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Prologue

Many times I have wondered what the great progress in medicine is due to. In

recent decades, Medicine has advanced a lot and already cures diseases that were

impossible to cure for a long time. This development is due to new technologies,

among them: ultrasound, scan, resonance, etc.

Almost all diseases are tracked thanks to these new technologies that consist

of reproducing images of the 3D world in a 2D plane (screen). These analyses are

essential for making a correct decision by doctors for the cure of a patient. But

what exactly are these technologies based on?

The key is the determination of a general computer vision problem, known as

triangulation, and it consists of reconstructing a point in space X, knowing its

projections on two planes π and π′ (image planes). To do this, we visualize the

points in 3D space by extending them to the three-dimensional projective space

P3. In addition, this triangulation process is applied in many other spheres of

Sciences like Geology, Astronomy, Meteology, etc.

For me this work ”Euclidean distance problems” has been a fascinating chal-

lenge since it encompasses many branches of Mathematics! It combines techniques

from Algebra, Geometry, Numerical Analysis, Probability and even the Computa-

tional Part (implementation of algorithms)!

First of all, we give a brief description of Euclidean and Projective geometries.

Projective geometry is a non-metric form of elementary geometry, that means

that it is not based on a concept of distance. Next, we focus on the study of

the transformations that preserve the structure of a projective space, preserving

projective subvarieties. This sets a relation between geometric figures and their

images (the most common example consists of 3D figures with projections on a
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plane 2D). Then, we discuss the basic concepts of projective geometry with which

the process of capturing an image with cameras is associated. We introduce new

notions such as: line at infinity and ideal points.

Now, having the basic tools of projective geometry, we can give an answer to

the following question: how does a camera create images of the three-dimensional

world in two dimensions? Using two main camera models (for camera model we

understand the projection of P3 → P2), where each model can be described by

a (3 × 4)-matrix (up to scalar multiplication) of maximum rank. On the one

hand, the finite camera models are characterized by having the first submatrix

of P regular, and, on the other hand, the camera models at infinity are those

whose first submatrix of P is singular (for example, the cognate chamber). We

will also describe the structure that projective cameras have and the properties

they possess.

Once we understand how a pinhole camera works, we introduce the concept of

epipolar geometry (geometry of a stereo vision: the intersection of two planes π

and π′ of the image). This geometry can be described algebraically by means of a

fundamental matrix F, and this time it fulfills a series of properties related to the

points of the planes π and π′ (points).

This leads us to the following question: How to find a point X in 3D that

optimally fits the measured image points, that is, their projections x y x′i on the

planes π and π′? (see Fig. 1). First, we have to base ourselves on the projective

reconstruction theorem which aims to determine H (a 2D homography). Then, to

answer the previous question, we give an algorithm for solving the reconstruction

(triangulation) problem.

In practice, however, the coordinates of the image points x and x′i are difficult

to measure accurately. To do this, we are going to describe some of the best known

and most successful algorithms, such as: Direct Linear Transformation (DLT) - to

reduce errors; Maximum Probability Estimate (MLE) - (assuming that the errors,

produced when projecting points of 3D space in 2D, follow a pattern) to minimize

said error; RANSAC robust Estimation Algorithm - which allows detecting outliers
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(the furthest points), in order to achieve a tighter image (corrected image). In

short, all these algorithms are necessary for resolution and correction of pictures.
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Resumen

Para mı́, este trabajo “Problemas de distancia eucĺıdea” ha sido un desaf́ıo

fascinante ya que abarca muchas ramas de las matemáticas. Combina técnicas de

Álgebra, Geometŕıa, Análisis Numérico, Probabilidad e incluso la Parte Computa-

cional (implementación de algoritmos)

Vamos a dar primero una breve descripción de la geometŕıa eucĺıdea y ge-

ometŕıa proyectiva.

El objetivo de este trabajo es explicar de los procedimientos de calibración de

imágenes, la mayoŕıa de los cuales se basan en el modelo de cámara estenopeica,

y este modelo a su vez se basa en la geometŕıa proyectiva.

A continuación, nos centramos en el estudio de la geometŕıa proyectiva que

proporciona un modelo lineal de las imágenes del proceso de captación a medida

que estudia la relación entre figuras geométricas y su proyección (el ejemplo más

común consiste en figuras 3D con proyecciones en un plano 2D). Después, discu-

timos los conceptos básicos de la geometŕıa proyectiva con los que está asociado

el proceso de captura de una imagen con cámaras. Introducimos nociones como:

recta en el infinito y puntos ideales.

Ahora bien, teniendo las herramientas mencionadas anteriormente, nos cen-

tramos en dar una representación de un mundo tridimensional en dos dimensiones

(gracias a la proyección), es decir, en describir cómo una cámara (estenopecia)

crea imágenes. Destacaremos dos principales modelos de cámaras (por modelo

de cámara entendemos la proyección de P3 → P2), donde cada modelo se puede

describir mediante una matriz P de dimensión (3 × 4) (salvo escalar) de rango

máximo. Por un lado, los modelos finitos de cámara que se caracterizan por tener

la primera submatriz de P regular, y, por otro lado, los modelos de cámaras en
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el infinito cuya primera submatriz de P es singular (por ejemplo, la cámara af́ın).

Además, estudiaremos la estructura que tienen las cámaras proyectivas y aśı como

las propiedades que poseen.

Una vez entendido cómo funciona una cámara estenopecia, introducimos el

concepto de geometŕıa epipolar (geometŕıa de una visión estéreo: la intersección

de dos planos π y π′ de la imagen). Dicha geometŕıa se puede describir algebraica-

mente mediante una matriz fundamental F, y esta a su vez cumple una serie de

propiedades relacionadas con los puntos de los planos π y π′ (puntos imagen).

Esto nos lleva a plantearnos el siguiente asunto: ¿Cómo encontrar un punto X

en 3D que se ajuste de manera óptima a los puntos de imagen medidos, es decir,

sus las proyecciones x y x′i sobre los planos π y π′? (ver Fig. 1).

Figure 1. Breve descripción de Geometŕıa Epipolar

Primero, nos basamos en el teorema de reconstrucción proyectiva que tiene

como objetivo determinar H (una homograf́ıa 2D). Luego, para responder a la

pregunta anterior, vamos a dar un algoritmo para resolver el problema de recon-

strucción (triangulación).

En la práctica, sin embargo, las coordenadas de los puntos imagen x y x′i

son dif́ıciles de medir con precisión. Para ello, vamos a describir algunos de los

algoritmos más conocidos y exitosos, como por ejemplo: Transformación Lineal

Directa (DLT)- para reducir los errores; Probabilidad Máxima Estimacion (MLE)-

(asumiendo que los errores, producidos al proyectar puntos del espacio 3D en 2D,
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siguen un patrón) para minimizar dicho error; Algoritmo de Estimación robusto

RANSAC - que permite detectar los valores at́ıpicos (los puntos más alejados),

para conseguir de esta manera una imagen más ajustada (imagen corregida). En

definitiva, todos estos algoritmos son necesarios para la resolución y corrección de

imágenes.
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CHAPTER 1

Review of basic concepts

1. Euclidean geometry vs projective geometry

A basic idea between Euclidean geometry and projective geometry is that the

first one describes shapes ‘as they are’, however the second shows objects ‘as they

appear’.

Euclid, introduces an axiomatic approach to geometry in his book Elements

300 BC. According to it, Euclidean geometry is based on measurements taken on

rigid shapes, eg. lengths and angles, hence the notion of shape invariance (under

certain transformations called rigid motions).

Projective geometry is less restrictive than Euclidean geometry. It is an in-

herently non-metric geometry, which means that the facts are independent of any

metric structure. Under the projective transformations, the incidence structure

and the projective harmonic conjugate relationship are preserved.

In short, a projective geometry is an extension of Euclidean geometry in which

the ‘direction’ of each line is included within the line as an additional ‘point’, and

in which a ‘horizon’ of directions corresponding to Coplanar lines is considered a

‘line’. Therefore, two parallel lines meet on a horizon line by virtue of incorporating

the same direction.

Gérard Desargues was the initiator of projective geometry, as he mathemati-

cally founded the methods of perspective developed by Renaissance artists. We

give a modern introduction to projective spaces in any dimension and focus on 2

and 3-dimensional geometry.
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2. Projective geometry

Projective geometry is the study of invariable geometric properties by projec-

tion. To create more fundamental geometry than Euclidean geometry, eliminate

the distinctions between conics, angles, distance, and parallelism.

This new geometry can be understood in terms of rays of light emanating

from a point. In the diagram above, the 4IJK drawn on the blue plane would

be projected onto the 4LNO on the ground. This projection does not preserve

either the angles or the lengths of the sides, so the triangle on the ground will have

angles and sides of different sizes than the ones on the screen. (“Two triangles

are in perspective from a point if and only if they are in perspective from a line”-

Desargues theorem).

Figure 1. Projective geometry and perspective

Why do we need to have a general idea about projective geometry? To under-

stand well the image calibration procedures, most of which are based on the

pinhole camera model, and this model in turn is based on projective geometry.

Projective geometry provides a linear model of the uptake process images as

it studies the relationship between geometric figures and their projection. The

16



common example used consists of 3D figures with projections in a 2D plane (see [1,

2, 3]).

Now let’s start by discussing the basic concepts of the projective geometry that

the process of capturing an image with cameras are associated with.

3. Projective coordinates in the plane

3.1. The projective plane as equations of affine lines. Consider in R3

the following equivalence relation:

(1) x ∼ y if ∃λ ∈ R \ {0} such that x = λy.

The projective plane P2 is the set of equivalence classes of vectors in R3\{(0, 0, 0)}
under the relation above. Later we will see in detail the general projective space Pn.

Relation (1) appears naturally when considering affine lines in R2 as follows. In

affine geometry, any point p in the real plane is represented as a pair of coordinates

(x, y) ∈ R2. We can also consider R2 as a vector space in which (x, y) is identified

with a vector. Thus, a point is associated with a vector.

A line r ⊂ R2 is represented by its affine equation: ax + by + c = 0, where

different choices of a, b and c give rise to different lines. In this way, a straight

line can be represented by a vector: vr = (a, b, c)>. This vector represents the

projective coordinates of the affine line r. We will follow column notation for

vectors. For simplicity and if no ambiguity seems likely to arise, we will denote

this vector as r = (a, b, c)>. However, the same line r can be described using

any vector (λa, λb, λc)> for λ 6= 0. Hence, r is naturally identified with the point

[a, b, c] in the projective plane.

In projective geometry coordinates are introduced that allow representations

multiple, both of points and lines. Thanks to these new coordinates, concepts can

be studied as improper point and projective line analytically.

Note the following properties.
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• Degrees of freedom (dof): The number of parameters, in the case of

a line is 2, associated with the dimension of the space of lines in R2.

• To determine the line through two points p and p′, just consider the

notation p̄ = (x, y, 1) for p = (x, y). Note that r = p̄ × p̄′ describes such

a line.

• The intersection p of two lines r and r′ can be obtained from

(2) p̄ = r × r′.

Note that the last coordinate of p̄ is ab′ − a′b. Therefore this coordinate is 0 if

and only if r and r′ are parallel. Otherwise, r × r′ = (X, Y, Z) = (X/Z, Y/Z, 1) =

p̄ ∈ P2 since Z 6= 0. The point p = (X/Z, Y/Z) is the affine intersection point of

r and r′. Note that r × r′ is well defined as a point of P2.

3.2. The line at infinity and ideal points. Continuing with the previous

observation we see that the affine plane R2 is identified with the subset Uz =

{(x, y, 1) | x, y ∈ R2} ⊂ P2. Now, if the lines r and r′ were parallel (and different)

r×r′ = (X, Y, 0) ∈ P2. The set of all points (X, Y, 0) represents the projective line

Z = 0 that we will call it the line at infinite and denote it by `∞. Its intuitive

interpretation is that these points are the “intersection” of two parallel affine lines

(see Figure 2). Finally, if r = r′, then r × r′ = (0, 0, 0) which does not represent a

projective point. The points on `∞ are called ideal points.

Remark 1.1. The line at infinity can be represented by the vector `∞ =

(0, 0, 1)>, which describes the equation Z = 0.

Note that given r = (a, b, c) and r′ = (a, b, c′), that is, r ‖ r′, each of them

“intersects” with `∞ at the same ideal point, which has equations (b,−a, 0).

In order to visualize it, let’s consider this example taking the two green parallel

lines r and r′ in the figure above, their intersection is the green point (its coordi-

nates indicate the direction of these lines). This point is on the infinity line, the

blue line.

Furthermore, `∞ could be interpreted as the set of directions of lines in the

plane.
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Figure 2. Ideal points and line at infinity

That is because (b,−a), in affine notation, is a vector tangent to the line, and

orthogonal to (a, b) (which is the normal line). In other words, (b,−a) represents

the line’s direction. The ideal point (b,−a, 0) varies over `∞, as the line’s direc-

tion (v1 and v2 see Fig. 3 varies).

