Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Multiple approaches at admission based on lung ultrasound and biomarkers improves risk identification in COVID-19 patients
Estadísticas de uso
Gráficos
Multiple approaches at admission based on lung ultrasound and biomarkers improves risk identification in COVID-19 patients
Rubio-Gracia, J
;
Sánchez-Marteles, M
;
Garcés-Horna, V
;
Martínez-Lostao, L
;
Ruiz-Laiglesia, F
;
Crespo-Aznarez, S
;
Peña-Fresneda, N
;
Gracia-Tello, B
;
Cebollada, A
;
Carrera-Lasfuentes, P
;
Pérez-Calvo, JI
(Universidad de Zaragoza)
;
Giménez-López, I
(Universidad de Zaragoza)
Resumen:
Background: Risk stratification of COVID-19 patients is fundamental to improving prognosis and selecting the right treatment. We hypothesized that a combination of lung ultrasound (LUZ-score), biomarkers (sST2), and clinical models (PANDEMYC score) could be useful to improve risk stratification. Methods: This was a prospective cohort study designed to analyze the prognostic value of lung ultrasound, sST2, and PANDEMYC score in COVID-19 patients. The primary endpoint was in-hospital death and/or admission to the intensive care unit. The total length of hospital stay, increase of oxygen flow, or escalated medical treatment during the first 72 h were secondary endpoints. Results: a total of 144 patients were included; the mean age was 57.5 ± 12.78 years. The median PANDEMYC score was 243 (52), the median LUZ-score was 21 (10), and the median sST2 was 53.1 ng/mL (30.9). Soluble ST2 showed the best predictive capacity for the primary endpoint (AUC = 0.764 (0.658–0.871); p = 0.001), towards the PANDEMYC score (AUC = 0.762 (0.655–0.870); p = 0.001) and LUZ-score (AUC = 0.749 (0.596–0.901); p = 0.002). Taken together, these three tools significantly improved the risk capacity (AUC = 0.840 (0.727–0.953); p = 0.001). Conclusions: The PANDEMYC score, lung ultrasound, and sST2 concentrations upon admission for COVID-19 are independent predictors of intra-hospital death and/or the need for admission to the ICU for mechanical ventilation. The combination of these predictive tools improves the predictive power compared to each one separately. The use of decision trees, based on multivariate models, could be useful in clinical practice. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Idioma:
Inglés
DOI:
10.3390/jcm10235478
Año:
2021
Publicado en:
Journal of Clinical Medicine
10, 23 (2021), 5478 [11 pp]
ISSN:
2077-0383
Factor impacto JCR:
4.964 (2021)
Categ. JCR:
MEDICINE, GENERAL & INTERNAL
rank: 55 / 172 = 0.32
(2021)
- Q2
- T1
Factor impacto CITESCORE:
4.4 -
Medicine
(Q2)
Factor impacto SCIMAGO:
1.04 -
Medicine (miscellaneous)
(Q1)
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Fisiología
(
Dpto. Farmac.Fisiol.y Med.L.F.
)
Área (Departamento):
Area Medicina
(
Dpto. Medicina, Psiqu. y Derm.
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-01-18-09:12:19)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-02-09, última modificación el 2024-01-18
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks