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Abstract

This paper presents an efficient and accurate dynamical model of reluctance actuators, suitable for prediction and control appli-
cations. It is a hybrid lumped-parameter state-space model that takes into account the mechanical and electromagnetic dynamics,
including eddy currents, flux fringing, magnetic hysteresis and saturation. Special emphasis is placed on the hysteresis model,
which is based on the Jiles–Atherton theory. The novel parts of the model—the gap reluctance expression and the modified Jiles–
Atherton hysteresis model—are identified, showing that the simulated results fit very well the experimental data. Furthermore, its
potential application for control is exemplified with a feedback strategy, in which the design of the controller and observer are based
on the proposed dynamical model.
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1. Introduction

Electromagnetic actuators are a form of electromechanical
devices where the positioning of their movable parts rely on
magnetic forces. Depending on the type of magnetic force, they
are classified as Lorentz or reluctance actuators. The main ad-
vantage of reluctance actuators over Lorentz actuators is that
they can achieve larger forces with lighter cores and reduced
heat losses [1]. Therefore, they are ideal for small low-cost
electromagnetic actuators, such as on-off solenoid valves and
electromechanical relays [2]. However, reluctance actuators are
much more challenging to control than Lorentz actuators, be-
cause the reluctance force depends on both the magnetic flux
and the actuator position in a highly nonlinear fashion. Fur-
thermore, in the case of small low-cost actuators, the position
sensing is impractical or much more expensive than the device
itself. Therefore, dynamical modeling is essential for both con-
troller and observer designing.

Concerning the electromagnetic modeling, there are two
main approaches. On the one hand, finite element models
(FEM) [3] allow to represent the dynamic behavior of these
devices with great accuracy, but they are too computationally
demanding for control applications. On the other hand, analyt-
ical lumped-parameter models are much less complex and thus
may be suitable for real-time estimation and control. There is
considerable literature concerning the representation of reluc-
tance actuators with lumped-parameter models. However, most
works neglect the effect of the magnetic hysteresis [4, 5, 6].
Some works do propose hysteresis models for actuators, but

neglect the motion dynamics [7, 8, 9]. Recently, [2] proposed
a model of the mechanical and electromagnetic dynamics, with
special emphasis on the derived hysteresis solution based on the
generalized Preisach model (GPM) to characterize the magnetic
hysteresis. It is treated as the basis of the proposal of this paper.

The mayor drawback of the GPM is its computational com-
plexity. It requires numerical integration in each time step,
even if it is implemented in an efficient state-space form [10].
Thus, to design a dynamical model adequate for control ap-
plications, an alternative must be used. From a more general
perspective, there are numerous hysteresis models in the liter-
ature for ferromagnetic materials, e.g. Jiles–Atherton model
[11], play and stop models [12], or the generalized positive-
feedback model [13]. The Jiles–Atherton (JA) model is one of
the most widespread physics-inspired techniques. Regarding
control applications, it has been used for hysteresis compensa-
tion of electromagnets [10]. However, to the best of the authors’
knowledge, the JA theory has not yet been incorporated in a dy-
namical model of reluctance actuators.

In this paper, a hybrid lumped-parameter model is presented
for characterizing both mechanical and electromagnetic dynam-
ics of reluctance actuators. The main modeling contributions
are the gap reluctance function—based on the flux fringing fac-
tor proposed by McLyman [14]—and, most notably, the mag-
netic field strength dynamic function—based on the inverse JA
model [15]—, taking into account the magnetic hysteresis and
saturation phenomena. Another highlight is the reduction of the
model, which transforms the electromagnetic subsystem and
ensures that its parameters are identifiable from measurements
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Figure 1: Schematic representation of single-coil reluctance ac-
tuators.

of electrical signals. Then, it is shown that the identified hys-
teresis model and gap reluctance expression adjust very well to
experimental data with an accuracy similar to the state-of-the-
art actuator model, which is more computationally demanding.
Additionally, to showcase the potential for control applications,
an example of a feedback control is presented, in which both
the controller and observer are designed based on the proposed
model.

2. Dynamical model

2.1. Reluctance actuators

In Fig. 1, different reluctance actuators are represented as
generalized schematics. For each one, the magnetic core is di-
vided into two parts: a fixed part (stator) and a movable part
(mover or armature). The air gap between them is dependent on
the position of the mover, which is restricted between a lower
and an upper limit. The position—and motion—can be linear
(Figs. 1a and 1b) or angular (Fig. 1c). Low-cost actuators
typically have a single coil and no permanent magnets. Con-
sequently, the magnetic force has only one direction, attracting
the mover toward the stator. To separate the mover from the
stator, these devices rely on passive elastic forces.

In order to derive a computationally efficient lumped-
parameter model, the complex distributed system must be ap-
proximated by a limited set of time-dependent scalar values, to
which the state variables will be related. On the one hand, any
movable part is assumed a rigid body, defined by its position z
and velocity v. On the other hand, the magnetic flux density B
and field strength H are assumed to be constant for each core
and gap section normal to the field lines. In this case, even
if the area of the cross-section varies along the magnetic field
path, the magnetic flux φ is uniform within it.

2.2. Magnetic flux dynamics

The electromagnetic subsystem is governed by two main
equations. The first one is the electrical circuit equation of the
coil,

υcoil = R icoil + N φ̇, (1)

where υcoil, icoil, R and N are the coil voltage, current, resis-
tance and number of turns, respectively. The second equation is
the Ampère’s circuital law, which relates the total free current

passing through a surface Σ with the magnetic field strength H
across its closed boundary curve δΣ. Formally, it can be ex-
pressed as ∫∫

Σ

Jfree dS =

∮
δΣ

H dl, (2)

being Jfree the free current density. By defining δΣ as the path
of the magnetic flux (see Fig. 1), the left hand of (2) is∫∫

Σ

Jfree dS = Nicoil + ieddy, (3)

where ieddy is the net eddy current through the core. Under the
assumption that the magnetic flux is uniform within the cross-
section of the core, ieddy must be proportional to the magnetic
flux derivative [2],

ieddy = −ke φ̇. (4)

Regarding the right hand of (2), it is convenient to separate
the integral into two components,∮

δΣ

H dl =

∫
δΣair

H dl +

∫
δΣcore

H dl, (5)

because the model must take into account different magnetic
phenomena in the air and the core.

The magnetic field intensity in the air gaps can be related to
the magnetic flux through Hopkinson’s law,∫

δΣair

H dl = Rg φ, (6)

being Rg the magnetic reluctance of the air gaps. It can be
expressed in terms of the magnetic permeability of the air µ,
which is constant,

Rg =

∫
H dl

φ
=

∫
dl
µ A

, µ =
B
H
, (7)

where A is the cross-sectional area. There can be several gaps
of different lengths, so the integral can be interpreted as a sum
of the different reluctance terms,

Rg =
∑

i

lgi

µ Agi
, (8)

where the gap lengths lgi may depend on the mover position,
and each effective area Agi augments with its corresponding gap
length. This can be approximated using fringing flux factors for
each gap, such as McLyman’s [14],

Agi = Ag0i

1 +
lgi√
Ag0i

ln
(

2 lw
lgi

) , (9)

where Ag0i is the effective area when the gap length tends to
zero, and lw is the winding length.

The expression is then simplified under the assumption that
all position-dependent gaps are identical and proportional to the
position, i.e. lgi = kg z (being kg a positive constant). This is a
limiting factor of the applicability of the model, but it is still
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useful to characterize a wide range of low-cost reluctance ac-
tuators. The assumption holds for most linear-travel reluctance
actuators—e.g., Figs. 1a and 1b. Furthermore, it may still be
a good approximation for short-stroke actuators with angular
positioning—e.g., Fig. 1c—because the angles are very small
(lgi ≈ kg sin(z) ≈ kg z).

Then, their total reluctance is equal to

ng∑
i=1

Rg,i(z) = ng
kg z

µ

1 +
kg z√
Ag0

ln
(

2 lw
kg z

) , (10)

where ng is the number of position-dependent gaps. On the
other hand, there may be gaps that are not dependent on the
mover position. In that case, their reluctance terms are grouped
in the constant Rg,0. Then, by combining all constants, Rg can
be expressed as

Rg(z) = Rg,0 +

ng∑
i=1

Rg,i(z) = Rg,0 +
R′g,0 z

1 + k1 z ln (k2/z)
, (11)

where

R′g,0 = ng kg/µ, k1 = kg/
√

Ag0, k2 = 2 lw/kg. (12)

The constants Rg,0, R′g,0, k1 and k2 are to be fitted through iden-
tification from experimental or FEM data.

The partial derivative of the gap reluctance, necessary for de-
termining the magnetic force (see Section 2.4), can be easily
derived as

R′g(z) =
∂Rg(z)
∂z

=
R′g,0 (1 + k1 z)(

1 + k1 z ln (k2/z)
)2 . (13)

Note that (11) and (13) are indeterminate for z = 0 so, in that
case, Rg and R′g must be calculated in the limit from the right,

lim
z→0+
Rg(z) = Rg,0, lim

z→0+
R′g(z) = R′g,0. (14)

Regarding the second integral of (5), the relation between φ
and H in the ferromagnetic core presents a hysteretic behav-
ior. In order to account for this phenomenon, the reluctance
approach is discarded and instead a hysteresis model is used.
For now, the integral is simplified in terms of the magnetic field
strength in the core Hc—whose dynamics will be modeled in
Section 2.3—and its total length lc,∫

core
H dl = Hc lc. (15)

Finally, substituting (3), (4), (5), (6) into (3), and isolating φ̇,
the following differential equation is derived,

φ̇ = −
Rg(z) φ + Hc lc

ke
+

N
ke

icoil, (16)

where icoil would be the input. However, it is more common to
control the actuators with υcoil. Then, from (1) and (16),

φ̇ = −
R (Rg(z) φ + Hc lc)

N2 + R ke
+

N
N2 + R ke

υcoil. (17)

Regardless of the input choice, the dynamic equation has the
same structure,

φ̇ = fφ(z, φ,Hc, u), (18)

where the input u can be υcoil or icoil.

2.3. Magnetic field strength dynamics

A model must be used that takes into account the magnetic
hysteresis and saturation phenomena. The JA model allows re-
lating Hc and the magnetic flux density of the core Bc. The orig-
inal formulation [11] permits calculating Bc from Hc. Specifi-
cally, an ordinary differential equation of the form

dMc

dHc
(Mc,Hc, Ḣc) =

{
f +
JA(Mc,Hc), if Ḣc ≥ 0

f −JA(Mc,Hc), if Ḣc < 0
(19)

is solved to obtain the magnetization of the core Mc, and then
Bc is calculated from Mc and Hc. However, in this case, it is
more appropriate to determine Hc from Bc. Thus, the inverse JA
model [15] is used, in which an alternative differential equation
is proposed, which can be expressed compactly as

dMc

dBc
(Mc, Bc, Ḃc) =

{
f +
iJA(Mc, Bc), if Ḃc ≥ 0

f −iJA(Mc, Bc), if Ḃc < 0
. (20)

The complete process can be summarized as follows:
First, the anhysteretic magnetization of the core (Man) and its

derivative are obtained by using the Langevin function,

Man = Msat (coth(Be/b) − b/Be), (21)

dMan/dBe = Msat/b
(
1 − coth2(Be/b) + (Be/b)2

)
, (22)

where Msat and b are constants to be identified. The effective
flux density Be is defined as

Be = µ0 (Hc + αMc), (23)

where α is the domain coupling factor and µ0 is the vacuum
permeability. It depends on both the core field strength Hc and
magnetization Mc, which can be derived from Hc and the mag-
netic flux density Bc,

Mc = Bc/µ0 − Hc. (24)

Inversely, Bc can be expressed in terms of Be and Mc from (23)
and (24),

Bc = Be + µ0 (1 − α) Mc. (25)

Secondly, the irreversible magnetization Mirr is given by the
following differential equation,

dMirr

dBe
= δ

Man − Mirr

µ0 κ
, δ = sgn(Ḃc), (26)

where κ is the spinning factor.
Thirdly, the total magnetization Mc can be expressed as a

weighted sum depending on the reversibility factor c,

Mc = (1 − c) Mirr + c Man. (27)

3



Then, the differential equation (20) is given by the following
expression, respectively,

dMc

dBc
=

dMc/dBe

dBc/dBe
, (28)

where dMc/dBe and dBc/dBe are obtained by deriving (27) and
(25),

dMc/dBe = (1 − c) dMirr/dBe + c dMan/dBe, (29)
dBc/dBe = 1 + µ0 (1 − α) dMc/dBe. (30)

Note that, although (28) is a function of Bc, Mc and the sign
of Ḃc, the inverse differential permeability dHc/dBc can be ex-
pressed as a function of φ, Hc and φ̇,

dHc

dBc
(φ,Hc, φ̇) =

1
µ0
−

dMc

dBc
(Bc,Mc, Ḃc), (31)

where

Bc =
φ

Ac
, Mc =

φ

µ0 Ac
− Hc, Ḃc =

φ̇

Ac
. (32)

Finally, the dynamic equation of Hc is derived as

Ḣc = fHc (z, φ,Hc, u) =
dHc

dBc
(φ,Hc, φ̇)

fφ(z, φ,Hc, u)
Ac

. (33)

2.4. Complete model
The mechanical dynamics remains to be defined. During mo-

tion, the acceleration of the mover is given by Newton’s second
law, with three forces,

m a = Fe(z) + Ff(z, v) + Fmag(z, φ), (34)

where z, v and a are the position, velocity and acceleration of
the armature; Fe, Ff , Fmag are the elastic, friction and magnetic
forces; φ is the magnetic flux; and m is the moving mass. The
only force that can be controlled—albeit indirectly—is Fmag,
which depends on the derivative of the gap reluctance and the
magnetic flux [4],

Fmag = −
1
2
R′g(z) φ2. (35)

The passive forces Fe and Ff are functions that vary from
case to case. Nonetheless, for the sake of proposing a complete
model, it is assumed that the elastic force is given by an ideal
spring, with an spring elastic constant ks and resting position zs,

Fe = ks (zs − z). (36)

The friction force is assumed viscous, depending on the co-
efficient cf ,

Ff = cf v. (37)

In a state space representation both the position and velocity
are state variables. In the case of motion, their dynamics are
defined as

ż = v, (38)

v̇ = fv(z, v, φ) =
Fe(z) + Ff(z, v) + Fmag(z, φ)

m
. (39)

ż = v
v̇ = fv(z, v, φ)
φ̇ = fφ(z, φ,Hc, u)

Ḣc = fHc (z, φ,Hc, u)

ż = 0
v̇ = 0
φ̇ = fφ(z, φ,Hc, u)

Ḣc = fHc (z, φ,Hc, u)

ż = 0
v̇ = 0
φ̇ = fφ(z, φ,Hc, u)

Ḣc = fHc (z, φ,Hc, u)

Motion (q = 2):

Lower limit (q = 1):

Upper limit (q = 3):

z = zmin ⇒ v+ = 0

z = zmax ⇒ v+ = 0

fv(z, v, φ) > 0

fv(z, v, φ) < 0

Figure 2: Diagram of the hybrid automaton that models the dy-
namics of reluctance actuators.

On the other hand, in the case that the mover has reached
the lower limit zmin or the upper limit zmax, it remains in that
position until the unconstrained acceleration (34) is positive (if
z = zmin) or negative (if z = zmax). Ultimately, the complete
dynamical system can be represented through a hybrid automa-
ton with three dynamic modes (lower limit, motion and upper
limit), as shown in Fig. 2. Each transition is accompanied by its
guard condition. Moreover, there are reset conditions (v+ = 0)
in the case of transitioning to one of the limits. The dynamic
equations can be expressed compactly as follows:

ẋ = fq(x, u), (40)

where x =
[
z v φ Hc

]T is the continuous state vector. Note
that the state function fq depends also on the discrete state q ∈
{1, 2, 3}.

Note that the magnetic flux φ may be considered the input of
the mechanical system. However, its dynamics is dependent on
the input of the electromagnetic system: υcoil or icoil. Once the
input is selected, the other electrical variable—which is easily
measured—can be considered the system output. If υcoil is the
input, the output icoil is calculated as

icoil =
N (Rg(z) φ + Hc lc)

N2 + R ke
+

ke

N2 + R ke
υcoil. (41)

If, instead, icoil is the input, the output υcoil is

υcoil = −
N (Rg(z) φ + Hc lc)

ke
+

N2 + R ke

ke
icoil. (42)

In any case, the output equation can be expressed as

y = h(z, φ,Hc, u). (43)

where u = icoil and y = υcoil, or vice versa.
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3. Model discussion

In this section, the proposed dynamical model is discussed.
First, some symmetry properties are presented. There is an even
symmetric relation in the mechanical system,

fv(z, v, φ) = fv(z, v,−φ), (44)

and an odd symmetric relation in the electromagnetic system,

fφ(z, φ,Hc, u) = − fφ(z,−φ,−Hc,−u), (45)
fHc (z, φ,Hc, u) = − fHc (z,−φ,−Hc − u). (46)

Consequently, a position trajectory z(t), given the initial con-
ditions z(0), v(0), φ(0), Hc(0) and an input signal u(t) is equiva-
lent to z(t), given z(0), v(0), −φ(0), −Hc(0) and −u(t). In control
applications, it should be borne in mind that, when φ > 0, the
magnetic force increases if φ̇ > 0; and when φ < 0, the mag-
netic force increases if φ̇ < 0. Therefore, to simplify the control
design, it is recommendable to constrain φ or u to non-negative
values.

Secondly, the equilibrium conditions are established. In gen-
eral, a state vector is an equilibrium point xeq if

fq(xeq, u) = 0. (47)

For this particular system, there are multiple solutions for each
input value u. In the case of motion, given an equilibrium posi-
tion zeq, the equilibrium magnetic flux φeq must be

φeq = ±

√
2

Fe(zeq) + Ff(zeq, 0)
R′g(zeq)

, if q = 2. (48)

On the other hand, if zeq = zmin (q = 1) or zeq = zmax (q = 3),
there are infinite solutions that satisfy its corresponding inequa-
tion,

|φeq| ≥ +

√
2

Fe(zmin) + Ff(zmin, 0)
R′g(zmin)

, if q = 1, (49)

|φeq| ≤ +

√
2

Fe(zmax) + Ff(zmax, 0)
R′g(zmax)

, if q = 3. (50)

Then, given zeq and φeq, the equilibrium magnetic field strength
Hc

eq is

Hc
eq =

−Rg(zeq) φeq + N icoil

lc
, υcoil = R icoil, (51)

which depends on the input (υcoil or icoil). Therefore, each pair
(zeq, u) gives two equilibrium points xeq (in the case of motion),
or infinite xeq (otherwise). Furthermore, the stability of these
points can be studied by means of Lyapunov’s indirect method,
computing the Jacobian of fq [16]. However, generalized an-
alytical conditions are too complex, so the Jacobian should be
computed numerically for each case.

Nonetheless, it is possible to represent the evolution of the
electromagnetic variables in a generalized and intuitive way via

Figure 3: Vector field. Each point represents a vector (Hc, φ),
and each arrow represents its direction (Ḣc, φ̇). Darker arrows
indicate larger magnitudes.

a vector field, as in Fig. 3. The green line consists of the equi-
librium points (Hc

eq, φeq) given by (51). In general, the line
is centered in (0, 0) if u = 0, and it moves upwards as u in-
creases. Also, the slope of the line is steeper the larger Rg(z),
which increases with z. The blue lines are the points in which
dHc/dBc = 0 (see (31)). The red lines are the ones in which
dBc/dBe = 0 (see (30)), and they represent asymptotic discon-
tinuities, in which |Ḣc| tends to infinity.

The white region, between the red lines and the blue lines, is
the physically feasible region, in which sgn(φ̇) = sgn(Ḣc), so
the blue and red regions should be avoided. The blue region
is not critical, because those points have derivatives that point
toward the white region. The red region, however, may cause
numerical errors, as their points diverge away from the white
region. (During simulations, a red region may be reached, for
example, with a large or variable time step and abrupt changes
in u.) Nevertheless, it is easily remedied by modifying dBc/dBe
to

dBc/dBe = max(1 + µ0 (1 − α) dMc/dBe, ε), (52)

where ε is a small positive constant. Thus, the points inside
the red region would rapidly move toward the white region
(|Ḣc| � |φ̇|, sgn(Ḣc) = sgn(φ̇)).

4. Model reduction and identifiability

Although the presented characterization of the magnetic hys-
teresis is simpler than other state-of-the-art alternatives, the
complete model is much more complex than analogous lumped-
parameter models that neglect this phenomenon. Specifically,
the number of parameters is quite large. In order to fit the model
to any device, the parameters must be estimated using data from
different sources, e.g., measured electrical signals, FEM simu-
lations, or direct measurements of parameters.

Ultimately, identification with only electrical signals is not
possible, as the dynamical model is over-parameterized. How-
ever, by performing various manipulations to the dynamic equa-
tions, it is possible to derive an equivalent model that depends
on a smaller set of parameters, i.e. a reduced model.
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4.1. Reduced model
In this equivalent model, υcoil and icoil, being the measurable

electrical signals, must remain as input and output—or vice
versa. In addition, z and v must remain as state variables be-
cause they are the variables of interest for control purposes. By
contrast, φ and Hc may be replaced by auxiliary variables that
help to simplify the dynamic equations.

Specifically, we propose to replace φ with the flux linkage
λ = N φ, and Hc with the auxiliary variable M∗c = Mc lc/N.
Then, the dynamic equation of λ is derived from (16) or (17),
depending on the input choice,

λ̇ = f ∗λ (z, λ,M∗c , u) = −
R∗g(z) λ − M∗c

k∗e
+

1
k∗e

icoil, (53)

λ̇ = f ∗λ (z, λ,M∗c , u) = −
R (R∗g(z) λ − M∗c )

1 + R k∗e
+

1
1 + R k∗e

υcoil,

(54)

where u = icoil or u = υcoil, respectively, and k∗e is a new param-
eter, which is related to ke and N from the full model,

k∗e =
ke

N2 . (55)

Note also the dependence on R∗g which is a linear transforma-
tion of the gap reluctance, and can be expressed using the same
structure as (11):

R∗g(z) = R∗g,0 +
R′g,0

∗ z

1 + k1 z ln (k2/z)
, (56)

where

R∗g,0 =
Rg,0 + lc/(µ0 Ac)

N2 R′g,0
∗

=
R′g,0

N2 . (57)

Analogously, the equations (21)–(33) must be tweaked to ob-
tain the dynamic equation of the auxiliary variable M∗c , resulting
in the following function:

Ṁc
∗

= f ∗Mc
(z, φ,Hc, u) =

dM∗c
dλ

(λ,M∗c , λ̇) f ∗λ (z, λ,M∗c , u), (58)

where the intermediary steps are

λe = λ + µ0 (1 − α∗) M∗c , (59a)
M∗an = M∗sat (coth(λe/b∗) − b∗/λe), (59b)

dM∗an/dλe = M∗sat/b
∗
(
1 − coth2(λe/b∗) + (λe/b∗)2

)
, (59c)

M∗irr = (M∗c − c M∗an)/(1 − c), (59d)
dM∗irr/dλe = sgn(λ̇) (M∗an − M∗irr)/(µ0 κ

∗), (59e)
dM∗c/dλe = (1 − c) dM∗irr/dλe + c dM∗an/dλe, (59f)

dλ/dλe = max(1 + µ0 α
∗ dM∗c/dλe, ε), (59g)

dM∗c/dλ = (dM∗c/dλe)/(dλ/dλe), (59h)

which, in turn, depend on new auxiliary parameters,

M∗sat = Msat lc/N, b∗ = b N Ac,

κ∗ = κ N Ac, α∗ = (1 − α) N2 Ac/lc.
(60)

Note that these intermediary steps consist in the calculation
of values and derivatives of the auxiliary time-dependent vari-
ables λe = Be N Ac, M∗an = Man lc/N and M∗irr = Mirr lc/N.

Regarding the mechanical part, the dynamic function of v
must be modified considering that φ and Rg(z) have been re-
placed by λ and R∗g(z), respectively. The derived expression is

v̇ = f ∗v (z, v, λ) =
Fe(z) + Ff(z, v) + F∗mag(z, λ)

m
, (61)

where

F∗mag(z, λ) = −
1
2
R′g
∗(z) λ2, R′g

∗(z) =
∂R∗g(z)

∂z
. (62)

Lastly, the output function is obtained from (41) or (42), de-
pending on the input choice,

y = h∗(z, λ,M∗c , u) = −
R∗g(z) λ − M∗c

k∗e
+

1 + R k∗e
k∗e

icoil, (63)

y = h∗(z, λ,M∗c , u) =
Rg(z) λ − M∗c

1 + R k∗e
+

k∗e
1 + R k∗e

υcoil, (64)

where u = icoil and y = icoil, or u = υcoil and y = icoil, respec-
tively.

As a result of the above manipulations, the number of pa-
rameters in the electromagnetic system (53)–(60) and output
equations (63), (64) has been reduced by three. Specifically,
ten parameters from the complete model are replaced by seven
auxiliary parameters (see (55), (57) and (60)).

4.2. Identifiability analysis
A local structural identifiability analysis is performed to

demonstrate that the reduced model is identifiable with only
electrical signals, and no further reductions are possible. The
model is quite complex for this type of analysis, so it is con-
venient to separate it into the electromagnetic and mechanical
subsystems. As the novel ideas of the proposal are in the elec-
tromagnetic subsystem, this analysis is focused on that part.
Thus, the position is assumed to be fixed, effectively nullify-
ing the mechanical subsystem.

For a local identifiability analysis, an observability-
identifiability matrix is constructed. For a given instant, output
derivatives are derived as functions of the variables, parameters,
and input derivatives. Formally, the expression for each output
derivative can be obtained recursively,

y(i+1)
(
z, λ,Mc, u, . . . , u(i+1)

)
=

∂y(i)

∂λ
f ∗λ (·) +

∂y(i)

∂M∗c
f ∗Mc

(·) +

i∑
j=1

∂y(i)

∂u( j) u( j), (65)

being y(0) = h∗(·). Then, a vector of outputs is constructed,

Y(θ) =
[
y(0) y(1) · · · y(9)

]T
, (66)

where θ is the vector of unknown variables and parameters.

θ =
[
λ M∗c R k∗e M∗sat b∗ c κ∗ α∗ R∗g

]T
. (67)
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Note that, as the position is assumed to be fixed, the gap re-
luctance Rg is considered here an unknown constant. Then the
rank of a Jacobian of Y (66) should be evaluated. Constructing
and evaluating the rank of such a matrix is intractable. How-
ever, the particularities of the proposed model can be exploited
to reduce the complexity of the problem.

The electromagnetic variables are λ and M∗c . While M∗c is
a hidden variable, λ can be assumed known because it can be
directly estimated from the electrical signals, as explained in
[5] and [17].

Then, it is easy to prove that the internal resistance of the
coil R is identifiable independently of the other parameters of
the model. Assuming that υcoil, icoil, λ̇ are known, it can be
directly calculated from (1). E.g., in a steady state, it is simply

R = υcoil/icoil, if λ̇ = 0. (68)

Moreover, consider the following differential equation, derived
from the output function h∗,

dy =

(
∂h∗

∂λ
f ∗λ (·) +

∂h∗

∂M∗c
f ∗Mc

(·)
)

dt +
∂h∗

∂u
du. (69)

Evidently, a step in the input results in a step in the output,
dependent only on the second addend. This can be checked in
the limit as dt tends to zero. Then, from (63) or (64), R and k∗e
can be related to the ratio of steps in the voltage and current,
regardless on the input choice. Specifically,

lim
dt→0

dυcoil

dicoil
=

1 + R k∗e
k∗e

. (70)

Therefore, the value of k∗e can be uniquely calculated from the
electrical signals and R, which is also known.

As R, ke and λ are assumed known, the new parameter vector
has seven elements,

θ′ =
[
M∗c M∗sat b∗ c κ∗ α∗ R∗g

]T
. (71)

Still, the symbolic computation of seven consecutive derivatives
is memory intensive. To further simplify the process, we can
consider that there is one step in the input so that the the flux
changes direction. Formally, it can be expressed as

y± = h∗(z, λ,Mc, u±), sgn(λ̇−) , sgn(λ̇+), (72)

where u±, y± and λ± are the input, output and flux linkage
derivative immediately before (−) and after (+) the step. This
distinction is usually useless for identifiability analysis of dy-
namical models, as they do not add new information to deter-
mine the unknown parameters and variables. However, in this
case, the dynamic behavior of Mc changes with the sign of the
magnetic flux (26). Thus, it is possible to construct an output
vector with smaller derivatives,

Y±(θ′) =
[
y(0)

+ y(1)
− y(1)

+ y(2)
− y(2)

+ y(3)
− y(3)

+

]T
. (73)

Then the model is locally identifiable for θ∗ if the Jacobian
J,

Ji j(θ′) =
∂(Y±)i

∂θ′j
, (74)

Table 1: Known parameters.

Parameter Value

N 1200
ke 1630 Ω−1

lc 0.055 m
Ac 1.26 × 10−5 m2

zmin 0 m

Parameter Value

m 1.6 × 10−3 kg
ks 55 N/m
zs 0.015 m
cf 0 N s/m
zmax 9 × 10−4 m

evaluated in θ∗, has full rank. Given the proposed simplifica-
tions, this can be checked easily using a computer algebra sys-
tem. The symbolic matrix is indeed full-rank, so the reduced
electromagnetic model is structurally locally identifiable. Fur-
thermore, it is theoretically possible to derive the algebraic con-
ditions of identifiability dependent on the input and its deriva-
tives and the parameters themselves. However, the resulting
expressions are too complex and unmanageable. Alternatively,
for a specific case, values can be given to u, . . . , u(3) and θ∗ in
order to numerically check the rank of J.

5. Model fitting and comparison

The presented model introduces two new ideas with respect
to previous works: the gap reluctance approximation, and the
characterization of the magnetic hysteresis. To show the ade-
quacy of these proposals, they are identified using data from
an actual reluctance actuator, and the results are evaluated with
respect to a state-of-the-art alternative [2]. For this compari-
son, the common parameters of both models are assumed to be
known (see Table 1), and only the parameters related to the gap
reluctance and the magnetization curve are identified. In this
case, identifying the full model is equivalent to identifying the
reduced model because there are enough known parameters.

For convenience, the model parameters to be fitted corre-
spond to the full model from Section 4. Note that the number
of parameters to be fitted would be the same for the full and re-
duced model. Then, considering that the rest of parameters are
already set, the full model is identifiable in the same way as the
reduced model, which is proven in Section 4.2.

The device is a plunger-type solenoid valve, as shown in Fig.
4. It has a cylindrically symmetrical steel core, where the fixed
part is the stator and the plunger is the mover. There are essen-
tially two gaps between these parts: one below the plunger—
whose length is equal to the plunger position—, and one around
the plunger—whose length is constant. It has a single coil and
a spring, generating magnetic and elastic forces in opposite di-
rections. Note that the geometry of the valve, as inferred from
Fig. 4b, is a revolutionized version of the schematic diagram
from Fig. 1a, so their magnetic circuits are equivalent.

5.1. Gap reluctance

The gap reluctance and its derivative have been previously
characterized for different positions from FEM simulations us-
ing the geometry presented in Fig. 4b [18]. In order to make
use of these data in a dynamical model, the reluctance for any
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Figure 4: Solenoid valve.

Table 2: Estimated parameters.

Parameter Value

Rg,0 5.59 × 106 H−1

R′g,0 1.11 × 1011 H/m
k1 1320 m−1

k2 9.74 × 10−3 m

Parameter Value

Msat 1.45 × 106 A/m
b 2.45 × 10−3 T
c 0.736
κ 943 A/m
α 3.66 × 10−3

feasible position can be approximated through some type of in-
terpolation. Alternatively, the proposed algebraic expression
can be used. Thus, its parameters must be fitted.

Given the parameter vector,

θ1 =
[
Rg,0 R′g,0 k1 k2

]T
, (75)

the objective is to find the one that minimizes the errors of both
Rg and R′g. Formally, it is expressed as

min
θ1

(
NRMSERg

2 + NRMSER′g
2
)
, (76)

where NRMSERg is the normalized root-mean-square error of
the simulated values Rg

sim with respect the experimental ones
Rg

exp,

NRMSERg =

√∑
i (Rg

sim
i − Rg

exp
i )2∑

i (Rg
exp
i )2

, (77)

and NRMSER′g is defined in an equivalent manner. The opti-
mized parameter are presented in the left half of Table 2. Fig.
5 shows that the algebraic expression with the fitted parameters
matches very well the experimental data. The errors are

NRMSERg = 0.436 %, NRMSER′g = 0.226 %. (78)

5.2. Magnetic hysteresis and saturation

The most novel idea is the use of the inverse JA model for
characterizing the magnetic hysteresis and saturation. To iden-
tify this part of the model, the hysteresis curve icoil–φ is fitted
using the same measurements as [2]. The experimental setup
consists of a 4-quadrant power supplier (Toellner TOE 7621), a

Figure 5: Gap reluctance and its derivative with respect to the
gap length. The markers represent the experimental data and
the lines represent the approximated results.

current probe (Tektronix TCP312A) with its corresponding am-
plifier (TCPA300), a USB oscilloscope with an arbitrary wave-
form generator (Picoscope 4824), a computer with MATLAB
and the Instrument Control Toolbox installed, and the solenoid
valve (Fig. 4). As only the electromagnetic subsystem is being
fitted, the plunger position of the valve is fixed (z = zmin). Volt-
age signals are constructed in MATLAB, which are then sent
out to the waveform generator of the USB oscilloscope. The
generated signal is amplified by the power supplier, and applied
to the solenoid valve. The applied signals are pulse waves with
a frequency of 10 Hz and several amplitudes (1 V, 2 V, 4 V, 6 V,
9 V). The applied voltage and current signals are measured with
the oscilloscope at a sampling rate of 100 kHz and sent to the
computer. They are depicted in Fig. 6. Then, from those mea-
surements, the magnetic flux is estimated following the method
presented in [17].

Given the vector of parameters,

θ2 =
[
Msat b c κ α

]T
, (79)

the objective is to find the one that minimizes the errors of the
simulated signals φ and icoil, which are obtained by using the
measured voltage signals as input u. Formally, the optimization
problem is formulated as

min
θ2

(
wNRMSEφ,|φ̇|

2 + wNRMSEicoil,|φ̇|
2
)
, (80)

where wNRMSEφ,|φ̇| is the weighted normalized root-mean-
square error of φ, with |φ̇| acting as the weight,

wNRMSEφ,|φ̇| =

√∑
i |φ̇

exp
i | (φ

sim
i − φ

exp
i )2∑

i |φ̇
exp

i | (φ
exp

i )2
, (81)

and wNRMSEicoil,|φ̇| is defined in an equivalent manner. Note
that |φ̇| is used as the weight in order to avoid overfitting the
slowly-varying intervals (specially the steady state intervals in
which φ̇ = 0).

The optimization process results in the parameter values pre-
sented in the right half of Table 2. The simulated results fit
fairly well the experimental data, as shown in Fig. 7. In partic-
ular, the average errors are

wNRMSEφ,|φ̇| = 1.956 %, wNRMSEicoil,|φ̇| = 3.065 %. (82)
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Figure 6: Measured voltage and current signals, used for model
fitting.

Figure 7: Experimental and simulated hysteresis curves. The
part with negative currents is symmetric with respect to the ori-
gin.

For reference, the GPM from [2], which is much more com-
putationally demanding, has also been fitted using the same pro-
cedure. Its average errors are

wNRMSEφ,|φ̇| = 2.773 %, wNRMSEicoil,|φ̇| = 2.688 %. (83)

Consequently, there is no significant loss in accuracy.

5.3. Model comparison
The main advantage of the proposed model is its low compu-

tational requirements. To justify this statement, simulations are
performed with the GPM-based and JA-based models. The lat-
ter also uses the reluctance gap approximation presented in Sec-
tion 2.2, while the former directly interpolates from the exper-
imental data (see Fig. 5). For this comparison, the parameters
from (79) are readjusted to fit the GPM-based model, following
the same procedure as in Section 5.2. Then, both models are
simulated using as input a voltage signal with 3 pulses (see Fig.
8a). The resulting position and current are shown in Fig. 8b and
8c, respectively. Note that they match fairly well.

The simulations are performed using MATLAB’s standard
variable-step ordinary differential equation solver, ODE45,
with default options; and a computer with a 2.4GHz Intel Core
i7-5500 CPU. After 1000 repetitions, the mean computation
time of the GPM-based model is 183.15 ms. In contrast, the
mean computation time of the JA-based model is 18.05 ms,
which is approximately ten times faster.

6. Example of control application

An important feature of the model is that it is suitable for
control applications. To illustrate this, an example of a position

(a) Voltage (input).

(b) Current (output).

(c) Position (state variable).

Figure 8: Simulation results. The first voltage pulse is not suf-
ficient to displace the mover.

Control Plant

Observer

zref u y

x̂, â

Figure 9: Control diagram.

feedback control is presented (see Fig. 9). Both controller and
observer—which are based on state-of-the-art-techniques—are
designed using the proposed model.

6.1. Observer
First, the observer is designed as a discrete-time unscented

Kalman filter (UKF), using as basis the work presented in
[5]. The structure of the observer is identical, except for
the discretized model. In this case, the state vector is xk =

[zk zk−1 φk Hk
c ]T, and its state transition is

zk+1 = satzmax
zmin

(
2 zk − zk−1 + T 2

s fv(zk, vk, φk) + wk
z

)
, (84a)

zk = zk, (84b)

φk+1 = φk + Ts fφ(zk, φk,Hk
c , u

k) + wk
φ, (84c)

Hk+1
c = Hk

c + Ts fHc (z
k, φk,Hk

c , u
k) + wk

Hc
, (84d)

where the input uk may be the voltage or current; Ts is the sam-
ple time; wk

z , wk
φ and wk

Hc
account for the process noise (includ-

ing discretization errors); and satzmax
zmin denotes a saturation func-

tion between zmin and zmax. Moreover, vk is approximated as the
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previous average velocity,

vk =
zk − zk−1

Ts
, (85)

and the discrete state is directly estimated from zk,

qk =


1, if zk = zmin
3, if zk = zmax
2, otherwise

. (86)

The acceleration ak is also needed for the proposed con-
troller. It can be derived from xk and qk,

ak =

{
fv(zk, vk, φk), if qk = 2
0, otherwise . (87)

6.2. Controller

Secondly, a controller is designed based on the theory of
sliding-mode control [19], which has been already proposed for
similar actuators [20]. The sliding surface is defined in terms of
the position errors and their derivatives,

s =

(
p +

d
dt

)2

(ẑ − zref)

= â − aref + 2 p (v̂ − vref) + p2 (ẑ − zref), (88)

where p is a positive constant to be adjusted; zref , vref and aref
are the reference position, velocity and acceleration; and ẑ, v̂
and â are the observed ones. Note that the variables are sam-
pled as presented in Section 6.1, but, for clarity purposes, k is
removed from the expressions. In the case of motion, the action
(voltage or current) is calculated as

u2 = −

∂ fv(x̂)
∂ẑ v̂ +

∂ fv(x̂)
∂v̂ fv(x̂) +

∂ fv(x̂)
∂φ̂

fφ(x̂, 0)

∂ fv(x̂)
∂φ̂

∂ fφ(x̂,u)
∂u

+
jref − 2 p (â − aref) − p2 (v̂ − vref) − K s

∂ fv(x̂)
∂φ̂

∂ fφ(x̂,u)
∂u

, (89)

where x̂ is the observed state vector, φ̂ is the observed mag-
netic flux, jref = ȧref is the reference jerk, and K is a pos-
itive constant to be adjusted. Notice that, for clarity pur-
poses, the dynamic functions have been shorten by using the
state vector as an argument instead of the state variables, e.g.,
fφ(x̂, u) ≡ fφ(ẑ, φ̂, Ĥc, u).

To prove that the system is asymptotically stable when ap-
plying u2, a Lyapunov function is defined as V = s2/2. Its
derivative is

V̇ = s ṡ = s
(

ĵ − jref + 2 p (â − aref) + p2 (v̂ − vref)
)
, (90)

where ĵ is the estimated jerk, which can be obtained from (39),

ĵ =
d fv(x̂)

dt
=
∂ fv(x̂)
∂ẑ

v̂ +
∂ fv(x̂)

∂v̂ fv(x̂) +
∂ fv(x̂)
∂φ̂

fφ(x̂, u2)
. (91)

Figure 10: Control simulation.

Note that the dynamic equation of the magnetic flux is linear
with respect to the action u2, which means that it can be sepa-
rated into two terms,

fφ(x̂, u2) = fφ(x̂, 0) +
∂ fφ(x̂, u)

∂u
u2. (92)

Then, by substituting (91), (92) and (89) into (90), the deriva-
tive of the Lyapunov function is simplified into

V̇ = −K s2. (93)

The Lyapunov function V is lower bounded (V ≥ 0), and its
derivative V̇ is negative semi-definite (V̇ = 0 if s = 0, V̇ < 0
otherwise). In that case, V tends to 0, which means that s tends
to 0. Therefore, ẑ tends to zref (see (88)). Furthermore, in the
case that the observed discrete state q̂ , 2, the minimum or
maximum action is applied, depending on the position and the
reference. In general, the action is

u =


satumax

0 (u2), if q̂ = 2
umax, if q̂ = 1 ∧ zref = zmin
0, if q̂ = 1 ∧ zref > zmin
0, if q̂ = 3 ∧ zref = zmax
umax, if q̂ = 3 ∧ zref < zmax

. (94)

6.3. Results

The stability of the controller has been theoretically proved
in the previous section. However, the sampling rate, input sat-
uration and—more importantly—observation errors will nega-
tively affect the control performance. Thus, as the last step, the
control strategy is simulated to validate the combination of ob-
server and controller, both based on the proposed model. The
input or action is the voltage and the output is the current. The
frequency of observer and controller is 20 kHz. To simulate
the plant, the GPM-based model is used, in the same way as
in Section 5.3. The desired position is set zref = zmax/2. For
the plant simulation, the initial state is z = zmax, v = 0, φ = 0
and Hc = 250 A/m. Regarding the observer, the initial guess
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is x̂0 = [zmax zmax 0 0]T. Moreover the control parameters
are set as p = 103 s−1 and K = 104 s−1. The results are pre-
sented in Fig. 10. The control strategy manages to maintain
the position in the desired zref . During the transient response,
there are some observer errors due to the discrepancies in the
observer and plant model. However, the errors become practi-
cally negligible as the state variables reach a steady state.

7. Conclusions

In this paper we have presented a dynamical model of re-
luctance actuators, characterizing both mechanical and elec-
tromagnetic dynamics. It is a lumped-parameter model that
takes into account the most relevant electromagnetic phenom-
ena: hysteresis, saturation, flux fringing and eddy currents. It is
a state-space representation, where every differential equation
can be computed analytically. Thus, it can be used for designing
observers or controllers with state-of-the-art techniques. The
two main contributions are the gap reluctance expression and
the hysteresis model.

On the one hand, the gap reluctance expression is derived
using McLyman’s factor in order to account flux fringing. The
generalized expression can be directly used for actuators with
an arbitrary number of position-dependent and fixed gaps. We
have showed that it adjusts very well to experimental data from
a specific device.

On the other hand, the magnetic hysteresis and saturation
characterization is based on the Jiles–Atherton model. It is
usually implemented in such a way that the input is the mag-
netization, and the output is the magnetic flux density. In the
proposed modification, however, both the magnetic flux and
field intensity are internal state variables, and the input and out-
put are, interchangeably, the coil voltage and current. This ap-
proach makes the dynamical model directly applicable to con-
trol applications, in which the voltage can be controlled, and
the current can be measured (or vice versa). It has been com-
pared with a state-of-the-art solution that uses the Generalized
Preisach Model, which requires to solve numerically the differ-
ential equation of the electromagnetic variable. Using experi-
mental data from a specific device, it has been shown that the
accuracy of both models are very similar, while the proposed
model is much more computationally efficient.
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