Figure 3. Affine Rectification

4. The Projective Space Pn

The projective space is the space of the projective coordinates that have been

presented in the previous section.
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Definition 1.2. The projective space of dimension n, Pn is a quotient

of the set Rn+1 \{0n+1} by the following relation: x, y ∈ Rn+1 \{0n+1}, then x ∼ y

if and only if ∃λ 6= 0 s. t. x = λy.

4.1. The projective line P1. The projective space of dimension 1 is known

as projective line.

Figure 4. Projective line

Let x ∈ P1, whose projective coordinates are x = [x1, x2] as shown in Figure 4.

If `∞ : x2 = 0, then P1 \`∞ can be identified with R as follows. For any x ∈ P1 \`∞
its Euclidean coordinates can be expressed as x = x2[x1/x2, 1] (see Fig. 4). Hence,

each element of the projective line P1 represents a direction of R2. The point

x = [x1, 0] = [1, 0] ∈ `∞, is known as the improper point or point at infinity.

4.2. A model for the projective plane P2. As we have already seen, 2D

projective geometry is the study of the geometry of P2. Let’s define the model for

the projective plane:

• Points (resp. lines) in P2 are identified with lines (resp. planes) through

the origin in R3.

• The set of all vectors k(x, y, z) as k varies forms a line through origin

• Intersecting this set of rays and planes with the plane z = 1, one can

obtain points and lines.

One of the advantages of projective coordinates is to make points and lines

algebraically the same. Thus, the representation in projective coordinates of a
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Figure 5. A model for the projective plane

point of the plane is formed by a vector of three elements, and the same happens

with the representation in projective coordinates of a line of the plane.

Proposition 1.3 (Duality principle). To any theorem of 2-dimensional pro-

jective geometry there corresponds a dual theorem, that can be derived by inter-

changing the roles of lines and points in the original theorem.

5. Projective Transformations in a Plane

2D projective geometry is the study of properties of the projective plane P2

that are invariant under a group of transformations known as projectivities (also

known as projective transformations or homographies).

Definition 1.4. A projective transformation is an invertible mapping from

points in P2 (that is projective 3-vectors) to points in P2 that maps lines to lines,

in other words,

h : P2 7−→ P2

s.t. three points x1, x2 and x3 lie on the same line ⇔ h(x1), h(x2) and h(x3) do.

Let’s see some curiosities of projective transformation. Before that, consider

the following algebraic definition supported by the following theorem:
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Theorem 1.5. A mapping h : P2 → P2 is a projectivity ⇔ ∃ a non-singular

(3 × 3)-matrix H s.t. for any point in P2 expressed by x vector it satisfies that

h(x) = HX, where H represents a linear transformation

x′ = HX

 x′1
x′2
x′3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
x2
x3

 .

Moreover, H is only well defined up to scalar multiplication. The space of such

transformations forms a quasi-projective space of dimension 8.

Some characteristics of projective transformation are:

• A projective transformation in P2 is simply a linear transformation of R3

up to scalar multiplication.

• In a projective transformation projective subspaces are imaged to projec-

tive subspaces.

As it’s known, points xi are transformed in x′i = Hxi.

Let l be a line and consider l> the row vector of coefficients of its defining

equation (we use the same notation when no ambiguity can arise). Note that a

point xi ∈ l if and only if l>xi = 0. The transformed points x′i = Hxi (under a

projective transformation) lie on the line l′, which is given by l′ = H−1l.

5.1. Computing Projective Transformation. If we have the coordinates

of points on one image and know where they are mapped in the other image, we

can compute the mapping between 2 images (Theorem 1.5).

Note that each point provides 2 independent equations:

x′ =
x′1
x′3

=
h11x+ h12y + h13
h31x+ h32y + h33

=
h′11x+ h′12y + h′13
h′31x+ h′32y + 1

,

y′ =
x′2
x′3

=
h21x+ h22y + h23
h31x+ h32y + h33

=
h′21x+ h′22y + h′23
h′31x+ h′32y + 1

.

Also equations are linear in the 8 unknowns h′ij = hij/h33.
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5.2. Calibration: from projective to Euclidean geometry. Consider

`∞ = {z = 0} ⊂ P2 a line and x = (x, y, z) ∈ P2 \ `∞. We can define

‖x‖ =
(x
z

)2
+
(y
z

)2
.

In other words, the set of equidistant points is given by

Sk =

{
(x, y, z) ∈ P2 \ `∞ |

x2 + y2

z2
= k

}
=

{
(x, y, z) ∈ P2 \ `∞ |

x>C∗∞x

`>∞x
= k

}
,

where C∗∞ is the symmetric matrix defining the quadric C ≡ x2 + y2 + z2 = 0 on

the line `∞, and `>∞ = (0, 0, 1) is the row vector of coefficients of the line `∞.

This construction can be generalized for any line `∞ and any quadric C as long

as the intersection C∞ = `∞ ∩ C consists of two imaginary points. This defines a

distance in P2 \ `∞. The real quadric C∞ is called the absolute quadric.

Moreover, this can be generalized to any dimension. For any n, define in Pn\π∞
an absolute quadric C∗∞ as a real quadratic equation in the hyperplane at infinity

π∞ defining an imaginary quadric.

Using the following formal definition for any given x1,x2 ∈ Pn \ π∞:

〈x1,x2〉 :=
x>1 C

∗
∞x2

(π>∞x1) (π>∞x2)
,

and ‖x‖ :=
√
〈x,x〉, it is easy to check that

〈x1,x2〉 = ‖x1‖ · ‖x2‖ · cos θ.

A geometrical interpretation of this is the following. Consider x ∈ Pn \ π∞, then

x is in the pencil generated by C∗∞ and π2
∞. In other words, ∃λ ∈ R such that

x>
(
C∗∞ − λπ∞π>∞

)
· x = 0

that is

x>C∗∞x = λx>π∞π
>
∞x = (π>∞x)>(π>∞x) = (π>∞x)2.

In other words,

λ =
x>C∗∞x

(π>∞x)2
= ‖x‖2 = 〈x,x〉.
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This implies,

cos θ =
x>1 C

∗
∞x2

(π>∞x1) (π>∞x2)

√
(π>∞x1)

2

x>1 C
∗
∞x1

√
(π>∞x2)

2

x>2 C
∗
∞x2

=
x>1 C

∗
∞x2√

(x>1 C
∗
∞x1)(x>2 C

∗
∞x2)

.
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CHAPTER 2

Camera Geometry

Our main objective is to know how a camera creates images, that is, how

to represent a three-dimensional world in two-dimensional and it will be possible

thanks to the projection.

1. Camera Finite Models

A mapping between the 3D world (object space) and a 2D image is known as

a camera. Our principal objective is the central projection. We are going to see

different camera models, where by a camera model we understand a projection

R3 → R2, or in more generality a projective onto map P3 → P2 which will be

described by a (3× 4)-matrix (up to scalar multiplication) of maximal rank.

1.1. Basic pinhole camera. The simplest (common) camera model is the

pinhole camera. It consists of a central projection from a point C called the

camera center.

In other words, in a pinhole camera, the camera center C is the point where

the projection rays meet at and its distance from the image plane is the focal

length f .

Consider affine coordinates such that C = (0, 0, 0), {Z = f} is the plane of

projection, and p = (0, 0, f) is a point on this plane whose adapted affine coordi-

nates are (px, py), called the principal point. In a pinhole camera, a point X =

(Xc, Yc, Zc)
> in the affine space is projected to the point (px + fXc/Zc, py + fYc/Zc)

>

in the image affine coordinate frame (see Figure 1).
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Figure 1. Pinhole camera model. The camera center: C, is the
origin of the camera coordinate frame. The principal point p is the
origin of the normalized image coordinate system (x, y), and (u, v)
is the pixel image coordinate system.

In order to see this, consider {(λXc, λYc, λZc) | λ ∈ R} the ray from C to X.

Note that if λ0 := f
Zc

, then λ0X =
(
fXc

Zc
, fYc
Zc
, f
)

whose coordinates in the image

plane are (px + fXc/Zc, py + fYc/Zc).

In terms of homogeneous coordinates the previous projection can be repre-

sented by a (3× 4)-matrix, x
y
t

 .
=

 f 0 px 0
0 f py 0
0 0 1 0




X
Y
Z
T

 =

 f 0 px
0 f py
0 0 1

 1 0 0 0
0 1 0 0
0 0 1 0




X
Y
Z
T


where

.
= represents equality up to scalar multiplication.

The matrix K :=

 f 0 px
0 f py
0 0 1

 is called the calibration matrix.

In general, the camera center does not need to have coordinates (0, 0, 0), for

instance when we consider multiple cameras. In this case, the most general pro-

jection will have the form: x
y
t

 .
= KR

 1 0 0 −Cx
0 1 0 −Cy
0 0 1 −Cz




X
Y
Z
T

 .
= KR [I3 | −C]


X
Y
Z
T

 .
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Note that these camera matrices are very special, because their first minor

is non-zero. These cameras are called finite cameras. A general projective

camera, denoted by P is represented by an arbitrary homogeneous (3×4)-matrix

of rank 3.

What happens if the first submatrix is not regular? Such cameras are called

cameras at infinity and they will be described in the next section.

2. Cameras at infinity

Cameras at infinity appear in case the left-hand (3×3)-submatrix of the camera

matrix P is singular. We will see this means that its center is at infinity.

To prove this, if P represents a linear map R4 → R3 of maximal rank, then the

center C is given as the class representing the kernel of this map, that is, PC = 0.

If C is not at infinity, then its last coordinate is non-zero, say C = (C1, 1), where

C1 represents a vector of size 3. Then PC = 0 implies P1,2,3C1 + P4 = (0, 0, 0),

where P1,2,3 is the left-hand (3×3)-submatrix of the camera matrix P and P4 is its

last column, that is, P = [P1,2,3 | P4]. This means that P4 is a linear combination

of the columns of P1,2,3, hence rankP1,2,3 = rankP = 3, which means that P1,2,3 is

regular.

If C is on the plane at infinity π∞ = {T = 0}, then there are coordinates

such that C = (1, 0, 0, 0) ∈ P3. Then, the projection of X = (X, Y, Z, 1) on the

plane {Z = f} can be given as the intersection of the projective line joining C

and X, that is, {λ(X, Y, Z, 1) + µ(0, 0, 1, 0) | (λ, µ) ∈ P1} with the projective

plane Z = fT . This is (X, Y, f, 1) whose adapted coordinates are (X, Y, 1). The

transformation matrix is:

 x
y
t

 .
=

 1 0 0 0
0 1 0 0
0 0 0 1




X
Y
Z
T


which implies that the last row of P1,2,3 is zero. In particular, P1,2,3 is singular.
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This describes the general idea of an affine camera, that is, a camera at infinity

where the plane at infinity is projected over the line at infinity of the image.

In general, there could be another type of camera at infinity: the non-affine

camera, where the plane at infinity is not projected over the line at infinity of the

image.

Definition 2.1. An affine camera is of the form

P =

 p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1


i. e., a camera matrix P̃ , whose last row is p3T = (0, 0, 0, 1)>. In this case, points

at infinity are mapped to points at infinity.

In the figure (2) we can see what happens when we apply a cinematographic

technique (creating sequences of images that simulate movement) of follow-up

while zooming in, thus and so to keep objects of interest remain the same size.

As the focal length increases and the distance between the object and the cam-

era also extents, the image remains the same size but the perspective effects reduce.

Figure 2. Perspective effects reduce

Let’s begin with a finite projective camera given by

P0 = KR[I3 | −C] = K

 ρ1> −ρ1>C
ρ2> −ρ2>C
ρ3> −ρ3>C


where ρi> is the i-th row of R. The principal axis has direction ρ3, and d0 = −ρ3>C

measures the distance of the world origin from the camera center in the direction

of the principal axis.
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If the camera center is moved to C − tρ3, i.e, backwards along the principal

ray at a unit speed for a time t, and the camera matrix is (replacing C by C− tρ3

in the previous formula)

Pt = K

 ρ1> −ρ1>C
ρ2> −ρ2>C
ρ3> dt


where dt = −ρ3>C + t, (the depth of the world origin with respect to the camera

center in the direction of ρ3>).

Remark 2.2. The effect of tracking along the principal ray ρ3> is to replace

the (3, 4) entry of the matrix by the depth dt of the camera center from the world

origin.

Now let’s look at zooming where the focal camera’s length is inflated by a

factor k, that means to multiply the calibration matrix K on the right by

Pt = K

 dt/d0 0 0
0 dt/d0 0
0 0 1

 ρ1> −ρ1>C
ρ2> −ρ2>C
ρ3> dt

 .
=
dt
d0

K

 ρ1> −ρ1>C
ρ2> −ρ2>C

ρ3>d0/dt d0


So,

P∞ = lim
t→∞

Pt = K

 ρ1> −ρ1>C
ρ2> −ρ2>C
0> d0


Hence, P∞ is an instance of an affine camera at infinity (by Definition 2.1). Note

that P∞ can be descomposed as a product of the two matrices representing the

internal camera parameters and external camera parameters.

P∞ =

[
K2×2 0̂

0̂> 1

] [
R̂ t̂
0> 1

]
In the following section we will study the reverse point of view, that is, the

intrisic properties of a camera by means of its matrix.
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3. Structure and properties of the projective cameras

As we already know, P (a general projective camera) maps world points X to

image points x under x = PX.

3.1. Structure and properties of the projective cameras.

• Camera center: Since P has 4 columns and maximal rank rankP = 3,

the projective camera has a one-dimensional right null-space. In other

words, there exists a map φ : R4 → R3 and a vector v ∈ R4 s.t. Pv = 0,

that is, v ∈ ker(φ). Let’s show that v, a represented as projective 4-vector,

is the camera center, and by agreement denote it by C. Take the line l

that contains C and consider a point A in 3-space. Points on l have the

following form: X(λ) = λA + (1− λ)C.

Points on this line l are projected to x = PX(λ) = λPA+(1−λ)PC =

λPA + 0 = λPA (because PC = 0).

In other words, all points on l are mapped to the same image point

PA, which means that l must be a ray through C, the camera center.

Note that the image of camera center is (0, 0, 0)> = PC, i.e. undefined

(the camera center is the unique point in space for which the image is

undefined in the projective plane).

How to calculate the center of the camera? According to the type of

camera, we distinguish two cases:

For finite cameras: C =

(
−P−11,2,3P4

1

)
For infinite cameras: C =

(
d
0

)
, P1,2,3d = 0 (i.e. d is a non-zero

null 3-vector of P1,2,3).

• Column points: The columns of the projective camera (denoting the

columns of P by Pi for i = 1, 2, 3, 4) are 3-vectors, and P1,P2,P3 are

known as vanishing points in the image corresponding to the X, Y and

Z axes respectively. Column P4 is the image of the coordinate origin.
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Figure 3. The principal point p̂3 = (p31, p32, p33, 0)> of the princi-
pal plane P3 of the camera.

• The principal plane: of the camera is P3, the last row of P (geomet-

rically, it is the plane through the camera center parallel to the image

plane.)

• Axis planes: the first and second rows of P represent planes P1 and P2

in space through the camera center C, corresponding to points that map

to the image lines x = 0 and y = 0 respectively.

• Principal point: the line passing through C, whose direction is per-

pendicular to the principal plane P3, is the principal axis. This axis

intersects the image plane at the principal point. This point is given by

x0 = P1,2,3P̃
3, where P̃3> is the 3rd row of P1,2,3.

• Principal ray (axis): the ray passing across the camera center with di-

rection vector P̃3>. The principal axis vector v = det(P1,2,3)P̃
3 is oriented

in front of the camera if det(P1,2,3) > 0.

An interesting question in this context is if and how we can determine if a

point X is in front of the camera.

Remark 2.3. Let X = (X, Y, Z, T )> = (X̃>, 1) be a 3D point and P = [P1,2,3 |
P4] be a finite camera matrix. Suppose PX = w(x, y, 1)>, where w = P̃3>(X̃−C),

(remember that P̃3 is the 3rd column of P1,2,3.)

Then depth(X; P) = sign(detP1,2,3)w

T‖P̃3‖
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Note that depth(X; P) does not depend on the particular projective rep-

resentation of X and P. To prove it, let’s take Xλ = (λX, λY, λZ, λT )> and

Pµ = [µP1,2,3|µP4], with λ, µ 6= 0. So PµXλ = µλω(x, y, 1)>.

Then, depth(Xλ; Pµ) = sign(det(µP1,2,3)µλw

λT‖µP̃3‖ = sign(det(µP1,2,3)µ6λw
6λT |µ|‖P̃3‖ =

=


sign(det(P1,2,3)6µw

T 6µ‖P̃3‖ , if µ > 0

6−sign(det(P1,2,3)) 6−6µw
T 6µ‖P̃3‖ , if µ < 0

= depth(X; P)

Therefore, depth(X; P) does not depend on the coordinates of X and P.
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CHAPTER 3

Two-View Geometry

Two cameras take a picture of the same scene from different points of view (two

perspective views). The relationship between the two resulting views is described

using epipolar geometry.

Figure 1. Example of epipolar geometry

The epipolar geometry does not dependend on scene structure (only depends

on the internal parameters of the cameras and relative pose). Let X be a point

in a 3-space; denote by x its image in the first view and x′ in the second, then

the relation between the image points is given by: (x′)>Fx = 0, where F, a 3× 3

matrix of rank 2, is known as the fundamental matrix.

In the following subsection, these concepts are described in more detail.
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1. Epipolar geometry and the fundamental matrix F

Definition 3.1. An epipolar geometry between two views is the geometry of

the intersection of the image planes (π, π′) with the pencil of planes having the line

joining the camera centers C and C′ as axis. Epipolar geometry is the geometry

of stereo vision.

Figure 2. Description 2-view Geometry/ epipolar geometry

The fundamental elements of epipolar geometry are the following:

• The epipolar plane: πe is defined by a world point X and two camera

centers C and C′.

• The baseline: lb is the line joining the camera centers C and C′.

• The epipolar line: le (respectively l′e) is obtained by intersecting an epipo-

lar plane with the image plane π (resp. π′).

• The epipole: e (resp. e′) is defined as the intersection of the baseline with

the image plane π (resp. π′).

Note that all epipolar lines intersect at the epipole. An epipolar plane intersects

the left and right image planes in epipolar lines.

Epipolar geometry can be described algebraically by means of the the funda-

mental matrix F.
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Figure 3. point-to-line projective mapping

As we have seen in section 3, an image point x back-projects to the ray in the

3-space defined by C (the first camera center), and x. The image of this ray is a

line l′ in the second view (π′). The world point X, which projects to x, must lie

on this ray, hence the image of X in the second view (π′) must lie on the epipolar

line l′e = l′.

Hence, the epipolar line is the projection in the second image of the ray from

the point x through the C of the first camera, therefore, there is a map x 7→
l′e from a point in π (1st image) to its corresponding epipolar line l′e in π′ (2nd

image). Observe that this map only depends on the cameras: P and P′ (not on

the structure). This is a point-to-line projective mapping, which is represented

by the fundamental matrix F. Moreover rankF = 2 since l′e always contains the

epipolar point e′ and thus F represents a map P2 → P1, i.e., from 2-dimensional

projective space of the first image to 1-dimensional projective space, which is the

pencil of epipolar lines through the epipole e′).

We are going to describe this mapping in next section.

2. 2D Homography and Geometric derivation of F

We will see how a plane in space π̃ can induce a 2D homography, denoted by

Hπ̃, between the image planes π and π′ such that x′ = Hπ̃x, where x ∈ π, x′ ∈ π′

via a world point X ∈ π̃. This means that, the set of points x in the first image and
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the corresponding points x′ in the second image are projectively equivalent since

they are each projectively equivalent to the planar point set Xπ̃ (see Figure 4).

Figure 4. Homography between two image planes

This can be constructed as follows. First, take a plane π̃ in space s.t. does not

pass through either of the two camera centers C, C′. The ray through the first

camera center C corresponding to the point x meets the plane π̃ at a point Xπ̃,

and then, this Xπ̃ is projected to a point x′ in the second image (on the right-hand

side in figure 4).

To obtain what is called the geometric derivation of F, we need to consider

the epipolar line l′e. This line is obtained by joing the points x′ and e′, i.e. l′e =

e′×x′ = [e′]×x′. But x′ = Hπ̃x (by the 2D homography), then l′e = [e′]×Hπ̃x. This

defines the fundamental matrix F as F = [e′]×Hπ̃ proving the following result.

Theorem 3.2. The fundamental matrix F may be written as F = [e′]×Hπ̃,

where Hπ̃ is the transfer mapping from one image to another via any plane π̃.

Furthermore, since [e′]× has rank 2 and Hπ̃ rank 3, F is a matrix of rank 2.

3. Algebraic derivation of F

The purpose of this section is to show a procedure to calculate the fundamental

matrix F knowing the two camera projection matrices P and P′.
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Here is a program made in Sage with the help of my tutor. It is about obtaining

(without the need to do any calculation) the fundamental matrix F, knowing P1

and P2, two camera matrices.

First, we need to find the center C1 of the first camera P1 starting from the

minors of the matrix P1.

And then, depending on whether or not each of the two cameras are affine or

not, we get to obtain the fundamental matrix F.

4. Properties of F and the epipolar line homography

We recall the definition of the fundamental matrix introduced in section 3.

Definition 3.3. Given two cameras, the fundamental matrix F is the unique

3× 3 projective matrix, with rankF = 2 satisfying

x′>Fx = 0
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for all corresponding image points x = PX↔ x′ = P′X.

Let’s describe the most important properties of F the fundamental matrix of

a pair of cameras (P,P′):

• F> is the fundamental matrix of the pair (P′,P).

• for any point x ∈ π (the first image), the corresponding epipolar line is

l′e = Fx. Similarly, le = F>x′ is the epipolar line corresponding to x′.

• for any point x 6= e the epipolar line l′e = Fx contains the epipole e′. So,

e′>(Fx) = (e′>F)x = 0, ∀x. Hence, e′ is the left null-vector of F, i.e.,

e′>F = 0. Analogously, e is the right null-vector of F.

• The set of fundamental matrices forms a projective space of dimension 7.

This is because the (3× 3)-matrix is defined only up to scalar multiplica-

tion and det(F) = 0, which describes a hypersurface in P8.

• Any point x ∈ le is mapped to the same line l′e, i.e., @ inverse mapping

and F is not of full rank.

Theorem 3.4. Let le and l′e be corresponding epipolar lines, and k any line

not passing through the epipole e, then the relation between le and l′e is:

l′e = F[k]×le and le = F>[k′]×l
′
e.

Proof. Consider k any line that does not passing through the epipole. Note

that [k]×le is a point, moreover, the point of the intersection of the lines le and k.

Let’s denote it by x, since [k]×le ∈ le, the epipolar line (in the first image). Thus,

F[k]×le = Fx = l′e (by 2nd property of the fundamental matrix F.) Analogously,

[k′]×l
′
e is the point which lies on the intersection of the lines k′ and l′e. Denotyng

that point by x′ (because it lies on the epipolar line l′e), we obtain F>[k′]×l
′
e =

F>x′ = le (this last equality comes from the 2nd property of F.)

5. Image reconstruction from two views

In this section we address the question about what can be determined if we

only know the image points xi, x′i and their correspondences. Without knowing

anything about the calibration (or position of the two cameras P and P′), we can
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compute a projective reconstruction of a scene from two views using the following

result:

Depending on the context and the data, this is what we mean by reconstruction.

• A reconstruction is the computation of (the coordinates of) a point in

a 3D space, starting with the coordinates of its image in a number of

cameras whose position is known.

• Projective reconstruction is the computation of the structure of a scene

from images (that are taken with uncalibrated cameras), inducing in a

scene structure, and camera motion that may differ from the true geom-

etry by an unknown 3D projective transformation.

Theorem 3.5 (Projective reconstruction). Suppose that xi ↔ x′i is a set of

correspondences between points in two images and that the fundamental matrix F

is uniquely determined by the condition x′>i Fxi = 0 ∀i. Let (P1,P
′
1, {X1i}) and

(P2,P
′
2, {X2i}) be two reconstructions of the correspondences xi ↔ x′i. Then ∃ a

non-singular matrix H s.t. P1 = P2H, P′1 = P′2H and X2i = HX1i for all i,

except for those i s.t. Fxi = x′>i F = 0

See the proof [7, p 266]

6. Description of the algorithm for solving the reconstruction problem

Let’s describe the process (the projective reconstruction) in other words, using

these three steps:

(1) Compute the epipolar geometry (represented by F, the fundamental ma-

trix) from point correspondences xi ↔ x′i

(2) Now, compute the motion, the cameras P and P′ from F. We get P =

[I | 0], P′ = [[e′]×F | e′], where F>e′ = 0 (from the properties of F)

(3) Finally, compute the 3D structure Xi from P, P′ and the point corre-

spondences xi ↔ x′i (triangulation, see (5)).
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Figure 5. Projective reconstruction via triangulation

6.1. Statement of the problem. The term reconstruction refers to the fol-

lowing problem. Given corresponding measured (i.e. approximated or noisy) image

points xi and x′i, and (exact) cameras P and P′, compute the world (3D) point X.

In this case, there is a problem: because of the presence of noise, back projected

rays might not intersect (see (6)).

Now, we are going to describe three solutions from three different points of

view.

6.2. The vector solution. The vector solution is geometrically discribed in

Figure 7. The solution is given by the middle point of the segment minimizing the

distance between the back projected rays.
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Figure 6. A noise problem

Figure 7. A vector solution

6.3. The algebraic solution. Let’s describe the linear solution, which is

referred to as the algebraic solution. To solve for X, use these equations x = PX

and x′ = P′X.
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For the 1st camera:

P =

 p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 =

 P1>

P2>

P3>


where Pi> are the rows of P.

• Forming a cross product x × (PX) = 0 to eliminate unknown scale in

λx = PX
x
(
P3>X

)
−
(
P1>X

)
= 0

y
(
P3>X

)
−
(
P2>X

)
= 0

x
(
P2>X

)
− y

(
P1>X

)
= 0

• Realign as (first two equations only)[
xP3> −P1>

yP3> −P2>

]
X = 0

Analogously for the 2nd camera:[
x′P′3> −P′1>

y′P′3> −P′2>

]
X = 0

Joining together gives

BX = 0

where B is the (4× 4)-matrix

B =


xP3> −P1>

yP3> −P2>

x′P′3> −P′1>
y′P′3> −P′2>


from which X can be solved up to scale.

Note that, BX = 0 means that X ∈ ker(φ), where φ is the map φ : R4 → R3.

(See subsection 3.1, Chapter 2)

The problem with this approach is that it does not minimize anything with a

meaningful geometrically, but it has the clear advantage that it extends to more

than two views.

Conclusion: If we have the fundamental matrix F we can obtain, using (3.5),

the matrices P and P′ in order to construct the rays (see Figure 6) and by the

equations x = PX and x′ = P′X, we find the minimum distance between two

lines (see Figure 7) whose midpoint is the solution sought X.
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6.4. Geometric and Statistical error. Here we only give a general idea of

the geometric-statistical error. This perspective will be explained in more detail

in section 2.

The objective is to estimate a 3D point X̂ that (exactly) satisfies the supplied

camera geometry, then it projects as

x̂ = PX̂ x̂′ = P′X̂

and the purpose is to estimate X̂ from the image measurements x and x′, min-

imizing d(x, x̂)2 + d(x′, x̂′)2, where d(•, •) denotes the Euclidean distance (see

Figure 6.4).

The statistical machinery comes after assuming that the error follows a certain

distribution.

Remark 3.6. If the measurement noise follows a Gaussian (or Normal) dis-

tribution of mean zero, ∼ N (0, σ2), then the minimizing geometric error is the

Maximum Likelihood Estimate of X.

See the [7, p 284-285]
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CHAPTER 4

Different algorithms for image resolution and correction

1. Basic DLT algorithm

The purpose of this section is to describe an algorithm to approximate a 2D

homography given a set of measured point images using the Direct Linear Trans-

formation (DLT) algorithm. We will also explain what we mean by approximate.

1.1. General setting. As we know, 2D homography consists in: given a set

of points xi ∈ P2 and a corresponding set of points x′i, compute the projective

transformation H such that Hxi = x′i. To determine the 2D homography matrix

H, we need solve x′i ×Hxi = 0 for each i. A simple linear solution to H can be

calculated by expressing the transform in terms of a vector cross-product.

Now we denote the j-th row of the matrix H by hj>, and xi by (xi, yi, wi).

Then,

Hxi =

 h1> · xi
h2> · xi
h3> · xi

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

xiyi
wi


Denoting x′i as (x′i, y

′
i, w

′
i)
> the cross-product is given explicitly by:

x′i ×Hxi =

 y′ih
3>xi − w′ih2>xi

w′ih
1>xi − x′ih3>xi

x′ih
2>xi − y′ih1>xi


Since hj>xi = x>i hj for j = 1, 2, 3, we obtain a set of 3 equations for H that can

be written as in the following form: 0> −w′ix>i y′ix
>
i

w′ix
>
i 0> −x′ix>i

−y′ix>i x′ix
>
i 0>

 h1

h2

h3

 = 0

Note that each column has 9 elements and the previous ecuation has the form

Aih = 0.
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When each of the four coordinates being considered is presented in this form

we have a set of equations: Aih = 0. A is a (3× 9)-matrix; H is a 9-vector whose

entries are those from the matrix H. This equation is linear in the unknown h.

It should be noted that whilst each set of coordinate matches leads us to a set

of three equations only two of them are linearly independent. Thus, it is standard

practice whilst using the DLT algorithm to ignore the third equation whilst solving

for H. The set of equations then becomes:

[
0> −w′ix>i −y′ix>i
w′ix

>
i 0> −x′ix>i

] h1

h2

h3

 = 0.

This set up the equation Aih = 0, where Ai is a (2× 9)-matrix.

Each point correspondence gives 2 equations in the entries of H. With 4 points

correspondences, we have Ah = 0 where A is a (8× 9)-matrix. Note that we can

determine H up to scale, or uniquely by setting ‖h‖ = 1.

1.2. Over-determined systems. If more than four point correspondences

are given, Ah = 0 is over-determined, and in general there will not be an exact

solution (since the measurements are inexact).

Given there is no exact solution to Ah = 0, it seems natural to minimize ‖Ah‖
subject to the constraint ‖h‖ = 1. This is what we referred to as approximating

the solution at the beginning of the section.

Let A = UDV> be the SVD descomposition of A, where U and V are or-

thogonal matrices and D is diagonal with the singular values of A. We want to

minimize
∥∥UDV>h

∥∥ =
∥∥DV>h

∥∥ subject to ‖h‖ =
∥∥V>h

∥∥ = 1. Since D is a

diagonal matrix whose diagonal contains all the singular values of A, the solution

is given by the smallest of these, say V>h = (0, . . . , 0, 1)>. Thus h is the last

column of V.

The resulting algorithm, known as the basic DLT algorithm, is summarized in

the following steps.
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1.3. The Basic DLT algorithm. Given n, 2D to 2D point correspondences

xi 7→ x′i, i = 1, ..., n with n ≥ 4, determine the 2D-homography matrix H such

that x′i = Hxi.

The algorithm is briefly described as follows:

(1) For each correspondence, compute the 2× 9 matrix Ai.

(2) Merge the Ai’s into a single matrix A which is a (2n× 9)-matrix.

(3) Obtain the SVD of A. The unit singular vector corresponding to the

smallest singular value is the solution h.

(4) Recover H from h.

2. Statistical cost functions and MLE (Maximum Likelihood

Estimation)

To apply this approach we will assume that the image coordinate measure-

ment errors obey a Gaussian probability distribution (possibly after removing the

outliers).

We denote by ∆x the estimated error, subordinated to a Gaussian distribution

with variance σ2, take x = x̄ + ∆x, where x represents the measured image points

and x̄ represents the true values of the points.

Assuming that the noise (on each measurement) is independent, the probability

density function of each measured point x is

Pr(x) =

(
1

2πσ2

)
e−d(x,x)

2/(2σ2).

2.1. Error in only one image. For simplicity, let’s consider first the case

when the errors are only in the second image. The PDF (the probability density

function) of the noise-perturbed data is given by:

Pr ({x′i} | H) =
∏
i

(
1

2πσ2

)
e−d(x

′
i,Hxi)

2
/(2σ2).
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The log-likelihood of the set of correspondences is

log Pr ({x′i} | H) = − 1

2σ2

∑
i

d (x′i,Hxi)
2

+ k,

where k is a constant.

The Maximum Likelihood estimate (MLE) of H (the homography). In

other words, it minimizes ∑
i

d (x′i,Hxi)
2
.

So, MLE is equivalent to minimizing the geometric error function for several

points (for two points we have described it in section 6.4).

2.2. Error in both images. Similarly, the PDF of the perturbed data is

Pr ({xi,x′i} | H, {xi}) =
∏
i

(
1

2πσ2

)2

e
−
(
d(xi,xi)

2+d(x′
i,Hxi)

2
)
/(2σ2)

Therefore, the MLE of the projective transformation H and the correspondences,

is one that minimizes ∑
i

d (xi,xi)
2 +

∑
i

d (x′i,Hxi)
2
.

2.3. RANSAC algorithm. A general and successful robust estimator is a

RANdom SAmple Consensus (RANSAC). The RANSAC technique counts the

number of inliers that are within ε of their predicted location (see [8, p 9-10]).

Let S be a set that contains outliers. The purpose of this algorithm is to reduce

the sample data inliers in order to obtain the minimal data set that determines a

robust fit of a model to the data set S.

The RANSAC robust estimation algorithm:

• Calculate the model from a subset, made by selecting randomly a sample

of s data points from S.

• Determine the set of data points Si (the consensus set) which are within

a distance threshold t of the model.
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• If the number of inliers (the size #Si of Si) is greater than some threshold

T , re-estimate the model using all the points in Si and terminate.

• If #Si < T , select a new subset and repeat the above.

• After N trials the largest consensus set Si is selected, and the model is

reestimated using all the points in the subset Si.

In this algorithm there are three constraints that need to be explained: the

thresholds t and T , and the number of trial samples N .

2.4. The thresholds t and T . The value t is chosen so that a point whose

distance to the model is less than t has a certain probability pt of being an inlier.

Usually t is chosen empirically. However, one can also assume, as mentioned before,

that the measurement error follows a normal distribution with zero mean N(0, σ).

The other threshold T determines the consensus set. An acceptable rule is one

for which the consensus set has a number of points similar to the inliers assumed

to be in the original data set. For example, if ε is the probability that a point is

an outlier and n = #S, then T = n(1− ε).

2.5. Adaptive algorithm for determining the number of RANSAC

samples N . Oftentimes it is not reasonable to calculate the model for all possible

choices of s data in the set S. The number of selections N (each of s points)

required can be determined in order to ensure that one of the samples contains

no outliers with a probability p. For instance, for p = 0.99 and given ε and s, the

number of samples can be obtained as:

(3) N = log(1− p)/ log(1− (1− ε)s).

Remark 4.1. To get an idea of the automatic estimation of a homography

between two images using RANSAC, consult [7, p 123].

Here is a sketch of the algorithm:

• If N =∞, then sample count == 0.

• While N > sample count Repeat

- Choose a sample and count the number of inliers.
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- Set ε = 1−(number of inliers)/(total number of points)

- Set N from ε and (3) with p = 0.99.

- Increment the sample count by 1.

• Terminate.

3. An complete algorithm to estimate H from image correspondences

In order to summarize the previous sections, we will describe a complete al-

gorithm for the Maximum Likelihood estimate Ĥ of the homography mapping

between the images, knowing n > 4 image point correspondences.

The MLE also involves solving for a set of subsidiary points {x̂i}, which mini-

mize ∑
i

d (xi, x̂i)
2 + d (x′i, x̂

′
i)
2
.

Algorithm:

• Use the linear normalized DLT algorithm, or use RANSAC to compute

Ĥ from four point correspondences.

• Geometric minimization (of Sampson error). Minimize the Sampson ap-

proximation to the geometric error. Either use the Newton algorithm, or

the Levenberg-Marquardt algorithm.

• Geometric minimization (of Gold Standard error). Compute an initial

estimate of the subsidiary variable {x̂i} using the measured points {xi}
or the Sampson correction to these points. Then minimize the cost∑

i

d (xi, x̂i)
2 + d (x′i, x̂

′
i)
2
.
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Appendix

Geometric visualization of points in space and their projections un-

der a given camera matrix

Steps to take:

(1) I define the elements of the (3 × 4) camera matrix P, denoting them by

pij with i = 1, 2, 3; j = 1, 2, 3, 4.

(2) Then create the matrix M = [P1,2,3] (square, 3 × 3) from the first three

columns of P.

(3) I check that M is regular, calculating its determinant and denote it by

m = det(M)

(4) To get the center C from the camera, we need the minors of P (See [7,

p 163])

(5) For this I consider T the 4th coordinate of C.

(6) The first coordinate of the center of the camera is: c1 = e/T with e =

det(E). E is the minor of order 3 × 3, formed by the 2nd, 3rd and 4th

column of P.

(7) Analogously, we obtain the other coordinates of point C:

c2 = f/T with f = det(F ), where F is the minor of order 3×3, formed

by the 1st, 3rd and 4th column of P and c3 = h/T with h = det(H), where

H is the minor of order 3× 3, formed by the columns: 1st, 2nd and 4th.

(8) The principal plane (denoted by PP in SAGE) is given by the 3rd row

of P.

(9) We take C the point (in projective coordinates) of the center of the cam-

era.

(10) m2 = P · C (to check that C, the center of the camera, is the one-

dimensional right null space).
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(11) I construct g, a line that passes through C and is perpendicular to the

principal plane π

(12) Choose a point A ∈ g.

(13) I define a new Pcam plane, the camera plane, which passes through A and

it is parallel to π.

(14) take y, the vector perpendicular to Pc, and passing through points C, A.

(15) I evaluate the C in the Pcam plane to see what sign it has (a = −1).

The image below shows point D, the image point of B (when B, a world point,

is in front of the projection camera).

The image below shows the case when B, a world point, is NOT front of the

projection camera:
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All of these algebraic and geometric calculations help us to visualize the process

of projection camera.
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Following this process in geogebra we get to build and see the famous trian-

gulation problem (it will be seen in detail in the exposition of this final master’s

work).
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