)− (4f), (5b)− (5d), (7a)− (7h)
(8)

Issues related to the choice of appropriate values of these big enough constants have been dealt with
in Kleinert et al. (2019) and Pineda and Morales (2019). As cited in Kleinert et al. (2019), our results
strongly indicate that problem-specific bounds on the lower level’s dual variables need to be investigated
if the given bilevel problem is going to be solved using the KKT approach combined with the classical
big-M linearization of KKT complementarity conditions. Taking into account the characteristics of the
primal and dual problems, the following Theorem allows us to derive tight upper bounds.

Theorem 1. For problem (8), valid constants are:

constraints (7a) : M t
wk = Dt

wk

constraints (7b) : N t
wk = btwk + max

k̃∈Kw

{bt
wk̃
}

constraints (7c) : M t
w = max

k̃∈Kw

{bt
wk̃
}

constraints (7d) : N t
w =

∑
k∈Kw

Dt
wk

constraints (7e) : M̃ t
wk = btwk

constraints (7f) : Ñ t
wk = Dt

wk

Proof. According to constraints (4e), ytwk ≤ Dt
wk. Hence M t

wk = Dt
wk, Ñ t

w = Dt
wk are valid constants



for constraints (7a) and (7f), respectively.
Problem (5) is a minimization problem with nonnegative variables and nonnegative objective function

coefficients. Moreover, the right-hand-side of each constraint (5b) is at most btwk since ptwk ≥ 0. Hence,
in the optimal solution of problem (5), δtwk ≤ btwk, for all w ∈ W , k ∈ Kw, t ∈ T , whatever the value
of the variables πtw which guarantee a feasible solution. Note that from each feasible solution having
δtwk > btwk for some index values, a feasible solution with a lower value of the objective function (5a)
can be obtained by making δtwk = btwk. Hence, M̃ t

wk = btwk is a valid constant for constraints (7e).
On the other hand, for each w ∈ W , t ∈ T , the variable πtw ≤ max

k̃∈Kw

{bt
wk̃
} in the optimal solution

of problem (5). Otherwise, using the same argument as above, πtw = max
k̃∈Kw

{bt
wk̃
} and the corresponding

values of δtwk would provide a feasible solution with a lower value of the objective function (5a). Hence,
M t
w = max

k̃∈Kw

{bt
wk̃
} is a valid constant for constraints (7c).

As a consequence of previous bounds on δtwk and πtw and taking into account that ptwk ≤ P twk ≤ btwk,
we can conclude that N t

wk = btwk + max
k̃∈Kw

{bt
wk̃
} is a valid constant for constraints (7b).

Finally, considering the optimal solution of problem (3), it is always possible to find an optimal solu-
tion in which no demand point receives more water than it can allocate to its water users. Thus, for each
w ∈W , t ∈ T , we have

∑
r∈R:w∈Wr

xtrw ≤
∑

k∈Kw
Dt
k. Hence, N t

w =
∑

k∈Kw
Dt
wk is a valid constant

for constraints (7d).

4. Computational experiments

The aim of this section is to present and discuss the computational experiments carried out to illustrate
the differences between the optimal water allocation strategies depending on the water available and
the prices charged, and to show the efficiency of the procedure to solve the MLMF-BP. The numerical
experiments have been performed on a PC Intel Core i7-6700 with 3.4 gigahertz, 32.0 gigabyte of RAM
and Windows 10 64-bit as the operating system. We have solved problem (8) using IBM ILOG CPLEX
12.9.0 with the default settings and the specific tools for multiobjective optimization. The CPLEX stop-
ping criterion has been always set at 7200 seconds.

In addition to solving the MLMF-BP, in these experiments we have also solved what is called the
relaxed problem in bilevel optimization. This is a single level model in which the central authority
controls every allocation of water, i.e. demand point managers are not taken into account in the decision
process. It can be formulated as:

lex [min f11 , max f21 ]
s.t.

(3d)− (3j), (3l), (4d)− (4f)
(9)

The third objective function f31 and the constraints (3k) and (3m) have been omitted because they force
all the prices ptwk to be zero. Needless to say, when demand points are not accounted for, it does not
make sense to charge prices.

On the other hand, the optimal value of f11 in the bilevel problem (3) coincides with the optimal



value of the same function in the relaxed problem (9) (both aim to minimize the total deficit, which is
controlled by the upper level decision maker, and do not take into account how the demand points are
served). Hence, when comparing problems (3) and (9) the main interest lies in the comparison of the
upper level objective function f21 . Problem (9) provides a lower bound on f21 of the MLMF-BP, but it
does not reflect what actually happens if there exists a hierarchical structure with two levels of decision.
Notice that once the demand points managers know the value of the upper level variables provided by
the optimal solution of the relaxed problem, they assume their role and distribute the allocated water
according to their goal. The bilevel feasible solution thus obtained (from now on called the sub-optimal
solution) is not necessarily optimal for the MLMF-BP. The use of prices can help the central authority
to achieve its goals, obtaining objective function values closer to the optimal values of problem (9).

4.1. Set of instances

Most papers in the literature consider cases of study corresponding to small water systems with only
one or two reservoirs and they do not provide raw data. When some data are available their sizes depend
largely on the system under consideration. Hence, to have a wide range of scenarios, which allow us
to check the versatility of the model as well as to assess the computational time required to solve the
model, we have generated six water systems which represent either water systems usually presented in
the literature or more complex systems that combine them. They are shown in Figure 2. Instances WS1
and WS2 consist of a single river, instances WS3 and WS4 consist of a main river with two tributaries,
and instances WS5 and WS6 consist of two main rivers connected, respectively, by one and two channels.
The number of reservoirs ranges from 4 to 7, the number of demand points ranges from 7 to 12 and the
number of water users ranges from 74 to 142. For each instance, we have considered three planning
horizons, with 12, 52 and 365 periods.

Three yearly inflows (365 periods) have been generated from the following expressions:

(Itr)1 = 450 cos 2πt
365 + random(500, 600), t = 1, . . . , 365

(Itr)2 = 0.75×
(
450 cos 2πt

365 + random(500, 600)
)
, t = 1, . . . , 365

(Itr)3 = 0.5×
(
450 cos 2πt

365 + random(500, 600)
)
, t = 1, . . . , 365

(10)

Most streams display annual variation due to seasonal changes. In the Mediterranean countries the lowest
flows often occur near the end of the spring and during the summer. These sinusoidal functions can
represent this behaviour.

From the values generated by expression (10), when 12 (respectively, 52) periods are considered, the
first 360 (364) values are added up in groups of 30 (7) data each. Table 1 shows the inflow values when
12 periods are considered. Notice that less water is available in the central periods. Moreover, distinct
scenarios of flow are obtained by multiplying randomly generated inflows by a coefficient β which ranges
from 0.1 to 1 in order to simulate variations from a major drought scenario to a high water scenario. For
β = 0.8, 0.9 and 1 the same results are obtained as for β = 0.7, since there is enough water available to
satisfy total demand. Thus, these values of β will be omitted from now on. The instance WS1 uses (Itr)2;
the instance WS2 uses (Itr)1; the instances WS3 and WS4 use (Itr)1 in R1, (Itr)2 in R3 and (Itr)3 in R4;
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Fig. 2: Schemes of the water systems of the instances. The numbers in brackets refer to number of water
users associated to the corresponding demand point.



Table 1: Randomly generated inflows for T = 12.

1 2 3 4 5 6 7 8 9 10 11 12

(Itr)1 29220 25775 19998 13243 7337 3403 3680 6633 12401 19018 25269 29050
(Itr)2 21841 19501 15002 10015 5312 3069 2577 4801 9259 14237 18914 21947
(Itr)3 14696 12816 10083 6669 3666 1911 1856 3228 6167 9730 12491 14724

Table 2: For each reservoir: Its capacity, the demand points associated with it, the number of water users
corresponding to each demand point and the total demand of these water users in each period of time
when T = 12.

Total demand of each demand point in each period of time

Urr DP |Kw| 1 2 3 4 5 6 7 8 9 10 11 12

R1 35469 1 18 1436 1523 1556 1707 1786 1856 1875 1802 1700 1584 1501 1435
R2 38598 2 10 979 1012 1031 1094 1121 1163 1168 1158 1090 1034 999 992

3 5 714 721 731 795 804 826 843 794 802 743 723 712
4 6 359 367 398 441 476 491 497 476 444 404 377 350

R3 36099 5 17 1629 1707 1768 1925 1985 2040 2016 1981 1892 1805 1693 1655
R4 13545 6 9 860 880 904 961 1017 1031 1018 1024 959 939 905 850

7 9 866 880 937 969 1020 1031 1032 1015 977 931 868 848
R5 42588 8 12 1000 1049 1099 1213 1250 1282 1295 1264 1198 1110 1070 1036

9 16 1729 1778 1865 2001 2103 2186 2162 2101 2005 1910 1782 1711
R6 21063 10 8 852 894 951 999 1046 1081 1098 1087 996 939 910 840

11 15 1281 1307 1407 1472 1552 1611 1603 1553 1470 1434 1338 1284
R7 11760 12 17 1658 1744 1844 1993 2088 2156 2183 2110 2002 1870 1717 1670

and the instances WS5 and WS6 use (Itr)2 in R1 and (Itr)3 in R4.
For each reservoir r ∈ R, its capacity Urr has been randomly generated as an integer in [5000, 50000],

the minimum level of storage Lrr = 0.01Urr and the amount of water available at the beginning of the
planning period x0rr = β(Urr + Lrr)/2. Regarding the water users, 50% have a daily demand randomly
generated in [1, 2]; 30% have a daily demand randomly generated in [2, 6]; and 20% have a daily demand
randomly generated in [6, 10]. The daily minimum downstream requirement has been set at 10, and the
maximum daily capacity of the channels has been set at 2000. Daily data are added up, as done for the
inflows, depending on the periods of the planning horizon. The upper bounds Urw are infinite. Table 2
displays the capacity of each reservoir, the number of demand points and of water users associated to it
and the total demand of the water users in each period of time when 12 periods are considered. Table 3
displays the total water available in each water system depending on the value of β, as well as the total
demand when T = 12.

For each water user k ∈ Kw, w ∈ W the economic return btwk is randomly generated as an integer
value in the interval [10, 30] and it is the same in all the periods. To assess the effect of varying the
bounds P twk, we have selected those bounds as a percentage of the economic return, i.e. P twk = αbtwk,
where α = 0, 0.25, 0.5, 0.75. Notice that when α = 0 no prices are charged.



Table 3: For each water system: The inflows involved, total water available depending on the value of β
(inflow plus water available at the reservoirs at the beginning of the planning period) and total demand
of its water users when T = 12.

β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Demand

WS1 (Itr)2 20895 41790 62684 83579 104474 125369 146263 91708
WS2 (Itr)1 29558 59117 88675 118234 147792 177350 206909 180945
WS3 (Itr)1, (I

t
r)2, (I

t
r)3 50201 100402 150603 200805 251006 301207 351408 91708

WS4 (Itr)1, (I
t
r)2, (I

t
r)3 53416 106831 160247 213662 267078 320493 373909 157911

WS5 (Itr)2, (I
t
r)3 32849 65698 98548 131397 164246 197095 229944 128907

WS6 (Itr)2, (I
t
r)3 34507 69014 103520 138027 172534 207041 241548 180945

For these instances, the MLMF-BP has been solved for each combination of water system, values of
α and β, and length of the planning horizon, i.e. 720 problems have been solved. Moreover, the relaxed
problem has been solved for each water system and value of β from 0.1 to 0.7, i.e. 126 problems, and for
the values of the upper level level variables another 126 lower level problems have been solved to obtain
the sub-optimal solution.

The large number of problems solved makes it unwieldy to analyze every optimal solution obtained. To
have an insight into the optimal solutions of the relaxed problem, the bilevel feasible solution associated
with it (sub-optimal solution) and the evolution of the optimal solution of the bilevel problem when α
increases, we have selected the instance WS1 with β = 0.1 (major drought scenario) and T = 12. Since
f11 = 0, we pay attention to how water users are served in accordance with those solutions. We define:

• K0 as the number of water users which do not receive water in any period.
• K1 as the number of water users which receive all their demand in all periods.
• Kmax as the maximum, over the periods, of the water users which receive water.

The first and second columns in Table 4 display the demand point and the number of its water users.
The following columns show the values of K0,K1 andKmax for each of the above mentioned solutions.
The values corresponding to the bilevel problem with α = 0.75 have been omitted because its optimal
solution coincides with the optimal solution of the relaxed problem. Looking at these values, we can
observe that the solutions are very distinct, which shows that problems (9) and (3) model very different
systems, a centralized system (the relaxed problem) and a decentralized system that takes into account
the reaction of the users (the bilevel problem), respectively. On the other hand, as the value of α increases
the values K0, K1 and Kmax of the bilevel solution become more and more similar to the values of the
relaxed problem solution. The sub-optimal solution provides the largest values of K0, and the lowest of
Kmax.

In the following subsections we summarize the results of the complete experiment to give an overview
of the degree to which the central authority goals are met depending on the water availability scenario.
This can help decision makers to better understand the interactions among environmental requirements,
demand points, water users and prices.



Table 4: Instance WS1 with β = 0.1 and T = 12: Water users satisfaction with respect to the models
considered.

Relaxed Sub-optimal Bilevel, α = 0 Bilevel, α = 0.25 Bilevel, α = 0.5

DP |Kw| K0 K1 Kmax K0 K1 Kmax K0 K1 Kmax K0 K1 Kmax K0 K1 Kmax

1 18 7 4 11 10 2 8 11 7 7 7 6 11 6 6 12
2 10 5 0 5 8 0 2 1 0 9 2 2 8 5 3 5
3 5 3 0 2 4 0 1 5 0 0 5 0 0 3 0 2
4 6 1 1 5 2 1 4 0 2 6 0 5 6 1 3 5
5 17 7 3 10 12 1 5 6 0 11 11 4 6 8 5 9
6 9 4 1 5 8 0 1 9 0 0 7 2 2 4 2 5
7 9 3 0 6 7 1 2 8 1 1 7 2 2 4 3 5

4.2. Assessing the model in terms of number of variables and computing time

The aim of this section is to provide general information about the complexity of the model measured
by the number of variables and constraints involved in the models and by the average computing time
required for solving the problems. Table 5 displays these results. The first and second columns show the
number of periods of the planning period and the water system. The third column displays the number of
variables of the relaxed problem (9). The fourth and fifth columns show, respectively, the total number
of variables in the bilevel model (8) and how many of them are binary variables. The sixth and seventh
columns display the number of constraints of the relaxed and bilevel problems, respectively.

