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The superintegrability of several Hamiltonian systems defined on three-dimensional config-
uration spaces of constant curvature is studied. We first analyze the properties of the Killing
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obtain, in all the cases, the maximal number of functionally independent integrals of motion.

All the mathematical expressions are presented using the curvature κ as a parameter, in
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1 Introduction

A Hamiltonian system is superintegrable if it is integrable in the Liouville sense and it admits more
globally defined constants of motion than degrees of freedom. If the system has three degrees of
freedom and it admits five functionally independent integrals of motion then the system is maxi-
mally superintegrable. At the classical level superintegrability means that all bounded trajectories
are closed while at the quantum level this property is related to the degeneracy of the energy levels.
The two best known examples of these systems are the harmonic oscillator and the Kepler-Coulomb
problem. In fact, probably the first and oldest study on this matter was the theorem of Bertrand
[1, 2] (although of course without using this word) which states that the only central potentials for
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which all bounded trajectories are closed are just these two particular systems: isotropic oscillator
and Kepler potential. In these two cases the additional integrals of motion are the components of
the Fradkin tensor [3] for the harmonic oscillator, and of the Runge–Lenz vector in the case of the
Kepler system [4, 5].

Fris et al [6] studied the superintegrability in the Euclidean plane and proved the existence of
four families of superintegrable systems with quadratic in the momenta constants of motion; two
of these families were related with the harmonic oscillator and the other two with the Kepler
problem. This research was then continued in three-dimensional Euclidean space by Evans [7] and
then other systems were studied in different situations as on spaces with constant curvature [8]–
[21], on two-dimensional pseudo-Euclidean spaces [22]–[24], on spaces with conformally Euclidean
metrics [25]–[33] and even on more general curved spaces [34]–[38] (see [39] for a review). Most of
these systems were endowed with quadratic integrals of motion but systems possessing integrals of
motion of higher-order have also been studied [40]–[46], mainly in the two-dimensional Euclidean
space. We also mention some other recent articles dealing with different aspects of superintegrability
[47]–[50].

In the present paper we analyze the superintegrability first of the oscillator and the Kepler systems
and then of some oscillator-related and Kepler-related Hamiltonian systems on three-dimensional
spaces of constant curvature, that is, on the Sphere S3 and the Hyperbolic space H3. Actually, the
paper is related to some previous papers that were also concerned with similar problems. Some
of them were related with classical Hamiltonian systems on two-dimensional spaces [11, 14, 15],
[51, 52] and others were devoted to the quantum superintegrability on S2 and H2 [53, 54, 55] and
also on S3 and H3 [56, 57].

It is clear that spherical and hyperbolic spaces are endowed with quite different geometrical
properties but nevertheless some dynamical properties (as for example those related with the inte-
grability of Hamiltonian systems) can be studied by making use of a joint approach valid for the
two types of spaces. So, the main idea is to study at the same time in a joint or unified form (and
not as two different studies) both situations: dynamics on the sphere (curvature κ positive) and
dynamics on the Hyperbolic space (curvature κ negative). With this aim we will make use of the
similar notation and techniques introduced in the above-mentioned previous articles. The following
points summarize the main characteristics of this approach.

(i) All the mathematical expressions are presented using the curvature κ as a parameter, in such
a way that particularizing for κ > 0, κ = 0, or κ < 0, the corresponding properties are obtained
for the system on the sphere S3, the Euclidean space lE3, or the hyperbolic space H3, respectively.

(ii) The limit when κ → 0 is always well defined and when κ = 0, all the characteristics of the
Euclidean system are recovered.

(iii) Many different κ-dependent potentials can be constructed satisfying properties (i) and (ii).
Nevertheless, if we require that the superintegrability must be preserved, then this condition de-
termines a particular κ-dependent function among all the possible curved version of the Euclidean
potential,

A consequence of this approach is that we obtain the following result
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(iv) All the fundamental properties of the superintegrable Euclidean system continue to hold for
the curvature-modified Hamiltonian with κ 6= 0 (in both cases κ > 0 and κ < 0) but they appear
in a modified κ-dependent way.

The main idea is that the spherical and hyperbolic versions of the harmonic oscillator and Kepler
system can be considered as deformations of the well known Euclidean systems, and conversely,
the Euclidean harmonic oscillator and Kepler system are very particular cases of the more general
“curved” systems. This fact remains also true for the noncentral systems obtaining by adding some
additional nonlinear terms to these two important central potentials.

In more detail, the plan of this article is as follows: In Section 2 we first present the notation
and then we study the existence of Killing vector fields, the Lagrangian and the Hamiltonian for
the geodesic free motion, the existence of Noether symmetries and the properties of the Noether
momenta. Then in Section 3 we first study the harmonic oscillator on S3 and H3 and then an
oscillator-related Hamiltonian with three nonlinear terms of the form k1/x

2, k2/y
2, and k3/z

2.
In Section 4 we study the noncentral 2:1:1 oscillator also with additional nonlinear terms and in
Section 5 first the Kepler problem and then we analyze a Kepler system modified with the three
κ-dependent nonlinear terms k1/x

2, k2/y
2 and k3/z

2 and we prove that it is also superintegrable
but with constants of motion of fourth order in the momenta. Finally, in Section 6 we make some
final comments.

2 Geodesic motion, κ-dependent formalism, Killing vector fields,
and Noether momenta

In the following, all the mathematical expressions will depend of the curvature κ as a parameter,
in such a way that for κ > 0, κ = 0, or κ < 0, we will obtain the corresponding property of the
Hamiltonian system particularized on the three-dimensional spaces Sphere S3, Euclidean space lE3

and Hyperbolic space H3.

In order to obtain appropriate curvature-dependent expressions we will make use the following
curvature-dependent trigonometric and hyperbolic functions:

Cκ(x) =

 cos
√
κx if κ > 0,

1 if κ = 0,
cosh
√
−κx if κ < 0,

Sκ(x) =


1√
κ

sin
√
κx if κ > 0,

x if κ = 0,
1√
−κ sinh

√
−κx if κ < 0,

(1)

and the κ-dependent tangent defined in the natural way

Tκ(x) =
Sκ(x)

Cκ(x)
,

so that the Euclidean limits are correctly defined

lim κ→0 Cκ(x) = 1 , lim κ→0 Sκ(x) = x , lim κ→0 Tκ(x) = x ,

(these functions, that were used in the papers [51]–[57] mentioned in the introduction, have also
been used by other authors, see, e.g. [13, 21] and [58, 59]). In this way we can express in a single
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κ-dependent formula the differential element of distance ds2(κ) in geodesic spherical coordinates
(r, θ, φ) on the three three-dimensional manifolds Sphere S3, Euclidean space lE3 and Hyperbolic
space H3

ds2(κ) = dr2 + S
2
κ(r) dθ2 + S

2
κ(r) sin2 θdφ2 , (2)

where we recall that r denotes the geodesic distance to the origin (North pole in the spherical case)
and not the radius of a sphere. It reduces to

ds21 = dr2 + sin2 r dθ2 + sin2 r sin2 θ dφ2 ,
ds20 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 ,
ds2−1 = dr2 + sinh2 r dθ2 + sinh2 r sin2 θ dφ2 ,

in the three particular cases of the unit sphere (κ = 1), Euclidean space (κ = 0), and ’unit’
Lobachewski space (κ = −1).

2.1 Lagrangian formalism, Noether symmetries, and Noether momenta

We recall that a vector field X ∈ X(Q), defined on a Riemann manifold (Q, g), is called a Killing
vector field when it preserves the metric in the sense that the Lie derivative with respect to X of the
tensor metric g vanishes. A three-dimensional Riemann manifold with constant curvature admits
six linearly independent Killing vector fields, that generate six different one-parameter groups of
continuous isometries of the manifold, and that can be grouped in two sets of three vector fields.

(i) Three κ-dependent vector fields that we denote by Xj , j = 1, 2, 3,

X1 = (sin θ cosφ)
∂

∂r
+

(
Cκ(r)

Sκ(r)

)
[(cos θ cosφ)

∂

∂θ
− (

sinφ

sin θ
)
∂

∂φ
] ,

X2 = (sin θ sinφ)
∂

∂r
+

(
Cκ(r)

Sκ(r)

)
[(cos θ sinφ)

∂

∂θ
+ (

cosφ

sin θ
)
∂

∂φ
] ,

X3 = (cos θ)
∂

∂r
−
(

Cκ(r)

Sκ(r)

)
sin θ

∂

∂θ
,

(ii) Three κ-independent vector fields that we denote by Yj , j = 1, 2, 3,

Y1 = − sinφ
∂

∂θ
−
(

cosφ

tan θ

)
∂

∂φ
, Y2 = cosφ

∂

∂θ
−
(

sinφ

tan θ

)
∂

∂φ
, Y3 =

∂

∂φ
,

Everyone of these six vector fields is the generator of a one-parameter group of diffeomorphisms
preserving the metric ds2κ, that is, a one-parameter group of isometries of the Riemannian manifold.
Moreover if we denote by Ωκ the the volume form determined by the metric g,

Ωκ =
√
| g | dr ∧ dθ ∧ dφ = S

2
κ(r) sin θ dr ∧ dθ ∧ dφ , | g | = det g ,

then they also preserve the volume form, that is,

LXiΩκ = 0 , LYiΩκ = 0 , i = 1, 2, 3,
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where LX denotes the Lie derivative with respect to the vector field X.

Moreover, they close the following Lie algebra,

[X1 , X2] = −κY3 , [X2 , X3] = −κY1 , [X3 , X1] = −κY2 ,

[Y1 , Y2] = −Y3 , [Y2 , Y3] = −Y1 , [Y3 , Y1] = −Y2 ,

that represents the Lie algebra of the isometries of the three-dimensional spherical, Euclidean, and
hyperbolic spaces. Notice that in the limit κ→ 0 we recover the Euclidean algebra and the vector
fields Xj , j = 1, 2, 3, commute between themselves.

The Lagrangian for the geodesic free motion is given by the kinetic term determined by the metric

L(r, θ, φ, vr, vθ, vφ) = Tg(κ) = (
1

2
)
(
v2r + S

2
κ(r) v2θ + S

2
κ(r) sin2 θ v2φ

)
, (3)

where the parameter κ can take any real value. Three particular cases are κ = −1, κ = 0, and
κ = 1

L1(r, θ, φ, vr, vθ, vφ) = (
1

2
)
(
v2r + sin2 r v2θ + sin2 r sin2 θ v2φ

)
,

L0(r, θ, φ, vr, vθ, vφ) = (
1

2
)
(
v2r + r2 v2θ + r2 sin2 θ v2φ

)
,

L−1(r, θ, φ, vr, vθ, vφ) = (
1

2
)
(
v2r + sinh2 r v2θ + sinh2 r sin2 θ v2φ

)
.

This kinetic Lagrangian possesses six exact Noether symmetries, because L = Tg(κ) is invariant
under the action of the six Killing vectors in the sense that we have

Xt
i (Tg(κ)) = 0 , Y t

i (Tg(κ)) = 0 , i = 1, 2, 3,

where Xt
i and Y t

i denote the tangent lifts (or complete lifts) of Xi and Yi to the velocity phase
space TQ where Q is Q = S3, Q = lE3 or Q = H3, according to the value of κ.

Theorem 1 Noether Theorem: Each Killing vector field is a symmetry of the geodesic Lagrangian
L = Tg, and hence it determines a constant of the ‘geodesic’ motion.

If we denote by θL the Lagrangian one-form:

θL =
∂L

∂vr
dr +

∂L

∂vθ
dθ +

∂L

∂vφ
dφ

= vr dr + S
2
κ(r)vθ dθ + S

2
κ(r) sin2 θ vφ dφ

then the associated Noether constants of the motion (that are usually known as Noether momenta)
are given by the following:

6



(P) The three κ-dependent functions P1(κ), P2(κ), and P3(κ), defined as

P1 = i(X1) θL , P2 = i(X2) θL , P3 = i(X3) θL ,

that are given by

P1 = (sin θ cosφ) vr + (Cκ(r) Sκ(r))[(cos θ cosφ) vθ − (sin θ sinφ) vφ] ,
P2 = (sin θ sinφ) vr + (Cκ(r) Sκ(r))[(cos θ sinφ) vθ + (sin θ cosφ) vφ] ,
P3 = (cos θ) vr − (Cκ(r) Sκ(r)) sin θ vθ . (4)

(J) The three κ-dependent functions PJ1, PJ2, and PJ3, defined as

PJ1 = i(Y1) θL , PJ2 = i(Y2) θL , PJ3 = i(Y3) θL ,

that are given by

PJ1 = −S
2
κ(r) (sinφ vθ + sin θ cos θ cosφ vφ) ,

PJ2 = S
2
κ(r) (cosφ vθ − sin θ cos θ sinφ vφ) ,

PJ3 = S
2
κ(r) sin2 θ vφ . (5)

These Noether momenta satisfy the following property:

Property 1 The Noether momenta Pi and PJi, i = 1, 2, 3, are constants of the motion for the
geodesic motion.

d

dt
Pi = ΓL(Pi) = 0 ,

d

dt
PJi = ΓL(PJi) = 0

where ΓL denotes the dynamical vector field

ΓL = vr
∂

∂r
+ vθ

∂

∂θ
+ vφ

∂

∂φ
+ fr

∂

∂vr
+ fθ

∂

∂vθ
+ fφ

∂

∂vφ

with the Lagrangian forces (fr, fθ, fφ) being given by

fr = Cκ(r) Sκ(r)(v2θ + sin2 θ v2φ) ,

fθ = −
( 2

Tκ(r)

)
vrvθ + (cos θ sin θ)v2φ ,

fφ = −2
( vr

Tκ(r)
+

vθ
tan θ

)
vφ .

2.2 Hamiltonian formalism

Under the Legendre transformation the point (r, θ, φ, vr, vθ, vφ) of the velocity phase space goes to
the point (r, θ, φ, pr, pθ, pφ) of the phase space given by

pr = vr , pθ = S
2
κ(r) vθ , pφ = S

2
κ(r) sin2 θ vφ
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so that the expression of the κ-dependent Hamiltonian is

H(κ) = (
1

2
)
(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
, (6)

and the images of the six Noether momenta are

P1 = (sin θ cosφ) pr +
(

Cκ(r)

Sκ(r)

)[
(cos θ cosφ) pθ − (

sinφ

sin θ
) pφ

]
,

P2 = (sin θ sinφ) pr +
(

Cκ(r)

Sκ(r)

)[
(cos θ sinφ) pθ + (

cosφ

sin θ
) pφ

]
,

P3 = (cos θ) pr −
(

Cκ(r)

Sκ(r)

)
sin θ pθ , (7)

and

PJ1 = −(sinφ pθ + (
cos θ

sin θ
) cosφ pφ) , PJ2 = cosφ pθ − (

cos θ

sin θ
) sinφ pφ , PJ3 = pφ . (8)

These new six Noether momenta Pi, PJi, i = 1, 2, 3, Poisson commute with the Hamiltonian

{Pi, H} = 0 , {PJi, H} = 0 , i = 1, 2, 3,

and the Noether momenta Pi satisfy the Poisson bracket relations

{P1 , P2} = κPJ3 , {P2 , P3} = κPJ1 , {P3 , P1} = κPJ2.

We remark the positive sign in these Poisson brackets (in contrast with the negative sign in the Lie
brackets). The reason is that the Lie bracket between two Hamiltonians vector fields satisfy the
property [Xf , Xg] = −X{f,g}. That is, the map from the Lie brackets into the Poisson brackets
([· , ·]→ {· , ·}) is linear but introduces a change of sign, it is an anti-isomorphism.

In what follows, as the Noether momenta PJi coincide with components of the angular momen-
tum, we just write Ji instead of PJi and we write the other defining Poisson relations as.

{J1 , c1P1 + c2P2 + c3P3} = c2P3 − c3P2 , {J2 , c1P1 + c2P2 + c3P3} = c3P1 − c1P3 ,

and
{J3 , c1P1 + c2P2 + c3P3} = c1P2 − c2P1.

Making use of the expressions of the functions Pi, i = 1, 2, 3, and of the angular momenta Ji we
obtain that the sum of their squares take the values

P 2
1 + P 2

2 + P 2
3 = p2r +

(
C2
κ(r)

S2
κ(r)

)
p2θ +

(
C2
κ(r)

S2
κ(r) sin2 θ

)
p2φ , J2

1 + J2
2 + J2

3 = p2θ +
p2φ

sin2 θ
,

and therefore the κ-dependent Hamiltonian can be rewritten as a linear combination of the squares
of the six Noether momenta.

H(κ) = (
1

2
)
(
P 2
1 + P 2

2 + P 2
3 + κ (J2

1 + J2
2 + J2

3 )
)
. (9)

We close this section mentioning that this property, that is, expressing the Hamiltonian as a
function of the Noether momenta (instead of the canonical momenta) is important for the process
of quantization of the system; see [55] for the free particle and [60, 61] for general properties of the
Killing vector fields and Noether momenta approach to quantization.
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3 Oscillator related Hamiltonian with nonlinear terms k1/x
2
κ, k2/y

2
κ,

and k3/z
2
κ

In this section we consider particular examples of Lagrangians of mechanical type where poten-
tial terms are added to the geodesic term that correspond to the harmonic oscilator and to the
Smorodinsky-Winternitz system.

3.1 The Harmonic Oscillator on the 3-dimensional sphere S3 (κ > 0) and Hy-
perbolic space H3 (κ < 0)

The following curvature-dependent function represents the Hamiltonian of the isotropic harmonic
oscillator on the spherical (κ > 0), Euclidean, or hyperbolic (κ < 0), three-dimensional spaces with
constant curvature κ

H(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r) , (10)

so that, in this way, the potential of the harmonic oscillator on the unit sphere (κ = 1), on the
Euclidean space, or on the unit Lobachevsky space (κ = −1) arise as the following three particular
cases

V1 =
1

2
α2 tan2 r , V0 =

1

2
α2 r2 , V−1 =

1

2
α2 tanh2 r .

The Euclidean oscillator V0, that is a parabolic potential without singularities, appears in this
formalism as making a separation between two different situations (see Fig. 1). In the spherical
case the potential has an infinite potential barrier on the geodesic circle r = π/(2

√
κ) so that, in

this case, the motion is confined on a three-dimensional half-sphere. The hyperbolic potential Vκ,
κ < 0, is a well with finite depth since lim r→∞Vκ = 1/|κ|.

A quantization of this system was studied in [56] and the Schrödinger equation determined by
this Hamiltonian was solved in [57] (the radial Schrödinger equation becomes a κ-dependent Gauss
hypergeometric equation that can be considered as a κ-deformation of the confluent hypergeometric
equation that appears in the Euclidean case) but making use of another system of coordinates (see
Appendix II). We also mention that this oscillator was also studied in [62] using as an approach
first a stereographic projection and then both Poincaré and Beltrami coordinates.

First, in both cases, spherical (κ > 0) and hyperbolic (κ < 0) spaces, the Hamiltonian system
has spherical symmetry and therefore the three components (J1, J2, J3) of the angular momentum
are time preserved in time evolution.

Now let us consider the following three complex functions

M1κ = P1 + iα ( Tκ(r))(sin θ cosφ) , M2κ = P2 + iα ( Tκ(r))(sin θ sinφ) ,

M3κ = P3 + iα ( Tκ(r))(cos θ) ,

where Pi, i = 1, 2, 3, are the Noether momenta given by (7). Then we have

{M1κ , H(κ)} = iλκ αM1κ , {M2κ , H(κ)} = iλκ αM2κ , {M3κ , H(κ)} = iλκ αM3κ ,
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where λκ denotes λκ = 1/C2
κ(r). Therefore the moduli |Mjκ | of the three functions Mjκ, j = 1, 2, 3,

satisfy

d

dt
|M1κ |2 =

( d
dt
M1κ

)
M∗1κ + M1κ

( d
dt
M∗1κ

)
= (iλκαM1κ)M∗1κ +M1κ(−iλκαM

∗
1κ) = 0 ,

d

dt
|M2κ |2 =

( d
dt
M2κ

)
M∗2κ + M2κ

( d
dt
M∗2κ

)
= (iλκαM2κ)M∗2κ +M2κ(−iλκαM

∗
2κ) = 0 ,

d

dt
|M3κ |2 =

( d
dt
M3κ

)
M∗3 + M3κ

( d
dt
M∗3κ

)
= (iλκαM3κ)M∗3κ +M3κ(−iλκαM

∗
3κ) = 0 ,

Therefore the following three κ-dependent functions

K11κ = P 2
1 + α2 ( T

2
κ(r))(sin θ cosφ)2 ,

K22κ = P 2
2 + α2 ( T

2
κ(r))(sin θ sinφ)2 ,

K33κ = P 2
3 + α2 ( T

2
κ(r))(cos θ)2 , (11)

are constants of motion

{K11κ , H(κ)} = 0 , {K22κ , H(κ)} = 0 , {K33κ , H(κ)} = 0 .

For the same reason we also have that the complex functions MiκM
∗
jκ, i 6= j, are constants of

motion
{M1κM

∗
2κ , H(κ)} = 0 , {M2κM

∗
3κ , H(κ)} = 0 , {M3κM

∗
1κ , H(κ)} = 0 .

If a complex function is a constant of motion for a real Hamiltonian system then it determines two
different real constants of motion, its real and imaginary parts:

M1κM
∗
2κ = K12κ + iαJ3 , M2κM

∗
3κ = K23κ + iαJ1 , M3κM

∗
1κ = K31κ + iαJ2 ,

The imaginary parts Im(MiκM
∗
jκ), i 6= j, are related to the components Jk, k = 1, 2, 3, of the

angular momentum, Im(MiκM
∗
jκ) = εijkJk. Furthermore, the three functions Kijκ, such that

Re(MiM
∗
j ) = Kijκ, i 6= j, that are given by

K12κ = P1P2 + α2 ( T
2
κ(r))(sin θ)2(cosφ sinφ) ,

K23κ = P2P3 + α2 ( T
2
κ(r))(sin θ cos θ)(sinφ) ,

K31κ = P3P1 + α2 ( T
2
κ(r))(sin θ cos θ)(cosφ) , (12)

Poisson commute with the Hamiltonian

{K12κ , H(κ)} = 0 , {K23κ , H(κ)} = 0 , {K31κ , H(κ)} = 0 .

These six functions can be considered as the six independent components of the κ-dependent
symmetric Fradkin matrix

[Kijκ] =

K11κ K12κ K13κ

K21κ K22κ K23κ

K31κ K32κ K33κ

 , Kijκ = Kjiκ ,
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and we can summarize all the Poisson brackets with the Hamiltonian in a single equation{
Kijκ , H(κ)

}
= 0 , i, j = 1, 2, 3.

Note that the expression of Kijκ depends on the Noether momenta instead of on the canonical
momenta. We also note that the functionsKijκ are quadratic in the Noether momenta Pi, i = 1, 2, 3,
and as the Noether momenta are linear functions of the canonical momenta pa, a = r, θ, φ, the result
is that these functions are also quadratic in the canonical momenta in the given chart.

The algebraic properties of [Kijκ], that represents the curvature-dependent version of the Fradkin
tensor [3], are summarized in the Appendix I.

Another important point is that the Hamiltonian can be rewritten as a sum of the three functions
Kjjκ, j = 1, 2, 3, and the square of the three angular momenta

H(κ) =
1

2

(
K11κ +K22κ +K33κ + κ (J2

1 + J2
2 + J2

3 )
)
. (13)

This is an interesting property since it shows that, on spaces of constant curvature, the angular
momentum has a direct contribution to the total energy of the system, and, as mentioning in the
previous section, it is also important in the quantization process [55, 60, 61].

The Poisson brackets of these functions are as follows

{K11κ , J1} = {K22κ , J2} = {K33κ , J3} = 0 ,

{c1K11κ + c2J1 , K22κ +K33κ + κ (J2
2 + J2

3 )} = 0 ,

{c1K22κ + c2J2 , K11κ +K33κ + κ (J2
1 + J2

3 )} = 0 ,

{c1K33κ + c2J3 , K11κ +K22κ + κ (J2
1 + J2

2 )} = 0 ,

where c1 and c2 are arbitrary constants.

We recall that, although the three components (J1, J2, J3) of the angular momentum do not
commute, it is always possible to select a three dimensional Abelian subalgebra generated, for
instance, by H, J2

1 + J2
2 + J2

3 and J3. In addition, the above Poisson brackets relations show the
existence of other triplets of commuting first integrals as (K11κ, J1,K22κ + K33κ + κ (J2

2 + J2
3 )),

(K22κ, J2,K11κ +K33κ + κ (J2
1 + J2

3 )), or (K33κ, J3,K11κ +K22κ + κ (J2
1 + J2

2 )).

All these results can be summarized in the following proposition:

Proposition 1 The κ-dependent classical Harmonic Oscillator defined on the 3-dimensional sphere
S3 (κ > 0) and on the Hyperbolic space H3 (κ < 0) by

H(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r)

is superintegrable with the maximal number of functionally independent constants of motion. It is
spherically symmetric so the three components (J1, J2, J3) of the angular momentum are integrals
of motion (this implies Liouville integrability). In addition there is a family of six κ-dependent
quadratic functions Kijκ, i, j = 1, 2, 3, that can be considered as the six components of the curvature-
dependent version of the symmetric Fradkin tensor.
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3.2 The Smorodinsky-Winternitz (S-W) system on the 3-dimensional sphere
S3 (κ > 0) and on the hyperbolic space H3 (κ < 0)

In what follows use is made of the following notation

xκ = Sκ(r) sin θ cosφ , yκ = Sκ(r) sin θ sinφ , zκ = Sκ(r) cos θ , (14)

such that their Euclidean limits are

lim κ→0(xκ, yκ, zκ) = (r sin θ cosφ, r sin θ sinφ, r cos θ)

that correspond to the expression of the Cartesian coordinates (x, y, z) when written in spherical
coordinates. We note that the Poisson brackets of these functions with the Noether momenta (7)
are given by

{xκ , P1} = {yκ , P2} = {zκ , P3} = Cκ(r) ,

where we recall that lim κ→0 Cκ(r) = 1.

In this section we analyse the following Hamiltonian function which is the spherical (κ > 0),
Euclidean, or hyperbolic (κ < 0), version of the three-dimensional Smorodinsky-Winternitz (S-W)
[63] with curvature κ:

HSW (κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r) +

[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
, (15)

(the Euclidean version of this system, that is also known as the ‘caged oscillator’ [64, 65, 66, 67],
can be considered as the three-dimensional version of the isotonic oscillator [68, 69]). First, the
components (J1, J2, J3) of the angular momentum are not constants of the motion anymore, but
the following three angular momentum related functions

KJ1 = J2
1 + 2

(
k2
z2κ
y2κ

+ k3
y2κ
z2κ

)
, KJ2 = J2

2 + 2
(
k1
z2κ
x2κ

+ k3
x2κ
z2κ

)
,

KJ3 = J2
3 + 2

(
k1
y2κ
x2κ

+ k2
x2κ
y2κ

)
, (16)

are constants of the motion:

{KJ1 , HSW (κ)} = 0 , {KJ2 , HSW (κ)} = 0 , {KJ3 , HSW (κ)} = 0 .

They are functionally independent, that is dKJ1 ∧ dKJ2 ∧ dKJ3 6= 0, and satisfy the following
Poisson bracket relations:

{KJ1 ,KJ2 +KJ3} = 0 , {KJ2 ,KJ1 +KJ3} = 0 , {KJ3 ,KJ1 +KJ2} = 0 .

So this system is Liouville integrable (for all the values of κ) with a fundamental set of three
integrals of motion (HSW (κ),KJi ,KJj +KJk ; i 6= j 6= k) that Poisson commute.
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On the other hand, the following three functions Kjjκ, j = 1, 2, 3, related with the Noether
momenta Pj , j = 1, 2, 3,

K11κ = P 2
1 + α2 ( T

2
κ(r))(sin θ cosφ)2 +

2k1
(Tκ(r) sin θ cosφ)2

,

K22κ = P 2
2 + α2 ( T

2
κ(r))(sin θ sinφ)2 +

2k2
(Tκ(r) sin θ sinφ)2

,

K33κ = P 2
3 + α2 ( T

2
κ(r))(cos θ)2 +

2k3
(Tκ(r) cos θ)2

, (17)

are also constants of the motion

{K11κ , HSW (κ)} = 0 , {K22κ , HSW (κ)} = 0 , {K33κ , HSW (κ)} = 0 .

Moreover, we have the following two important properties. First, the following equality is satified

HSW (κ) = (
1

2
)
(
K11κ +K22κ +K33κ + κ (KJ1 +KJ2 +KJ3)

)
+ κ(k1 + k2 + k3) . (18)

Second, the Poisson brackets among these functions are as follows:

{K11κ , KJ1} = {K22κ , KJ2} = {K33κ , KJ3} = 0 ,

{c1K11κ + c2KJ1 , K22κ +K33κ + κ (KJ2 +KJ3)} = 0 ,

{c1K22κ + c2KJ2 , K11κ +K33κ + κ (KJ1 +KJ3)} = 0 ,

{c1K33κ + c2KJ3 , K11κ +K22κ + κ (KJ1 +KJ2)} = 0 ,

where c1 and c2 are arbitrary constants.

Therefore triplets of commuting first integral are, for instance, (K11κ,KJ1,K22κ+K33κ+κ(KJ2+
KJ3)), (K22κ,KJ2,K11κ +K33κ + κ(KJ1 +KJ3)), or (K33κ,KJ3,K11κ +K22κ + κ(KJ1 +KJ2)).

We can summarize all these results in the following proposition:

Proposition 2 The κ-dependent classical Harmonic Oscillator with three additional nonlinear
terms defined on the 3-dimensional sphere S3 (κ > 0) and Hyperbolic space H3 (κ < 0)

HSW (κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r) +

[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
,

represents the curvature-dependent version of the 3-dimensional Smorodinsky-Winternitz system,
because

lim κ→0HSW (κ) = HSW =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2 r2 +

[k1
x2

+
k2
y2

+
k3
z2

]
.

It is superintegrable with two sets of three quadratic integrals of motion. A first set of three angular
momentum-related functions KJi, i = 1, 2, 3, that are curvature-independent, and a second set of
three κ-dependent functions Kiiκ, i = 1, 2, 3. Two of the functions of the second set can be chosen
for the total set of five functionally independent integrals of motion.
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3.3 Oscillator 1:1:2 on the 3-dimensional sphere S3 (κ > 0) and on the Hy-
perbolic space H3 (κ < 0) with two nonlinear terms of the form 1/x2κ and
1/y2κ

It is well known that the properties of non-central potentials are more complicated to study that
those of the central ones (the first negative property is that the angular momentum is not an
integral of motion). Nevertheless the oscillator with ratio of frequencies 2:1 appears in [6] in the
list of superintegrable two-dimensional Euclidean potentials and the three-dimensional oscillator
with ratio 2:1:1 also appears in the list of Evans [7]. The superintegrability of the 2:1 oscillator on
the two-dimensional sphere S2 and the hyperbolic plane H2 was study in [52]. Now we consider
the three-dimensional system with two additional nonlinear terms.

The following curvature-dependent function represents the Hamiltonian of the harmonic oscillator
with ratio of frequencies 1:1:2 on the spherical (κ > 0), Euclidean, or hyperbolic (κ < 0), three-
dimensional spaces with constant curvature κ with two additional κ–dependent nonlinear terms of
the form 1/x2κ and 1/y2κ

H112(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+ V112(κ) +

k1
x2κ

+
k2
y2κ
, (19)

where V112(κ), that denotes the potential of the 1:1:2 oscillator, takes the form

V112(κ) =
1

2
α2 1

1− κ(x2κ + y2κ)

(
x2κ + y2κ + 4A2

zκ

)
, Azκ =

Tκ(r) cos θ

1− κ (Tκ(r) cos θ)2
. (20)

where the factor 1/(1 − κ(x2κ + y2κ)) and the function Azκ are obtained as three-dimensional gen-
eralizations of similar functions obtained in [70] in the study of the two-dimensional 1:2 oscillator.
It is clear that this particular function satisfies the appropriate Euclidean limit

lim κ→0

(
V112(κ) +

k1
x2κ

+
k2
y2κ

)
=

1

2
α2 (x2 + y2 + 4z2) +

k1
x2

+
k2
y2
.

The following three quadratic functions are integrals of motion:

K3κ = P 2
3 + 4α2A2

zκ , KJ3 = J2
3 + 2k2

(xκ
yκ

)2
+ 2k1

( yκ
xκ

)2
,

K12κ = (P 2
1 + κJ2

1 ) + (P 2
2 + κJ2

2 ) + α2(1 + 4κA2
zκ)
( x2κ + y2κ

1− κ(x2κ + y2κ)

)
+ 2k2

(1− κx2κ
y2κ

)
+ 2k1

(1− κy2κ
x2κ

)
. (21)

These three functions (K3κ, KJ3, K12κ) are functionally independent, that is dK3κ ∧ dKJ3 ∧
dK12κ 6= 0, and satisfy the following Poisson bracket relations:

{K3κ , H112(κ)} = 0 , {KJ3 , H112(κ)} = 0 , {K12κ , H112(κ)} = 0 ,

which express that they are first integrals and they also Poisson commute among themselves

{K3κ ,KJ3} = 0 , {KJ3 ,K12κ} = 0 , {K12κ ,K3κ} = 0 ,
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that is, they generate an Abelian Lie subalgebra; therefore this κ-dependent Hamiltonian is com-
pletely integrable in the Liouville sense. Moreover, an interesting property is that the Hamiltonian
H112(κ) can be rewritten as follows:

H112(κ) =
1

2

(
K3κ +K12κ + κKJ3

)
.

Furthermore, this κ-dependent system admits two additional integrals of motion of Runge-Lenz
type explicitly given by

KRL1 = −P1J2 + α2
(tan θ cosφ

Cκ(r)

)
A2
zκxκ − 2k1 Cκ(r)

( zκ
x2κ

)
,

KRL2 = P2J1 + α2
(tan θ sinφ

Cκ(r)

)
A2
zκyκ − 2k2 Cκ(r)

(zκ
y2κ

)
, (22)

that are functionally independent, that is dKRL1 ∧ dKRL2 6= 0, as well as functionally independent
of the other three. Therefore this Hamiltonian system possesses five functionally independent
integrals of motion, three of them in involution and we can conclude:

Proposition 3 The curvature dependent Harmonic Oscillator, with ratio of frequencies 1:1:2 and
two additional nonlinear terms of the form 1/x2κ and 1/y2κ, defined on the 3-dimensional sphere S3

(κ > 0) and on the Hyperbolic space H3 (κ < 0)

H112(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+ V112(κ) +

k1
x2κ

+
k2
y2κ
,

where V112(κ) denotes the following κ-dependent potential

V112(κ) =
1

2
α2 1

1− κ(x2κ + y2κ)

(
x2κ + y2κ + 4A2

zκ

)
, Azκ =

Tκ(r) cos θ

1− κ (Tκ(r) cos θ)2
,

such that it satisfies the appropriate Euclidean limit

lim κ→0H112(κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2 (x2 + y2 + 4z2) +

k1
x2

+
k2
y2
,

is superintegrable with a maximal number of five functionally independent constants of motion. It
admits three constants of motion (K3κ, K12κ, KJ3) that Poisson commute among them and, in
addition, this system possesses two κ-dependent quadratic functions KRLj, j = 1, 2, of Runge-Lenz
type.

4 Kepler related Hamiltonian on the 3-dimensional sphere S3 (κ >
0) and on the hyperbolic space H3 (κ < 0)

Another prototypical example of integrable system is the Kepler problem and therefore we fix in
this section our attention on such a problem in the three-dimensional spaces considered in the
preceding sections.
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4.1 Kepler Hamiltonian

The following curvature-dependent function is the spherical, Euclidean, or hyperbolic, Kepler
Hamiltonian with curvature κ

HK(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)
, (23)

i.e., the potentials of the Kepler problem on the unit sphere (κ = 1), on the Euclidean space, or on
the unit Lobachevsky space (κ = −1), arise as the following three particular cases

V1 =
k

tan(r)
, V0 =

k

r
, V−1 =

k

tanh(r)
.

The situation is rather similar to the one obtained in Section 3.1 for the harmonic oscillator. Also
in this case the Euclidean function V0 = k/r appears in this formalism as making a separation
between two different behaviours (see Fig. 2).

This potential is central (for all the values of κ) so the three components (J1, J2, J3) of the angular
momentum are integrals of motion, namely

{J1 , HK(κ)} = 0 , {J2 , HK(κ)} = 0 , {J3 , HK(κ)} = 0 .

and therefore this curvature-dependent system, as any other central potential, is Liouville inte-
grable. Moreover, as in the Euclidean case, there exists an additional set of integrals of motion,
because the following three functions

KRL1 = (P2J3 − P3J2) + k (sin θ cosφ) ,
KRL2 = (P3J1 − P1J3) + k (sin θ sinφ) ,
KRL3 = (P1J2 − P2J1) + k (cos θ) , (24)

that are functionally independent

dKRL1 ∧ dKRL2 ∧ dKRL3 6= 0 ,

are integrals of motion

{KRL1 , HK(κ)} = 0 , {KRL2 , HK(κ)} = 0 , {KRL3 , HK(κ)} = 0 .

They must be considered as the curved version of the standard Runge-Lenz vector. Their Poisson
brackets are given by

{KRL1 ,KRL2} = −2J3(HK(κ)− κ (J2
1 + J2

2 + J2
3 )) ,

{KRL2 ,KRL3} = −2J1(HK(κ)− κ (J2
1 + J2

2 + J2
3 )) ,

{KRL3 ,KRL1} = −2J2(HK(κ)− κ (J2
1 + J2

2 + J2
3 )) ,

and the Poisson brackets of each one with the angular momenta are

{J1 , c1KRL1 + c2KRL2 + c3KRL3} = c2KRL3 − c3KRL2 ,
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{J2 , c1KRL1 + c2KRL2 + c3KRL3} = c3KRL1 − c1KRL3 ,

{J3 , c1KRL1 + c2KRL2 + c3KRL3} = c1KRL2 − c2KRL1 ,

where c1, c2, and c3 are arbitrary constants.

The preceding results are summarised in the following proposition:

Proposition 4 The κ-dependent Kepler Hamiltonian defined in the 3-dimensional sphere S3 (κ >
0) and Hyperbolic space H3 (κ < 0)

HK(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)

is superintegrable with very similar properties to those of the standard Euclidean Kepler Hamilto-
nian. It is spherically symmetric, with the three components (J1, J2, J3) of the angular momentum
as constants of motion, and it also possesses three quadratic constants of motion (KRL1,KRL2,KRL3)
representing the components of the curvature-dependent version of the Runge-Lenz vector.

4.2 Kepler related Hamiltonian with nonlinear terms k1/x
2
κ, k2/y

2
κ, and k3/z

2
κ

In this section we will study the following Kepler-related Hamiltonian

HK123(κ) =
1

2
)
(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)
+
[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
, (25)

where the three additional nonlinear terms, k1/x
2
κ, k2/y

2
κ and k3/z

2
κ, are just the same as in the

S-W system studied in the previous section 3.2.

This Hamiltonian admits two different sets of constants of motion. A first set is related with the
angular momentum and the second set related with the Runge-Lenz vector but of fourth order in
the momenta.

First, the components (J1, J2, J3) of the angular momentum are not integrals of motion anymore
but the following three angular momentum related functions

KJ1 = J2
1 + 2k2

(zκ
yκ

)2
+ 2k3

(yκ
zκ

)2
, KJ2 = J2

2 + 2k1

( zκ
xκ

)2
+ 2k3

(xκ
zκ

)2
,

KJ3 = J2
3 + 2k1

( yκ
xκ

)2
+ 2k2

(xκ
yκ

)2
, (26)

that are functionally independent, dKJ1 ∧ dKJ2 ∧ dKJ3 6= 0, Poisson commute with the Hamilto-
nian, {KJi , HK123(κ)} = 0, i = 1, 2, 3, and satisfy the following Poisson bracket properties

{KJ1 ,KJ2 +KJ3} = 0 , {KJ2 ,KJ1 +KJ3} = 0 , {KJ3 ,KJ1 +KJ2} = 0 .

So this system is Liouville integrable (for all the values of κ) with a fundamental set of three
integrals of motion (HK123(κ),KJi ,KJj +KJk ; i 6= j 6= k) that Poisson commute.
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Second, the three κ-dependent Runge-Lenz functions (24) obtained in the previous section, and
characterizing to the potential k/Tκ(r), are no longer integrals of motion. Now we prove that
this system admits three quartic constants of motion. We will obtain them making use of a
method already used in [33] in the study superintegrable systems on three-dimensional conformally
Euclidean spaces and that it is related with the existence of certain complex functions.

Let us now denote by Riκ, i = 1, 2, 3, the following Runge-Lenz-related functions

R1κ = KRL1 + 2(Cκ(r) Sκ(r))(sin θ cosφ)
( k1
x2κ

+
k2
y2κ

+
k3
z2κ

)
,

R2κ = KRL2 + 2(Cκ(r) Sκ(r))(sin θ sinφ)
( k1
x2κ

+
k2
y2κ

+
k3
z2κ

)
,

R3κ = KRL3 + 2(Cκ(r) Sκ(r))(cos θ)
( k1
x2κ

+
k2
y2κ

+
k3
z2κ

)
, (27)

where the quadratic functions KRLi, i = 1, 2, 3, were defined in the previous section.

In fact, in the particular case (k 6= 0, k1 = k2 = k3 = 0), these three functions reduce to three
components of the Runge-Lenz vector. These functions are not (in the general case) integrals of
motion but when one of the additional terms is not present then the corresponding function Rj
becomes an integral of motion. That is, we have the following property

If kj = 0 then {R′jκ , H ′K123(κ)} = 0 ,

where R′jκ, and H ′K123(κ) denote the function Rjκ and the Hamiltonian HK123(κ), respectively, but
without the kj-term.

Let us first remark that the functions xκ, yκ, zκ, and the Noether momenta Pi, i = 1, 2, 3, satisfy
the following relation

xκP1 + yκP2 + zκP3 = pr Sκ(r) .

Then the three functions Rjκ, j = 1, 2, 3, and the three κ-dependent functions

(pr Sκ(r))/xκ , (pr Sκ(r))/yκ , (pr Sκ(r))/zκ ,

are related among them by the time derivatives. More precisely, we have

{R1κ , HK123} = − 2k1λ1κ
1

xκ
(pr Sκ(r)) ,

{ 1

xκ
(pr Sκ(r)) , HK123

}
= λ1κR1κ ,

{R2κ , HK123} = − 2k2λ2κ
1

yκ
(pr Sκ(r)) ,

{ 1

yκ

(
pr Sκ(r)) , HK123

}
= λ2κR2κ ,

{R3κ , HK123} = − 2k3λ3κ
1

zκ
(pr Sκ(r)) ,

{ 1

zκ

(
pr Sκ(r)) , HK123

}
= λ3κR3κ ,

where the coefficients λjκ, j = 1, 2, 3, take the forms

λ1κ =
1

x2κ
, λ2κ =

1

y2κ
, λ3κ =

1

z2κ
.