Finally, the two last columns display the average of the CPU time in seconds of the 7 (28) runs corre-
sponding to the relaxed (bilevel) model. Regarding the average times, as could be expected, the relaxed
model, which does not involve integer variables, is solved in very short computing times. Concerning the
bilevel model, it is worth pointing out that the computing times are quite small when T = 12 or T = 52
(less than 3 seconds and 30 seconds, respectively). Moreover, although these times increase, especially
for the more complex water systems 2 and 6, when T = 365, reaching an average computing time of
almost 30 minutes, these times can be considered competitive taking into account both the number of
variables and constraints involved. The detailed results regarding the computing time are presented in
Appendix A. It is worth mentioning at this point that, even if the bilevel problem is much more compli-
cated to solve, it is the appropriate model when modeling a decentralized system that takes into account
the reaction of the users, as noted when describing the MLMF-BP. In the previous and following sec-
tions, we show that the sub-optimal solution is not necessarily optimal for the MLMF-BP. In fact, it can
be very far from the bilevel optimal solution, and a priori it is not possible to know what extent.

4.3. Degree to which the goals of the central authority are met

For all the instances and available water, it is possible to satisfy environmental and sustainability issues,
i.e. the minimum needs are always met and thus f11 is always equal to zero. For small values of β it is
not possible to satisfy the demand of all the water users, even if the reaction of the demand points is



Table 5: For each instance and planning period, the number of variables and constraints, and the average
CPU time.

# of variables # of constraints Average CPU

Relaxed Bilevel (0-1) Relaxed Bilevel Relaxed Bilevel

T = 12 WS1 1236 4956 1860 2208 6816 0.06 0.53
WS2 2328 9432 3552 4176 12984 0.09 1.90
WS3 1212 4932 1860 2184 6792 0.05 0.50
WS4 2040 8304 3132 3672 11436 0.09 1.03
WS5 1668 6780 2556 3000 9336 0.08 0.82
WS6 2352 9456 3552 4200 13008 0.09 1.61

T = 52 WS1 9568 29536 5356 21476 8060 0.12 5.37
WS2 18096 56264 10088 40872 15392 0.23 20.06
WS3 9464 29432 5252 21372 8060 0.13 3.77
WS4 15912 49556 8840 35984 13572 0.19 16.86
WS5 13000 40456 7228 29380 11076 0.17 11.72
WS6 18200 56368 10192 40976 15392 0.22 27.64

T = 365 WS1 37595 150745 56575 67160 207320 1.49 246.23
WS2 70810 286890 108040 127020 394930 3.47 1734.69
WS3 36865 150015 56575 66430 206590 2.38 268.60
WS4 62050 252580 95265 111690 347845 2.75 778.01
WS5 50735 206225 77745 91250 283970 1.76 895.76
WS6 71540 287620 108040 127750 395660 2.93 1346.72

not taken into account. The level of satisfaction of demand users, and so the second goal of the central
authority, depends largely on the water system analyzed. To satisfy all the water users in all periods
requires β ≥ 0.3 for instance WS3 and β ≥ 0.4 for instance WS4, which have a similar structure with a
river and two tributaries. Instances WS1 and WS5 require β ≥ 0.5. Finally, the most demanding systems
from the point of view of the computing time required are also the instances which need a larger value
of β to provide total satisfaction. These are WS6 which requires β ≥ 0.6 and WS2 which requires
β ≥ 0.7. In these cases the demand of all the water users is satisfied without the need of charging a
price to the demand points. Needless to say, when there is ‘enough’ water there are no conflicts. It is not
important whether it is the central authority or the demand points which take control of the allocation
of water to water users because all the objective functions achieve their best theoretical values (f11 = 0,
f21 = |T | × |K|, f31 = 0, f2 =

∑
t∈T
∑

w∈W
∑

k∈Kw
btwkD

t
wk). In the remaining cases in which there

is not enough water to satisfy all the demands the relevance of the bilevel model and the importance of
prices is made clear. As can be expected, the more water available (β is larger), the more water users
have their demand satisfied.

In what follows, we consider the values of β for which it is not possible to satisfy the total demand
without charging prices, and pay attention to the satisfaction of water users measured by the so called
satisfaction index defined as the quotient between the total satisfaction given by the value of f21 evaluated



for the corresponding solution and the satisfaction of all the water users:

I =
f21

|T | × |K|

Table 6 summarizes the results for T = 12. As mentioned above, this table does not include those
values of β for which this index is equal to one, i.e. every water user receives as much water as he/she
demands in every period. The first and the second columns of the table display the water system and
the value of β. The third and fourth columns show the satisfaction index I value of the optimal solution
of the relaxed problem and the corresponding sub-optimal solution, respectively. Finally, the remaining
columns display the value of I associated with the optimal solution of the bilevel problem when α is
equal to 0, 0.25, 0.5 and 0.75. A symbol ‘=’ is written when the index value coincides with the index
value provided by the optimal solution of the relaxed problem. This value is an upper bound of the index
value of every bilevel feasible solution. The results corresponding to T = 52 and T = 365 are shown
in Appendix A. Since the results in all the tables are very similar (they are better for T = 365 than
for T = 52 which is better than for T = 12, but the differences are less than 0.02), we summarize the
information for T = 12.

Looking at Table 6, as could be expected, the satisfaction index associated with every instance always
increases as the available water is increased (β grows). The optimal solution of the relaxed problem
provides the best values but, as mentioned above, in a hierarchical framework, the sub-optimal solution
is obtained and thus the satisfaction index actually computed is the one shown under sub-optimal, which
always provides the worst values. However, comparing the index value of the relaxed optimal solution
with the indexes of the optimal solution of the bilevel problems, we can realize which value of α provides
the best satisfaction and which value provides an index close enough to that. Note also that to obtain the
optimal solution of the relaxed problem by means of a bilevel problem, in general it is needed to enforce
α = 0.75, the largest value analyzed in this study. For large enough values of β, this also happens when
α = 0.5 and α = 0.25 for some water systems.

5. Conclusions

In this paper we have proposed a decision tool based on bilevel optimization which can be used by deci-
sion makers to be aware of the impact of different water allocation policies which can involve charging
fees when it is mandatory to take into account the decisions made at the next level of the decision making
process. For this purpose, we have proposed a multiobjective multi-follower bilevel optimization model
to manage water allocation in a hierarchical decentralized water system. The purpose is to guarantee
environmental requirements as well as to make an efficient use of available water in terms of satisfying
demand. Due to the hierarchical decision process involved, a bilevel model is proposed whose upper
level decision maker, the central authority, aims first to satisfy minimum requirements. Secondly, he/she
aims to maximize the overall satisfaction of the water user demands. In the process of deciding how to
allocate the available water, the upper level is constrained by the behavior of the demand point managers,
who are at the lower level of the decision process. At this level, there are as many decision makers as
demand points, each of them aiming to distribute the water assigned to them in accordance with the
economic return. In addition, the central authority also has as a regulatory tool the possibility of setting



Table 6: The satisfaction index I for T = 12.

Relaxed Bilevel

β Optimal Sub-optimal α = 0 α = 0.25 α = 0.5 α = 0.75

WS1 0.1 0.42 0.19 0.27 0.35 0.41 =
0.2 0.69 0.43 0.53 0.60 0.66 =
0.3 0.85 0.69 0.75 0.79 0.83 =
0.4 0.94 0.87 0.92 0.93 = =

WS2 0.1 0.33 0.16 0.22 0.30 = =
0.2 0.59 0.31 0.40 0.49 0.56 =
0.3 0.73 0.49 0.57 0.64 0.70 =
0.4 0.84 0.68 0.73 0.78 0.82 =
0.5 0.91 0.81 0.87 0.89 = =
0.6 0.97 0.94 0.96 = = =

WS3 0.1 0.72 0.49 0.57 0.63 0.69 =
0.2 0.95 0.88 0.92 0.93 = =

WS4 0.1 0.59 0.33 0.41 0.49 0.56 =
0.2 0.84 0.68 0.74 0.78 0.82 =
0.3 0.96 0.92 0.95 = = =

WS5 0.1 0.44 0.19 0.27 0.35 0.43 =
0.2 0.72 0.46 0.55 0.62 0.68 =
0.3 0.87 0.72 0.78 0.82 0.86 =
0.4 0.96 0.91 0.95 = = =

WS6 0.1 0.35 0.16 0.23 0.31 =
0.2 0.62 0.35 0.44 0.52 0.59 =
0.3 0.78 0.56 0.63 0.69 0.75 =
0.4 0.88 0.75 0.80 0.84 0.87 =
0.5 0.95 0.89 0.93 = = =

fees to be paid by the demand point depending on how it decides to allocate the water. The model allows
us to see the evolution of the users satisfaction as the value of prices charged and the water available
vary. The model can be easily adapted to manage very different water systems as can be inferred from
the very distinct water systems and drought scenarios dealt with in the computational experiments.

The model resulting from this approach, a multiobjective lexicographic linear bilevel optimization
problem, has been reformulated as a multiobjective lexicographic linear bilevel problem with one fol-
lower. Next, an exact procedure to solve the model has been proposed based on applying the KKT
conditions of the lower level problem. Valid constants for the big-Ms involved in the linearization of
the KKT conditions are derived.

The results of the extensive computational experiments carried out on a large set of benchmark in-
stances which considers different water systems, drought scenarios and several planning periods, confirm
the efficiency of the procedure since it is able to provide the optimal solution in reasonable computing
times (very short in most cases). This avoids the need to develop heuristics or metaheuristics algorithms
since commercial software can be used to solve the problems involved. Moreover, it allows us to foresee



that this procedure will be key when dealing with stochastic inflows or demands in future research.

Acknowledgments

This research has been funded by the Spanish Ministry of Economy, Industry and Competitiveness under
grant ECO2016-76567-C4-3-R, the Spanish Ministry of Science and Innovation under grant PID2019-
104263RB-C43, and by the Gobierno de Aragón under grants E41-17R (FEDER 2014-2020 “Con-
struyendo Europa desde Aragón”) and E41-20R.

The authors gratefully acknowledge the anonymous referees whose comments have helped to improve
the presentation of the paper.

References

Amouzegar, M., Moshirvaziri, K., 1999. Determining optimal pollution control policies: An application of bilevel programming.
European Journal of Operational Research 119, 100–120.

Aviso, K., Tan, R., Culaba, A., Jr, J.C., 2010. Bi-level fuzzy optimization approach for water exchange in eco-industrial parks.
Process Safety and Environmental Protection 88, 31–40.

Babel, M., Gupta, A.D., Nayak, D., 2005. A model for optimal allocation of water to competing demands. Water Resources
Management 19, 693–712.

Bard, J., 1998. Practical bilevel optimization. Algorithms and applications. Kluwer Academic Publishers, Dordrecht, Boston,
London.

Bi, R., Chen, C., Tang, J., Jia, X., Xiang, S., 2019. Two-level optimization model for water consumption based on water prices
in eco-industrial parks. Resources, Conservation and Recycling 146, 308–315.
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Önal, H., Darmawan, D., Johnson, S., 1995. A multilevel analysis of agricultural credit distribution in east java, indonesia.
Computers and Operations Research 22, 2, 227–236.

Pineda, S., Morales, J., 2019. Solving linear bilevel problems using big-Ms: Not all that glitters is gold. IEEE Transactions on
Power Systems 34, 3, 2469–2471.

Roozbahani, R., Schreider, S., Abbasi, B., 2013. Economic sharing of basin water resources between competing stakeholders.
Water Resources Management 27, 2965–2988.

Ruiz-Villaverde, A., Garcı́a-Rubio, M., 2017. Public participation in European water management: from theory to practice.
Water Resources Management 31, 2479–2495.

Sinha, A., Malo, P., Deb, K., 2018. A review on bilevel optimization: From classical to evolutionary approaches and applica-
tions. IEEE Transactions on Evolutionary Computation 22, 276–295.

Tayfur, G., 2017. Modern optimization methods in water resources planning, engineering and management. Water Resources
Management 31, 10, 3205–3233.

Udı́as, A., Rı́os-Insua, D., Cano, J., Fellag, H., 2012. Cost-efficient equitable water distribution in algeria: a bicriteria fair
division problem with network constraints. International Transaction in Operational Research 19, 675–693.

Xu, J., Tu, Y., Zeng, Z., 2012. Bilevel optimization of regional water resources allocation problem under fuzzy random envi-
ronment. Journal of Water Resources Planning and Management 139, 246–264.

Zhao, L., Li, C., Huang, R., Si, S., Xue, J., Huang, W., Hu, Y., 2013. Harmonizing model with transfer tax on water pollution
across regional boundaries in a china’s lake basin. European Journal of Operational Research 225, 377–382.

Zhu, X., Zhang, C., Fu, G., Li, Y., Ding, W., 2017. Bi-level optimization for determining operating strategies for inter-basin
water transfer-supply reservoirs. Water Resources Management 31, 4415–4432.

Appendix A

Tables A1 to A6, respectively, display the computing times required for solving the MLMF-BP and the
relaxed problem for the instances WS1 to WS6. In each table, the first and second columns display,
respectively, the value of the coefficients β and α. The remaining six columns display tbil, the CPU time
in seconds required to solve the MLMF-BP, and trel, the CPU time in seconds required by CPLEX to
solve the relaxed problem depending on the periods of the planning horizon, respectively. The CPLEX
stopping criterion was set at 7200 seconds. Only 5 out of the 720 bilevel problems (all of them having
T = 365) were stopped before providing an optimal solution.

Tables A7 and A8 display the satisfaction index for T = 12 and T = 365, respectively. They have the
same struture as Table 6.



Table A1: Computing times of the instance WS1.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 1.07 0.04 13.89 0.11 180.94 3.55
0.25 1.67 20.22 126.77
0.5 0.49 8.54 153.42
0.75 0.33 1.82 70.69

0.2 0 0.96 0.04 5.35 0.10 7.75 1.36
0.25 1.44 34.63 7.45
0.5 0.90 8.66 7.59
0.75 0.66 3.24 561.90

0.3 0 0.89 0.05 9.57 0.11 2221.31 1.35
0.25 1.47 12.84 1285.28
0.5 0.85 7.63 96.73
0.75 0.30 2.09 7.34

0.4 0 0.60 0.05 4.34 0.11 7.23 1.37
0.25 0.63 5.04 7.23
0.5 0.68 4.48 115.26
0.75 0.29 1.84 1057.37

0.5 0 0.15 0.06 0.58 0.10 607.91 0.94
0.25 0.13 0.56 62.66
0.5 0.12 0.50 5.98
0.75 0.11 0.46 5.91

0.6 0 0.15 0.05 0.59 0.10 5.92 0.93
0.25 0.13 0.55 31.06
0.5 0.12 0.49 57.63
0.75 0.11 0.46 160.39

0.7 0 0.15 0.06 0.59 0.10 26.25 0.93
0.25 0.13 0.55 5.55
0.5 0.12 0.49 5.44
0.75 0.11 0.46 5.42



Table A2: Computing times of the instance WS2.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 3.32 0.08 31.73 0.20 559.17 5.14
0.25 3.50 25.26 296.83
0.5 1.91 11.82 582.40
0.75 0.57 6.36 583.45

0.2 0 3.27 0.08 21.65 0.22 409.48 3.31
0.25 4.50 28.48 134.16
0.5 2.28 52.09 16.43
0.75 0.54 6.91 2081.76

0.3 0 2.39 0.08 25.87 0.22 7200.66 3.40
0.25 4.40 36.27 7200.65
0.5 1.27 49.46 6849.79
0.75 0.59 9.97 3747.03

0.4 0 2.16 0.08 27.83 0.22 269.39 3.38
0.25 3.75 108.57 15.83
0.5 3.47 15.50 427.58
0.75 0.54 3.69 6428.74

0.5 0 1.99 0.08 19.18 0.21 3370.57 3.40
0.25 3.26 25.89 3927.89
0.5 1.43 18.14 373.39
0.75 0.77 3.64 175.73

0.6 0 1.33 0.08 9.43 0.22 13.52 3.55
0.25 2.39 10.31 945.41
0.5 1.57 6.08 183.59
0.75 0.70 2.86 902.10

0.7 0 0.28 0.07 1.29 0.18 1617.57 2.13
0.25 0.47 1.34 134.22
0.5 0.49 1.08 111.55
0.75 0.20 0.99 12.41



Table A3: Computing times of the instance WS3.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 2.51 0.04 11.68 0.11 222.34 3.41
0.25 3.40 56.64 36.52
0.5 1.20 8.01 9.54
0.75 0.95 1.87 10.25

0.2 0 0.42 0.04 2.88 0.10 10.25 1.95
0.25 0.71 4.27 10.25
0.5 0.49 4.64 10.37
0.75 0.47 1.46 5417.98

0.3 0 0.17 0.04 0.70 0.10 158.81 3.85
0.25 0.19 0.69 11.06
0.5 0.17 0.61 11.58
0.75 0.16 0.58 11.55

0.4 0 0.20 0.04 0.73 0.11 11.48 3.12
0.25 0.19 0.82 11.48
0.5 0.17 0.73 1213.20
0.75 0.17 0.67 63.62

0.5 0 0.19 0.04 0.72 0.10 10.02 1.80
0.25 0.19 0.80 10.34
0.5 0.17 0.69 9.87
0.75 0.16 0.61 10.22

0.6 0 0.59 0.04 0.75 0.11 9.80 1.32
0.25 0.20 0.83 175.88
0.5 0.17 0.72 27.68
0.75 0.17 0.61 9.42

0.7 0 0.18 0.04 0.74 0.11 9.82 1.25
0.25 0.19 0.93 9.23
0.5 0.18 0.72 9.12
0.75 0.16 0.61 9.13



Table A4: Computing times of the instance WS4.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 1.78 0.07 20.61 0.20 193.90 6.74
0.25 8.82 255.16 323.54
0.5 2.30 46.31 149.58
0.75 0.81 3.31 13.61

0.2 0 1.54 0.08 12.88 0.18 13.70 2.88
0.25 2.84 64.38 13.76
0.5 1.43 17.50 13.77
0.75 0.48 5.42 7201.24

0.3 0 1.12 0.08 8.05 0.20 5235.90 2.74
0.25 1.90 11.37 534.20
0.5 1.41 7.92 14.94
0.75 0.45 3.30 14.99

0.4 0 0.23 0.07 1.00 0.16 15.10 1.76
0.25 0.26 1.04 15.07
0.5 0.21 1.00 5064.09
0.75 0.19 0.93 1615.83

0.5 0 0.23 0.07 1.01 0.16 155.96 1.75
0.25 0.26 1.06 12.60
0.5 0.63 0.88 12.29
0.75 0.18 0.83 12.27

0.6 0 0.23 0.07 1.01 0.15 12.15 1.72
0.25 0.26 1.06 652.18
0.5 0.21 0.89 374.32
0.75 0.18 1.01 73.87

0.7 0 0.23 0.07 1.01 0.16 11.68 1.68
0.25 0.26 1.48 11.27
0.5 0.22 0.89 11.22
0.75 0.18 0.82 11.14



Table A5: Computing times of the instance WS5.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 1.52 0.05 43.88 0.15 276.72 2.24
0.25 3.46 105.33 260.61
0.5 1.40 9.63 271.90
0.75 0.46 2.35 115.36

0.2 0 1.48 0.07 16.85 0.14 10.42 2.03
0.25 2.71 50.90 10.47
0.5 1.31 14.84 10.57
0.75 0.41 2.77 4544.62

0.3 0 1.40 0.07 10.19 0.14 3892.10 2.05
0.25 2.09 24.26 5908.68
0.5 1.06 10.43 227.78
0.75 0.35 3.75 11.88

0.4 0 0.86 0.07 5.86 0.13 11.88 2.08
0.25 1.35 9.05 11.89
0.5 0.70 5.30 2817.52
0.75 0.38 3.44 4995.98

0.5 0 0.19 0.07 0.74 0.12 754.21 1.36
0.25 0.20 0.78 121.10
0.5 0.16 0.81 9.80
0.75 0.15 0.82 9.64

0.6 0 0.19 0.07 0.72 0.13 9.63 1.30
0.25 0.20 0.78 82.20
0.5 0.17 0.80 438.61
0.75 0.15 0.73 205.93

0.7 0 0.19 0.07 0.72 0.12 45.22 1.27
0.25 0.20 0.78 8.86
0.5 0.17 0.78 8.84
0.75 0.15 0.80 8.80



Table A6: Computing times of the instance WS6.

T = 12 T = 52 T = 365

β α tbil trel tbil trel tbil trel

0.1 0 3.34 0.08 70.59 0.24 485.46 3.47
0.25 3.75 99.56 346.70
0.5 1.50 12.81 629.89
0.75 0.63 3.15 534.05

0.2 0 1.30 0.08 16.04 0.23 242.78 3.20
0.25 3.94 24.02 16.18
0.5 1.51 55.97 16.03
0.75 1.11 4.90 2264.29

0.3 0 2.61 0.08 19.23 0.22 7200.61 3.39
0.25 4.99 244.81 7200.62
0.5 3.19 65.83 4041.26
0.75 0.64 3.72 357.03

0.4 0 2.26 0.08 15.29 0.22 15.77 3.33
0.25 2.86 69.67 15.62
0.5 1.82 10.72 1938.42
0.75 0.79 3.88 5105.76

0.5 0 1.33 0.08 19.99 0.22 3743.76 3.23
0.25 2.11 13.90 1225.49
0.5 2.26 8.38 259.25
0.75 0.49 2.53 13.30

0.6 0 0.25 0.08 1.27 0.19 13.27 1.97
0.25 0.24 1.34 357.14
0.5 0.22 0.95 94.36
0.75 0.19 0.89 395.56

0.7 0 0.66 0.08 1.26 0.19 743.10 1.93
0.25 0.24 1.33 428.40
0.5 0.60 0.95 12.14
0.75 0.19 0.93 12.05



Table A7: The satisfaction index I for T = 52.

Relaxed Bilevel

β Optimal Sub-optimal α = 0 α = 0.25 α = 0.5 α = 0.75

WS1 0.1 0.42 0.19 0.28 0.35 = =
0.2 0.70 0.43 0.53 0.60 0.67 =
0.3 0.85 0.69 0.75 0.80 0.83 =
0.4 0.94 0.87 0.92 0.93 = =

WS2 0.1 0.34 0.16 0.22 0.30 0.33 =
0.2 0.60 0.32 0.41 0.49 0.56 =
0.3 0.74 0.49 0.58 0.64 0.70 =
0.4 0.84 0.68 0.73 0.78 0.82 =
0.5 0.91 0.82 0.87 0.89 = =
0.6 0.97 0.94 0.96 = = =

WS3 0.1 0.72 0.50 0.58 0.64 0.70 =
0.2 0.95 0.88 0.92 0.93 = =

WS4 0.1 0.60 0.33 0.42 0.50 0.57 =
0.2 0.84 0.68 0.74 0.79 0.83 =
0.3 0.96 0.92 0.95 = = =

WS5 0.1 0.45 0.20 0.27 0.36 0.43 =
0.2 0.72 0.47 0.55 0.62 0.69 =
0.3 0.87 0.73 0.79 0.82 0.86 =
0.4 0.96 0.91 0.95 = = =

WS6 0.1 0.36 0.16 0.23 0.31 0.35 =
0.2 0.63 0.35 0.44 0.52 0.59 =
0.3 0.78 0.57 0.64 0.70 0.75 =
0.4 0.88 0.76 0.81 0.84 0.87 =
0.5 0.95 0.90 0.93 = = =



Table A8: The satisfaction index I for T = 365.

Relaxed Bilevel

β Optimal Sub-optimal α = 0 α = 0.25 α = 0.5 α = 0.75

WS1 0.1 0.43 0.20 0.28 0.36 = =
0.2 0.71 0.43 0.54 0.61 0.68 =
0.3 0.85 0.69 0.76 0.80 0.84 =
0.4 0.94 0.87 0.92 = = =

WS2 0.1 0.35 0.16 0.22 0.30 0.34 =
0.2 0.61 0.32 0.41 0.50 0.58 =
0.3 0.74 0.49 0.58 0.65 0.72 =
0.4 0.84 0.68 0.74 0.79 0.82 =
0.5 0.92 0.82 0.87 0.90 0.91 =
0.6 0.97 0.94 = = = =

WS3 0.1 0.73 0.50 0.59 0.65 0.71 =
0.2 0.95 0.89 0.92 0.94 = =

WS4 0.1 0.61 0.33 0.42 0.51 0.58 =
0.2 0.85 0.68 0.75 0.79 0.83 =
0.3 0.96 0.92 0.95 = = =

WS5 0.1 0.45 0.20 0.27 0.36 0.43 =
0.2 0.73 0.47 0.56 0.63 0.70 =
0.3 0.88 0.73 0.79 0.83 0.86 =
0.4 0.96 0.91 0.95 = = =

WS6 0.1 0.37 0.17 0.23 0.31 0.36 =
0.2 0.65 0.36 0.45 0.54 0.61 =
0.3 0.78 0.57 0.65 0.71 0.76 =
0.4 0.88 0.76 0.81 0.85 0.87 =
0.5 0.95 0.90 0.94 = = =