The properties of these functions are stated in the following proposition
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Proposition 5 Let Njκ, j = 1, 2, 3, denote the following complex functions

N1κ = R1κ+i
√

2k1

(pr Sκ(r)

xκ

)
, N2κ = R2κ+i

√
2k2

(pr Sκ(r)

yκ

)
, N3κ = R3κ+i

√
2k3

(pr Sκ(r)

zκ

)
,

Then the time derivatives of these functions satisfy the following relations

d

dt
N1κ = − i

√
2k1 λ1κN1κ ,

d

dt
N2κ = − i

√
2k2 λ2κN2κ ,

d

dt
N3κ = − i

√
2k3 λ3κN3κ .

Therefore the moduli |Njκ | of the functions Njκ, j = 1, 2, 3, satisfy

d

dt
|N1κ |2 =

( d
dt
N1κ

)
N∗1κ +N1κ

( d
dt
N∗1κ

)
= (− i

√
2k1 λ1κ + i

√
2k1 λ1κ)

(
N1κN

∗
1κ

)
= 0 ,

d

dt
|N2κ |2 =

( d
dt
N2κ

)
N∗2κ +N2κ

( d
dt
N∗2κ

)
= (− i

√
2k2 λ2κ + i

√
2k2 λ2κ)

(
N2κN

∗
2κ

)
= 0 ,

d

dt
|N3κ |2 =

( d
dt
N3κ

)
N∗3 +N3κ

( d
dt
N∗3κ

)
= (− i

√
2k3 λ3κ + i

√
2k3 λ3κ)

(
N3κN

∗
3κ

)
= 0 .

Hence the three functions KRj , j = 1, 2, 3, given by

KR1 = |N1κ |2 = R2
1κ + 2k1

(pr Sκ(r)

xκ

)2
, KR2 = |N2κ |2 = R2

2κ + 2k2

(pr Sκ(r)

yκ

)2
,

KR3 = |N3κ |2 = R2
3κ + 2k3

(pr Sκ(r)

zκ

)2
, (28)

are quartic constants of motion:

{KRj , HK123(κ)} = 0 , j = 1, 2, 3.

The preceding result can be summarised in the following proposition:

Proposition 6 The κ-dependent Kepler Hamiltonian with three additional nonlinear terms, k1/x
2
κ,

k2/y
2
κ, and k3/z

2
κ, defined on the 3-dimensional sphere S3 (κ > 0) and on ghe hyperbolic space H3

(κ < 0)

HK123(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)
+
[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
,

with Euclidean limit

lim κ→0HK123(κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+
k

r
+
[k1
x2

+
k2
y2

+
k3
z2

]
,

is maximally superintegrable with a first set of three angular-momentum-related quadratic constants
of motion (KJ1,KJ2,KJ3) and a second set (KR1,KR2,KR3) of three curvature-dependent constants
of motion of fourth order in the momenta.

19



5 Final comments

We have studied the superintegrability of Hamiltonian systems defined on three-dimensional con-
figuration spaces of constant curvature. As observed in the Introduction the two more important
superintegrable systems are just the harmonic oscillator and the Kepler problem and because of
this we have focused our study on these two systems (usually known as Bertrand potentials) as
well as to some other related systems obtained from them by addition of nonlinear terms.

There are certain important points that are fundamental for the approach presented in this
article. We mention two. First, we have presented a curvature-dependent formalism (all the
functions depend of κ as a parameter) but, given a superintegrable Euclidean system, then many
different κ-dependent potentials can be constructed with the same flat limit; the important point
is that if we require that the superintegrability must be preserved then this condition singles out a
very particular system among all the possible curved version of the Euclidean system. Second, the
curvature-dependent formalism we have presented permit us the study of the Hamiltonian system
at the same time in both curved manifolds; that is, spherical (curvature κ positive) and hyperbolic
(curvature κ negative). This is also a very important point since these two spaces are geometrically
rather different but, in spite of this, first the Hamiltonian function H(κ) and then all the integrals
of motion Kjκ can be expressed in an unique form valid for the two spaces.

We have proved the quadratic superintegrability (and we have obtained all the integrals of motion)
of three oscillators; the isotropic harmonic, the Smorodinsky-Winternitz (S-W) system, and the
2:1:1 oscillator with nonlinear terms

• The Harmonic Oscillator on the 3-dimensional sphere S3 (κ > 0) and Hyperbolic space H3

(κ < 0)

H(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r) .

lim
κ→0

H(κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2 r2 .

• Isotropic harmonic oscillator with additional terms of the form k1/x
2
κ, k2/y

2
κ, and k3/z

2
κ:

HSW (κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2

T
2
κ(r) +

[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
.

lim κ→0HSW (κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2 r2 +

[k1
x2

+
k2
y2

+
k3
z2

]
.

• Oscillator 1:1:2 on the 3-dimensional sphere S3 (κ > 0) and on the hyperbolic space H3

(κ < 0) with two nonlinear terms of the form 1/x2κ and 1/y2κ:

H112(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2
(x2κ + y2κ + 4A2

zκ

1− κ(x2κ + y2κ)

)
+
[ k1
x2κ

+
k2
y2κ

]
.

lim κ→0H112(κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+

1

2
α2 (x2 + y2 + 4z2) +

[k1
x2

+
k2
y2

]
.
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and we have also proved the quadratic superintegrability of the Kepler problem with curvature κ
and the higher-order superintegrability of the Kepler problem with additional nonlinear terms:

• Kepler Hamiltonian on the 3-dimensional sphere S3 (κ > 0) and on the hyperbolic space H3

(κ < 0)

HK(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)
.

• Curvature-dependent Kepler Hamiltonian with three additional terms of the form k1/x
2
κ,

k2/y
2
κ, and k3/z

2
κ

HK123(κ) =
1

2

(
p2r +

1

S2
κ(r)

(
p2θ +

p2φ

sin2 θ

))
+

k

Tκ(r)
+
[ k1
x2κ

+
k2
y2κ

+
k3
z2κ

]
.

lim κ→0HK123(κ) =
1

2

(
p2r +

1

r2

(
p2θ +

p2φ

sin2 θ

))
+
k

r
+
[k1
x2

+
k2
y2

+
k3
z2

]
.

We finalise with the following two comments. (i) In the two cases, oscillator and Kepler, the
existence of several integrals of motion appears as related with the properties of certain complex
functions (functionsMjκ for the oscillator in Section 3.1 and functionsNjκ for Kepler in Section 4.2).
In fact, a very similar situation was already obtained in ref. [33] in the study of superintegrable
Hamiltonian systems on 3-dimensional conformally Euclidean spaces. A natural question is if
this complex-related method is limited to these two particular systems or it can be applied to
other different Hamiltonian systems. (ii) The study of classical superintegrability can also be
considered as a first step for the study of the corresponding quantum versions (we recall that
quantum superintegrability is related with the degeneracy of the energy levels as in the hydrogen
atom). The behaviour of the functions Mjκ and Njκ shows a certain relation with the properties
of classical ladder functions studied in [71]. An interesting point is if the quantization of the
functions Mjκ and Njκ as appropriate operators can be related with quantum ladder operators.
Thus, quantum version of the properties presented in this paper can also be considered as a matter
to be studied.

6 Appendix I. Properties of the matrix [Kijκ]

The symmetric matrix [Kijκ] of the κ-depending integrals of motion, {Kijκ , H(κ)} = 0, obtained
in the section (3.1) represents a generalization of the Fradkin tensor [3] for the dynamics of the
curvature-dependent Hamiltonian H(κ). Now we present its more important algebraic properties

(i) The trace of the matrix [Kijκ], that in the Euclidean case is just the Hamiltonian, is now
the Hamiltonian plus a curvature-dependent term (related with the angular momentum) that
vanish in the Euclidean limit

tr[Kijκ] = K11κ +K22κ +K33κ , tr[Kijκ] + κ (J2
1 + J2

2 + J2
3 ) = 2H(κ) .
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(ii) The matrix [Kijκ] is singular, that is, det[Kijκ] = 0. In fact, the six matrix elements Kijκ =
Kjiκ, i, j = 1, 2, 3, are six different integrals of motion for the Hamiltonian H(κ) and, as
only five of them can be independent, the equation det[Kij ] = 0 states an algebraic relation
between them.

(iii) The action of [Kij ] on the angular momentum is given byK11κ K12κ K13κ

K21κ K22κ K23κ

K31κ K32κ K33κ

 J1J2
J3

 = 0,

that can be rewritten as the following three equations

K11κJ1 +K12κJ2 +K13κJ3 = 0 ,

K21κJ1 +K22κJ2 +K23κJ3 = 0 ,

K31κJ1 +K32κJ2 +K33κJ3 = 0 .

The contraction of [Kijκ] with the angular momentum gives zero.

(iv) The following relations between the components of the matrix are true:

x2κK22κ−2xκyκK12κ+y2κK11κ = (Cκ(r))2J2
3 , y2κK33κ−2yκzκK23κ+z2κK22κ = (Cκ(r))2J2

1 ,

z2κK11κ − 2zκxκK31κ + x2κK33κ = (Cκ(r))2J2
2 ,

where we recall that lim κ→0 Cκ(r) = 1.

(v) The following relations between the components of the matrix are true:

K11κK22κ −K2
12κ = α2J2

3 , K22κK33κ −K2
23κ = α2J2

1 , K33κK11κ −K2
31κ = α2J2

2 .

(vi) The following three algebraic properties are true

Kijκxiκxjκ = 2(x2κ + y2κ + z2κ)H(κ)− (J2
1 + J2

2 + J2
3 ) ,

KijκxiκPj = (pr Sκ(r))
(

2H(κ)− κ(J2
1 + J2

2 + J2
3 )
)
,

KijκPiPj = (P 2
1 + P 2

2 + P 2
3 )2 + α2(Tκ(r))2 p2r ,

where we have made use of the following equality

xκP1 + yκP2 + zκP3 = pr Sκ(r) .
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7 Appendix II. Two other alternative approaches

We have studied the dynamics on the curvature constant spaces S3 and H3 by making use of the
curvature-dependent trigonometric and hyperbolic functions Cκ(x) and Sκ(x). In this way the
expression of the differential element of distance ds2(κ) and the kinetic function Tg(κ) take the
following form when written in geodesic polar coordinates (r, θ, φ)

ds2(κ) = dr2 + S
2
κ(r) dθ2 + S

2
κ(r) sin2 θdφ2 ,

and

L = Tg(κ) = (
1

2
)
(
v2r + S

2
κ(r) v2θ + S

2
κ(r) sin2 θ v2φ

)
.

Next we present two other different approaches that can be obtained from this one by making
use of a change of the geodesic distance r but preserving the angular coordinates.

1. Let us consider the κ-dependent change (r, θ, φ)→ (ρ, θ, φ) given by ρ = Sκ(r). Then, when
written in these new coordinates, the κ-dependent metric and kinetic term become

ds2κ =
dr2

1− κ ρ2
+ ρ2 dθ2 + ρ2 sin2 θ dφ2 ,

and

L = Tg(κ) = (
1

2
)
( v2ρ

1− κ ρ2
+ ρ2 v2θ + ρ2 sin2 θ v2φ

)
.

In this case, the Lagrangians of the harmonic oscillator and Kepler problem take the form

L(κ) = (
1

2
)
( v2ρ

1− κ ρ2
+ ρ2 v2θ + ρ2 sin2 θ v2φ

)
− α2

2

(
ρ2

1− κ ρ2

)
,

and

L(κ) = (
1

2
)
( v2ρ

1− κ ρ2
+ ρ2 v2θ + ρ2 sin2 θ v2φ

)
− k

(√
1− κ ρ2
ρ

)
.

This formalism was used for example in [54, 55, 56, 57]

2. Let us now consider a new κ-dependent change (r, θ, φ)→ (R, θ, φ) given by R = Tκ(r). Then,
when written in these new coordinates, the κ-dependent metric and kinetic term become

ds2κ =
dρ2

(1 + κR2)2
+

R2 dθ2

(1 + κR2)
+

ρ2

(1 + κR2)
sin2 θ dφ2 ,

and

L = Tg(κ) = (
1

2
)
( v2R

(1 + κR2)2
+

R2 v2θ
(1 + κR2)

+
R2 sin2 θ

(1 + κR2)
v2φ

)
In this case, the Lagrangians of the harmonic oscillator and Kepler problem take the form

L(κ) = (
1

2
)
( v2R

(1 + κR2)2
+

R2 v2θ
(1 + κR2)

+
R2 sin2 θ

(1 + κR2)
v2φ

)
− α2

2
R2 ,
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Figure 1: Plot of the potential Vκ, α = 1, as a function of r, for κ < 0 (lower curves), κ = 0 (dashed
line) and κ > 0 (upper curves).

and

L(κ) = (
1

2
)
( v2R

(1 + κR2)2
+

R2 v2θ
(1 + κR2)

+
R2 sin2 θ

(1 + κR2)
v2φ

)
− k

R
.

This approach is the one studied by Higgs in Ref. [72] (the study of Higgs was originally
limited to a spherical geometry but the idea can be extended to the hyperbolic space).

We note that both radial variables, ρ and R, are well defined. In the hyperbolic κ < 0 case the
two functions Sκ(r) and Tκ(r) are positive for r > 0 and concerning the spherical κ > 0 case this
property is also true because then r is restricted to a bounded interval.

The situation can be summarised as follows. We have obtained three alternative ways of describ-
ing the Lagrangian/Hamiltonian systems on spaces of constant curvature: the original trigonomet-
ric/hyperbolic formalism and the two other approaches obtained from it. Of course, each one of
these three different approaches has its own characteristics and advantages.
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Figure 2: Plot of the Kepler potential −1/Tκ(r) as a function of r, for the unit sphere κ = 1
(upper curve), Euclidean potential (dashed line), and unit Lobachewski space κ = −1 (lower curve).
The three functions are singular at r = 0 but the Euclidean function V0 appears in this formalism
as making a separation between two different behaviours. In fact V0 is the only potential that
vanishes at long distances.
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[53] J.F. Cariñena, M.F. Rañada and M. Santander, “The quantum harmonic oscillator on the sphere and
the hyperbolic plane”, Ann. Physics 322, no. 10, 2249–2278 (2007).
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