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Prologue

Many times I have wondered what the great progress in medicine is due to. In
recent decades, Medicine has advanced a lot and already cures diseases that were
impossible to cure for a long time. This development is due to new technologies,

among them: ultrasound, scan, resonance, etc.

Almost all diseases are tracked thanks to these new technologies that consist
of reproducing images of the 3D world in a 2D plane (screen). These analyses are
essential for making a correct decision by doctors for the cure of a patient. But

what exactly are these technologies based on?

The key is the determination of a general computer vision problem, known as
triangulation, and it consists of reconstructing a point in space X, knowing its
projections on two planes m and 7’ (image planes). To do this, we visualize the
points in 3D space by extending them to the three-dimensional projective space
P3. In addition, this triangulation process is applied in many other spheres of

Sciences like Geology, Astronomy, Meteology, etc.

For me this work ”FEuclidean distance problems” has been a fascinating chal-
lenge since it encompasses many branches of Mathematics! It combines techniques
from Algebra, Geometry, Numerical Analysis, Probability and even the Computa-

tional Part (implementation of algorithms)!

First of all, we give a brief description of Euclidean and Projective geometries.
Projective geometry is a non-metric form of elementary geometry, that means
that it is not based on a concept of distance. Next, we focus on the study of
the transformations that preserve the structure of a projective space, preserving
projective subvarieties. This sets a relation between geometric figures and their

images (the most common example consists of 3D figures with projections on a
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plane 2D). Then, we discuss the basic concepts of projective geometry with which
the process of capturing an image with cameras is associated. We introduce new

notions such as: line at infinity and ideal points.

Now, having the basic tools of projective geometry, we can give an answer to
the following question: how does a camera create tmages of the three-dimensional
world in two dimensions? Using two main camera models (for camera model we
understand the projection of P — P?), where each model can be described by
a (3 x 4)-matrix (up to scalar multiplication) of maximum rank. On the one
hand, the finite camera models are characterized by having the first submatrix
of P regular, and, on the other hand, the camera models at infinity are those
whose first submatrix of P is singular (for example, the cognate chamber). We
will also describe the structure that projective cameras have and the properties

they possess.

Once we understand how a pinhole camera works, we introduce the concept of
epipolar geometry (geometry of a stereo vision: the intersection of two planes 7
and 7’ of the image). This geometry can be described algebraically by means of a
fundamental matrix F, and this time it fulfills a series of properties related to the

points of the planes 7 and 7’ (points).

This leads us to the following question: How to find a point X in 3D that
optimally fits the measured image points, that is, their projections x y X, on the
planes m and 7' ? (see Fig. |1]). First, we have to base ourselves on the projective
reconstruction theorem which aims to determine H (a 2D homography). Then, to
answer the previous question, we give an algorithm for solving the reconstruction

(triangulation) problem.

In practice, however, the coordinates of the image points x and x| are difficult
to measure accurately. To do this, we are going to describe some of the best known
and most successful algorithms, such as: Direct Linear Transformation (DLT) - to
reduce errors; Mazimum Probability Estimate (MLE) - (assuming that the errors,
produced when projecting points of 3D space in 2D, follow a pattern) to minimize

said error; RANSAC robust Estimation Algorithm - which allows detecting outliers



(the furthest points), in order to achieve a tighter image (corrected image). In

short, all these algorithms are necessary for resolution and correction of pictures.






Resumen

Para mi, este trabajo “Problemas de distancia euclidea” ha sido un desafio
fascinante ya que abarca muchas ramas de las mateméticas. Combina técnicas de
Algebra, Geometria, Anélisis Numérico, Probabilidad e incluso la Parte Computa-

cional (implementacién de algoritmos)

Vamos a dar primero una breve descripciéon de la geometria euclidea y ge-

ometria proyectiva.

El objetivo de este trabajo es explicar de los procedimientos de calibracion de
imagenes, la mayoria de los cuales se basan en el modelo de cdmara estenopeica,

y este modelo a su vez se basa en la geometria proyectiva.

A continuacion, nos centramos en el estudio de la geometria proyectiva que
proporciona un modelo lineal de las imagenes del proceso de captacion a medida
que estudia la relacién entre figuras geométricas y su proyeccién (el ejemplo més
comun consiste en figuras 3D con proyecciones en un plano 2D). Después, discu-
timos los conceptos bésicos de la geometria proyectiva con los que estd asociado
el proceso de captura de una imagen con camaras. Introducimos nociones como:

recta en el infinito y puntos ideales.

Ahora bien, teniendo las herramientas mencionadas anteriormente, nos cen-
tramos en dar una representacién de un mundo tridimensional en dos dimensiones
(gracias a la proyeccion), es decir, en describir como una cdmara (estenopecia)
crea imégenes. Destacaremos dos principales modelos de camaras (por modelo
de cdmara entendemos la proyeccién de P3 — P?), donde cada modelo se puede
describir mediante una matriz P de dimensién (3 x 4) (salvo escalar) de rango
maximo. Por un lado, los modelos finitos de cadmara que se caracterizan por tener

la primera submatriz de P regular, y, por otro lado, los modelos de cdmaras en

9



el infinito cuya primera submatriz de P es singular (por ejemplo, la cdmara afin).
Ademas, estudiaremos la estructura que tienen las caAmaras proyectivas y asi como

las propiedades que poseen.

Una vez entendido cémo funciona una camara estenopecia, introducimos el
concepto de geometria epipolar (geometria de una visién estéreo: la interseccién
de dos planos 7 y 7’ de la imagen). Dicha geometria se puede describir algebraica-
mente mediante una matriz fundamental F, y esta a su vez cumple una serie de

propiedades relacionadas con los puntos de los planos 7 y 7’ (puntos imagen).

Esto nos lleva a plantearnos el siguiente asunto: ;Cdomo encontrar un punto X
en 3D que se ajuste de manera optima a los puntos de imagen medidos, es decir,

sus las proyecciones x y X, sobre los planos m y ©'? (ver Fig. [1).

g . Epipolar Line

e[~ y

Epipolar Plane

* Epipole

FIGURE 1. Breve descripcién de Geometria Epipolar

Primero, nos basamos en el teorema de reconstruccion proyectiva que tiene
como objetivo determinar H (una homografia 2D). Luego, para responder a la
pregunta anterior, vamos a dar un algoritmo para resolver el problema de recon-

struccion (triangulacion).

En la practica, sin embargo, las coordenadas de los puntos imagen x y X
son dificiles de medir con precision. Para ello, vamos a describir algunos de los
algoritmos mas conocidos y exitosos, como por ejemplo: Transformacion Lineal
Directa (DLT)- para reducir los errores; Probabilidad Mdxima Estimacion (MLE)-
(asumiendo que los errores, producidos al proyectar puntos del espacio 3D en 2D,
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siguen un patrén) para minimizar dicho error; Algoritmo de Estimacidn robusto
RANSAC- que permite detectar los valores atipicos (los puntos més alejados),
para conseguir de esta manera una imagen méas ajustada (imagen corregida). En
definitiva, todos estos algoritmos son necesarios para la resolucién y correccion de

imagenes.
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CHAPTER 1

Review of basic concepts

1. Euclidean geometry vs projective geometry

A basic idea between Euclidean geometry and projective geometry is that the
first one describes shapes ‘as they are’, however the second shows objects ‘as they

appear’.

Euclid, introduces an axiomatic approach to geometry in his book Elements
300 BC. According to it, Euclidean geometry is based on measurements taken on
rigid shapes, eg. lengths and angles, hence the notion of shape invariance (under

certain transformations called rigid motions).

Projective geometry is less restrictive than Euclidean geometry. It is an in-
herently non-metric geometry, which means that the facts are independent of any
metric structure. Under the projective transformations, the incidence structure

and the projective harmonic conjugate relationship are preserved.

In short, a projective geometry is an extension of Euclidean geometry in which
the ‘direction’ of each line is included within the line as an additional ‘point’, and
in which a ‘horizon’ of directions corresponding to Coplanar lines is considered a
‘line’. Therefore, two parallel lines meet on a horizon line by virtue of incorporating

the same direction.

Gérard Desargues was the initiator of projective geometry, as he mathemati-
cally founded the methods of perspective developed by Renaissance artists. We
give a modern introduction to projective spaces in any dimension and focus on 2

and 3-dimensional geometry.
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2. Projective geometry

Projective geometry is the study of invariable geometric properties by projec-
tion. To create more fundamental geometry than Euclidean geometry, eliminate

the distinctions between conics, angles, distance, and parallelism.

This new geometry can be understood in terms of rays of light emanating
from a point. In the diagram above, the AIJK drawn on the blue plane would
be projected onto the ALNO on the ground. This projection does not preserve
either the angles or the lengths of the sides, so the triangle on the ground will have
angles and sides of different sizes than the ones on the screen. (“Two triangles
are in perspective from a point if and only if they are in perspective from a line”-

Desargues theorem).

FIGURE 1. Projective geometry and perspective

Why do we need to have a general idea about projective geometry? To under-
stand well the image calibration procedures, most of which are based on the

pinhole camera model, and this model in turn is based on projective geometry.

Projective geometry provides a linear model of the uptake process images as
it studies the relationship between geometric figures and their projection. The
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common example used consists of 3D figures with projections in a 2D plane (see [1,
2, 3]).

Now let’s start by discussing the basic concepts of the projective geometry that

the process of capturing an image with cameras are associated with.

3. Projective coordinates in the plane

3.1. The projective plane as equations of affine lines. Consider in R3

the following equivalence relation:
(1) z~y if IA€R\ {0} such that z = Ay.

The projective plane P? is the set of equivalence classes of vectors in R\ {(0,0,0)}

under the relation above. Later we will see in detail the general projective space P".

Relation (1)) appears naturally when considering affine lines in R? as follows. In
affine geometry, any point p in the real plane is represented as a pair of coordinates
(x,y) € R?. We can also consider R? as a vector space in which (x,y) is identified

with a vector. Thus, a point is associated with a vector.

A line r C R? is represented by its affine equation: ax + by + ¢ = 0, where
different choices of a,b and c¢ give rise to different lines. In this way, a straight
line can be represented by a vector: v, = (a,b,¢)’. This vector represents the
projective coordinates of the affine line r. We will follow column notation for
vectors. For simplicity and if no ambiguity seems likely to arise, we will denote
this vector as r = (a,b,¢)". However, the same line r can be described using
any vector (Aa, A\b, \c)' for X # 0. Hence, r is naturally identified with the point

[a, b, c] in the projective plane.

In projective geometry coordinates are introduced that allow representations
multiple, both of points and lines. Thanks to these new coordinates, concepts can

be studied as improper point and projective line analytically.

Note the following properties.
17



e Degrees of freedom (dof): The number of parameters, in the case of
a line is 2, associated with the dimension of the space of lines in R2.

e To determine the line through two points p and p’, just consider the
notation p = (x,y,1) for p = (x,y). Note that r = p x p’ describes such
a line.

e The intersection p of two lines r and ' can be obtained from

(2) p=rxr.

Note that the last coordinate of p is ab’ — a’b. Therefore this coordinate is 0 if
and only if 7 and " are parallel. Otherwise, r x ' = (XY, Z) = (X/Z,Y/Z,1) =
p € P? since Z # 0. The point p = (X/Z,Y/Z) is the affine intersection point of

r and 7. Note that r x 7’ is well defined as a point of P?.

3.2. The line at infinity and ideal points. Continuing with the previous
observation we see that the affine plane R? is identified with the subset U, =
{(z,y,1) | x,y € R?} C P2 Now, if the lines 7 and 7’ were parallel (and different)
rxr’ = (X,Y,0) € P2. The set of all points (X, Y, 0) represents the projective line
Z = 0 that we will call it the line at infinite and denote it by /. Its intuitive
interpretation is that these points are the “intersection” of two parallel affine lines
(see Figure[2). Finally, if r =/, then r x ' = (0,0,0) which does not represent a

projective point. The points on /., are called ideal points.

REMARK 1.1. The line at infinity can be represented by the vector (o, =
(0,0,1)", which describes the equation Z = 0.

Note that given r = (a,b,c) and ' = (a,b,c’), that is, r || 7/, each of them

“Intersects” with {, at the same ideal point, which has equations (b, —a, 0).

In order to visualize it, let’s consider this example taking the two green parallel
lines  and 7’ in the figure above, their intersection is the green point (its coordi-
nates indicate the direction of these lines). This point is on the infinity line, the

blue line.

Furthermore, (., could be interpreted as the set of directions of lines in the
plane.
18



F1GURE 2. Ideal points and line at infinity

That is because (b, —a), in affine notation, is a vector tangent to the line, and
orthogonal to (a,b) (which is the normal line). In other words, (b, —a) represents
the line’s direction. The ideal point (b, —a,0) varies over {,, as the line’s direc-

tion (v; and vq see Fig. 3| varies).

v, e v
l, l5
v, =1, x1,
1, 14 v, =1, x1,
I, =v,xv,

FI1GURE 3. Affine Rectification

4. The Projective Space P"

The projective space is the space of the projective coordinates that have been
presented in the previous section.

19



DEFINITION 1.2. The projective space of dimension n, P" is a quotient
of the set R"\ {0,11} by the following relation: x,y € R\ {041}, thenx ~y
if and only if IN#0 s. t. = \y.

4.1. The projective line P'. The projective space of dimension 1 is known

as projective line.

X

PI
FIGURE 4. Projective line

Let x € P!, whose projective coordinates are x = [r1, 73] as shown in Figure
If {o : w5 = 0, then P!\ £, can be identified with R as follows. For any z € P!\ /,,
its Euclidean coordinates can be expressed as © = x5[x1/x9, 1] (see Fig. |4]). Hence,
each element of the projective line P! represents a direction of R%. The point

x = [x1,0] = [1,0] € ls, is known as the improper point or point at infinity.

4.2. A model for the projective plane P2. As we have already seen, 2D
projective geometry is the study of the geometry of P2. Let’s define the model for

the projective plane:

e Points (resp. lines) in P? are identified with lines (resp. planes) through
the origin in R3.

e The set of all vectors k(x,y, z) as k varies forms a line through origin

e Intersecting this set of rays and planes with the plane z = 1, one can

obtain points and lines.

One of the advantages of projective coordinates is to make points and lines
algebraically the same. Thus, the representation in projective coordinates of a

20



Points represented by rays through origin
A, Lines represented by planes through origin

X, X9 plane represents line at infinity
ideal P
point

/s X3
X

7 T,
/’/ '/

exactly one line through two points
exaclty one point at intersection of two lines

FIGURE 5. A model for the projective plane

point of the plane is formed by a vector of three elements, and the same happens

with the representation in projective coordinates of a line of the plane.

ProPOSITION 1.3 (Duality principle). To any theorem of 2-dimensional pro-
jective geometry there corresponds a dual theorem, that can be derived by inter-

changing the roles of lines and points in the original theorem.

5. Projective Transformations in a Plane

2D projective geometry is the study of properties of the projective plane P?
that are invariant under a group of transformations known as projectivities (also

known as projective transformations or homographies).

DEFINITION 1.4. A projective transformation is an invertible mapping from
points in P? (that is projective 3-vectors) to points in P? that maps lines to lines,

i other words,

h:P?2+— P?

s.t. three points xy1, xo and x3 lie on the same line < h(xy), h(zs) and h(xs) do.

Let’s see some curiosities of projective transformation. Before that, consider

the following algebraic definition supported by the following theorem:

21



THEOREM 1.5. A mapping h : P2 — P? is a projectivity < 3 a non-singular
(3 x 3)-matriz H s.t. for any point in P* expressed by x vector it satisfies that

h(x) = HX, where H represents a linear transformation

/

X hi1 hia his €

X/ = HX .CE/Q = h21 h22 h23 To
/

X3 hs1 hsa hss X3

Moreover, H is only well defined up to scalar multiplication. The space of such

transformations forms a quasi-projective space of dimension 8.

Some characteristics of projective transformation are:

e A projective transformation in P? is simply a linear transformation of R3
up to scalar multiplication.
e In a projective transformation projective subspaces are imaged to projec-

tive subspaces.

As it’s known, points x; are transformed in x} = Hx;.

Let [ be a line and consider [T the row vector of coefficients of its defining
equation (we use the same notation when no ambiguity can arise). Note that a
point x; € [ if and only if [Tx; = 0. The transformed points x; = Hx; (under a

projective transformation) lie on the line I’, which is given by I’ = H™[.

5.1. Computing Projective Transformation. If we have the coordinates
of points on one image and know where they are mapped in the other image, we

can compute the mapping between 2 images (Theorem |1.5).

Note that each point provides 2 independent equations:

. hn&? + hlgy + h13 . hIHCL’ + h’12y + h/13
hs1z + haoy + hss hay o + hgoy + 1

!

_

QZ’——/ s
L3

' I_IQ _ ho1z + haoy + has _ h’mx + h/22y + h’23
oy ha1x+ hsoy + hss  hlyx+ By + 1

Also equations are linear in the 8 unknowns h{j = hij/hss.
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5.2. Calibration: from projective to Euclidean geometry. Consider
lo ={2=0} CP?aline and x = (x,y, 2) € P?\ lo. We can define

= (2) 4 ()

In other words, the set of equidistant points is given by

2 2 T vk
Skz{@,y,z)ew\emﬁ Y :k}:{(szz,y,z>ew\ew|x C“X:k},

2 T
z llx

where C% is the symmetric matrix defining the quadric C' = 22 +4* + 22 = 0 on

the line {4, and £/ = (0,0, 1) is the row vector of coefficients of the line £.

This construction can be generalized for any line ¢, and any quadric C' as long
as the intersection Cy, = ¢, N C' consists of two imaginary points. This defines a

distance in P?\ /.. The real quadric Cy, is called the absolute quadric.

Moreover, this can be generalized to any dimension. For any n, define in P\ 7,
an absolute quadric C7_ as a real quadratic equation in the hyperplane at infinity
T defining an imaginary quadric.

Using the following formal definition for any given x;,x5 € P \ 7:

x| C% Xy
(mlx1) (T %2)’

and [|x]| := /(x,x), it is easy to check that

(x1,Xg) 1=

(x1,%2) = [|x1|| - [|x2]| - cos .

A geometrical interpretation of this is the following. Consider x € P" \ 7, then

x is in the pencil generated by C* and 72 . In other words, I\ € R such that
x' (Ch = MooTy) - x =0

that is

X' Crx = M moomlx = (nlx)T(nlx) = (r1x)%.

In other words,

T
A= fﬁf;? = I = ).
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This implies,

g XICix \/(@oxm \/ (r1x)’

(mox1) (mox2) | x| Cixa || x5 Cixo
x; C% Xy

V] Cox) (x5 Coxa)
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CHAPTER 2

Camera Geometry

Our main objective is to know how a camera creates images, that is, how
to represent a three-dimensional world in two-dimensional and it will be possible

thanks to the projection.

1. Camera Finite Models

A mapping between the 3D world (object space) and a 2D image is known as
a camera. Our principal objective is the central projection. We are going to see
different camera models, where by a camera model we understand a projection
R? — R2, or in more generality a projective onto map P? — P? which will be

described by a (3 x 4)-matrix (up to scalar multiplication) of maximal rank.

1.1. Basic pinhole camera. The simplest (common) camera model is the
pinhole camera. It consists of a central projection from a point C' called the

camera center.

In other words, in a pinhole camera, the camera center C' is the point where
the projection rays meet at and its distance from the image plane is the focal
length f.

Consider affine coordinates such that C' = (0,0,0), {Z = f} is the plane of
projection, and p = (0,0, f) is a point on this plane whose adapted affine coordi-
nates are (ps,py,), called the principal point. In a pinhole camera, a point X =
(X, Yo, ZC)T in the affine space is projected to the point (p, + fX./Z.,p, + fYC/ZC)T
in the image affine coordinate frame (see Figure [1).

25



"
v X

\ -
principal axis

—4£— image plane

F1GURE 1. Pinhole camera model. The camera center: C, is the
origin of the camera coordinate frame. The principal point p is the
origin of the normalized image coordinate system (x,y), and (u,v)
is the pixel image coordinate system.

In order to see this, consider {(AX., A\Y;,A\Z.) | A € R} the ray from C to X.
Note that if A\ := Zic, then \oX = (féic, %, f) whose coordinates in the image
plane are (px + ch/Zmpy + f}/;/Zc)

In terms of homogeneous coordinates the previous projection can be repre-

sented by a (3 x 4)-matrix,

x f 0 p. O )}i f 0 p, 1000 i,(
y =10 f p, O 7 1=10/F b 0100 7
t 001 0 T 0 0 1 0010 T
where = represents equality up to scalar multiplication.
[0 py
The matrix K:= | 0 f p, | is called the calibration matrix.
0 0 1

In general, the camera center does not need to have coordinates (0,0, 0), for
instance when we consider multiple cameras. In this case, the most general pro-

jection will have the form:

@ 100 —C, )}f i/(

y | =KR|0 1 0 —C, = KR[I; | —C]

t 001 —C Z Z
: T T
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Note that these camera matrices are very special, because their first minor
is non-zero. These cameras are called finite cameras. A general projective
camera, denoted by P is represented by an arbitrary homogeneous (3 x 4)-matrix

of rank 3.

What happens if the first submatrix is not regular? Such cameras are called

cameras at infinity and they will be described in the next section.

2. Cameras at infinity

Cameras at infinity appear in case the left-hand (3 x 3)-submatrix of the camera

matrix P is singular. We will see this means that its center is at infinity.

To prove this, if P represents a linear map R* — R? of maximal rank, then the
center C is given as the class representing the kernel of this map, that is, PC = 0.
If C is not at infinity, then its last coordinate is non-zero, say C = (Cy, 1), where
C; represents a vector of size 3. Then PC = 0 implies P 53Cy + P4 = (0,0,0),
where Py 5 3 is the left-hand (3 x 3)-submatrix of the camera matrix P and P, is its
last column, that is, P = [P 93 | P4]. This means that P, is a linear combination
of the columns of P 53, hence rankP, 5 3 = rankP = 3, which means that P 53 is

regular.

If C is on the plane at infinity 7o, = {T" = 0}, then there are coordinates
such that C = (1,0,0,0) € P3. Then, the projection of X = (X,Y, Z,1) on the
plane {Z = f} can be given as the intersection of the projective line joining C
and X, that is, {\(X,Y,Z,1) + 1(0,0,1,0) | (\,u) € P'} with the projective
plane Z = fT. This is (X,Y, f,1) whose adapted coordinates are (X,Y,1). The

transformation matrix is:

T 1000 )Y(
y |=]0100 p
t 0001 -

which implies that the last row of P; 93 is zero. In particular, P53 is singular.
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This describes the general idea of an affine camera, that is, a camera at infinity

where the plane at infinity is projected over the line at infinity of the image.

In general, there could be another type of camera at infinity: the non-affine
camera, where the plane at infinity is not projected over the line at infinity of the

image.

DEFINITION 2.1. An affine camera is of the form

P11 P12 P13 DPi4

P= | pa D22 D23 D
0 0 0 1

i. e., a camera matriz P, whose last row is p?T = (0,0,0,1)". In this case, points

at infinity are mapped to points at infinity.

In the figure we can see what happens when we apply a cinematographic
technique (creating sequences of images that simulate movement) of follow-up
while zooming in, thus and so to keep objects of interest remain the same size.
As the focal length increases and the distance between the object and the cam-

era also extents, the image remains the same size but the perspective effects reduce.

FIGURE 2. Perspective effects reduce

Let’s begin with a finite projective camera given by

plT _plTC
PO = KR[Ig ’ —C] =K pQT —pQTC
pST _p3TC

where p'" is the i-th row of R. The principal axis has direction p?, and dy = —p*"C
measures the distance of the world origin from the camera center in the direction
of the principal axis.
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If the camera center is moved to C — tp?

, 1.e, backwards along the principal
ray at a unit speed for a time ¢, and the camera matrix is (replacing C by C — tp?

in the previous formula)

plT _plTC
Pt =K p2T _p2TC
p3T dt

where d; = —p3TC + t, (the depth of the world origin with respect to the camera

center in the direction of p3').

REMARK 2.2. The effect of tracking along the principal ray p*' is to replace
the (3,4) entry of the matriz by the depth d; of the camera center from the world

oTigIn.

Now let’s look at zooming where the focal camera’s length is inflated by a

factor k, that means to multiply the calibration matrix K on the right by

dt/d() 0 0 plT _plTC dt plT _plTC
P, =K 0 di/dy O T —pPTC | = d_K p*T -p*TC
0 0 1 p*T dy 0 ,03Td0/ dy do
So,
plT _plTC
Poo — tlizg) Pt =K p2T _pQTC
0" dy

Hence, P, is an instance of an affine camera at infinity (by Definition [2.1)). Note
that P, can be descomposed as a product of the two matrices representing the

internal camera parameters and external camera parameters.

P — K\QXQ 6 ].f{, {:
> 0r 1]]0" 1
In the following section we will study the reverse point of view, that is, the

intrisic properties of a camera by means of its matrix.
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3. Structure and properties of the projective cameras

As we already know, P (a general projective camera) maps world points X to

image points x under x = PX.

3.1. Structure and properties of the projective cameras.

e Camera center: Since P has 4 columns and maximal rank rankP = 3,
the projective camera has a one-dimensional right null-space. In other
words, there exists a map ¢ : R* — R3 and a vector v € R* s.t. Pv = 0,
that is, v € ker(¢). Let’s show that v, a represented as projective 4-vector,
is the camera center, and by agreement denote it by C. Take the line [
that contains C and consider a point A in 3-space. Points on [ have the
following form: X(\) = AA + (1 — \)C.

Points on this line [ are projected to x = PX(\) = APA+(1-\)PC =
APA + 0 = APA (because PC = 0).

In other words, all points on [ are mapped to the same image point
PA, which means that [ must be a ray through C, the camera center.

Note that the image of camera center is (0,0,0)" = PC, i.e. undefined
(the camera center is the unique point in space for which the image is
undefined in the projective plane).

How to calculate the center of the camera? According to the type of

camera, we distinguish two cases:

_p-1
For finite cameras: C = < P1f73P4 )

d

For infinite cameras: C = ( 0

), Py23d = 0 (ie. d is a non-zero

null 3-vector of Py 433).

e Column points: The columns of the projective camera (denoting the
columns of P by P; for i = 1,2,3,4) are 3-vectors, and Py, Py, P53 are
known as vanishing points in the image corresponding to the X,Y and
Z axes respectively. Column P, is the image of the coordinate origin.
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FIGURE 3. The principal point p* = (ps1, p32, p33,0) " of the princi-
pal plane P? of the camera.

The principal plane: of the camera is P?, the last row of P (geomet-
rically, it is the plane through the camera center parallel to the image
plane.)

Axis planes: the first and second rows of P represent planes P! and P2
in space through the camera center C, corresponding to points that map
to the image lines x = 0 and y = 0 respectively.

Principal point: the line passing through C, whose direction is per-
pendicular to the principal plane P3, is the principal axis. This axis
intersects the image plane at the principal point. This point is given by

zo = P123P3, where P37 is the 3" row of P o3.

Principal ray (axis): the ray passing across the camera center with di-
rection vector P3T. The principal axis vector v = det(P1,273)f’3 is oriented
in front of the camera if det(P;23) > 0.

An interesting question in this context is if and how we can determine if a

point X is in front of the camera.

REMARK 2.3. Let X = (X, Y, Z,T)"T = (X",1) be a 3D point and P = [Py |
P.] be a finite camera matriz. Suppose PX = w(z,y,1)T, where w = P37 (X —C),

(remember that P is the 3™ column of P y3.)

Then depth(X;P) = sign(det P15 3)w

T[[®2]

31



Note that depth(X;P) does not depend on the particular projective rep-
resentation of X and P. To prove it, let’s take X\ = (AX,\Y,\Z,A\T)T and
P, = [uP1a3|uPy), with A, i # 0. So P, X = phw(z,y,1)".

Then, depth(X,\, Pu) _ sign(det(puP1,2,3) pAw _ sign(det(uP1,2,3) pXw _

AT || P3| XT|ul[| B3]
sign(det(|P~1,2|,3)//w if [ >0
Ty||P3 '
= ; = depth(X; P)
Asign(det(P1 23))Apw P )
7

Therefore, depth(X;P) does not depend on the coordinates of X and P.
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CHAPTER 3

Two-View Geometry

Two cameras take a picture of the same scene from different points of view (two
perspective views). The relationship between the two resulting views is described

using epipolar geometry.

FiGURE 1. Example of epipolar geometry

The epipolar geometry does not dependend on scene structure (only depends
on the internal parameters of the cameras and relative pose). Let X be a point
in a 3-space; denote by x its image in the first view and X’ in the second, then
the relation between the image points is given by: (x/)'Fx = 0, where F, a 3 x 3

matrix of rank 2, is known as the fundamental matrix.

In the following subsection, these concepts are described in more detail.
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1. Epipolar geometry and the fundamental matrix F

DEFINITION 3.1. An epipolar geometry between two views is the geometry of
the intersection of the image planes (w, @' ) with the pencil of planes having the line
joining the camera centers C and C' as axis. Epipolar geometry is the geometry

of stereo vision.

*

epipolar plane U \

C N © e/ C

FIGURE 2. Description 2-view Geometry/ epipolar geometry

The fundamental elements of epipolar geometry are the following:

e The epipolar plane: . is defined by a world point X and two camera
centers C and C'.

e The baseline: [, is the line joining the camera centers C and C'.

e The epipolar line: I, (respectively I!) is obtained by intersecting an epipo-
lar plane with the image plane 7 (resp. 7).

e The epipole: e (resp. €) is defined as the intersection of the baseline with

the image plane 7 (resp. 7).

Note that all epipolar lines intersect at the epipole. An epipolar plane intersects

the left and right image planes in epipolar lines.

Epipolar geometry can be described algebraically by means of the the funda-
mental matriz F.
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epipolar line
for x

FIGURE 3. point-to-line projective mapping

As we have seen in section [3] an image point x back-projects to the ray in the
3-space defined by C (the first camera center), and x. The image of this ray is a
line I’ in the second view (7'). The world point X, which projects to x, must lie
on this ray, hence the image of X in the second view (7') must lie on the epipolar

line I, =1".

Hence, the epipolar line is the projection in the second image of the ray from
the point x through the C of the first camera, therefore, there is a map x —
I/ from a point in 7w (1°* image) to its corresponding epipolar line I in 7 (24
image). Observe that this map only depends on the cameras: P and P’ (not on
the structure). This is a point-to-line projective mapping, which is represented
by the fundamental matrix F. Moreover rankF = 2 since [ always contains the
epipolar point € and thus F represents a map P? — P!, i.e., from 2-dimensional
projective space of the first image to 1-dimensional projective space, which is the

pencil of epipolar lines through the epipole €').

We are going to describe this mapping in next section.

2. 2D Homography and Geometric derivation of F

We will see how a plane in space 7 can induce a 2D homography, denoted by
H~, between the image planes m and 7’ such that x’ = Hzx, where x € 7, X' € 7’/
via a world point X € 7. This means that, the set of points x in the first image and
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the corresponding points X’ in the second image are projectively equivalent since

they are each projectively equivalent to the planar point set X (see Figure [4).

Ne

FiGURE 4. Homography between two image planes

This can be constructed as follows. First, take a plane 7 in space s.t. does not
pass through either of the two camera centers C, C’. The ray through the first
camera center C corresponding to the point x meets the plane 7 at a point X5,
and then, this X5 is projected to a point X’ in the second image (on the right-hand
side in figure {4)).

To obtain what is called the geometric derivation of F, we need to consider
the epipolar line [,. This line is obtained by joing the points x’ and €', i.e. I, =
e xx' = [€/]yx'. But X’ = Hzx (by the 2D homography), then I, = [¢/] «Hzx. This

defines the fundamental matrix F as F = [e/]«Hx proving the following result.

THEOREM 3.2. The fundamental matriz ¥ may be written as F = [e/], Hz,
where Hx is the transfer mapping from one image to another via any plane 7.

Furthermore, since [€'],, has rank 2 and Hz rank 3, F is a matriz of rank 2.

3. Algebraic derivation of F

The purpose of this section is to show a procedure to calculate the fundamental
matrix F knowing the two camera projection matrices P and P’.
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Here is a program made in Sage with the help of my tutor. It is about obtaining
(without the need to do any calculation) the fundamental matrix F, knowing P,

and Py, two camera matrices.

First, we need to find the center C; of the first camera P; starting from the

minors of the matrix P;.

In [70]: def Centro(Pl1):

xP=[]
for i in range(4):

XP=xP+[ (-1)"i*det(P1l.delete columns([1i]))]
C1=[]
if xP[3]!=0:

for i in xP:

C1=C1+[i/xP[3]]

else:

return "el centro de la camara esta en el infinito"
return vector(C1)

And then, depending on whether or not each of the two cameras are affine or

not, we get to obtain the fundamental matrix F.

def MatrizFundamental(P1,P2):
if rank(P1)<3:
return "primera camara no es afin”
if rank(P2)<3:
return "la segunda camara no es afin"
R1=P1.pseudoinverse()
Clv=Centro(P1)
e2=p2*Clv
E2=matrix([[0,-e2[2],e2[1]],[e2[2],0,-e2[0]],[-e2[1],e2[0],0]])
F=(E2)*P2*R1
return F

4. Properties of F and the epipolar line homography

We recall the definition of the fundamental matrix introduced in section [3l
DEFINITION 3.3. Given two cameras, the fundamental matriz ¥ is the unique
3 X 3 projective matriz, with rankF = 2 satisfying

xXTFx=0
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for all corresponding image points x = PX + x' = P'X.

Let’s describe the most important properties of F the fundamental matrix of

a pair of cameras (P, P’):

e F' is the fundamental matrix of the pair (P, P).

e for any point x € 7 (the first image), the corresponding epipolar line is
I/ = Fx. Similarly, [, = F'x’ is the epipolar line corresponding to x'.

e for any point x # e the epipolar line I, = Fx contains the epipole €’. So,
e'"(Fx) = (¢/"F)x = 0, ¥x. Hence, € is the left null-vector of F, i.e.,
e'"F = 0. Analogously, e is the right null-vector of F.

e The set of fundamental matrices forms a projective space of dimension 7.
This is because the (3 x 3)-matrix is defined only up to scalar multiplica-
tion and det(F) = 0, which describes a hypersurface in P®.

e Any point x € [, is mapped to the same line I, i.c.,  inverse mapping
and F is not of full rank.

THEOREM 3.4. Let l. and I, be corresponding epipolar lines, and k any line

not passing through the epipole e, then the relation between l, and I, is:

I =F[klxl. and 1, =TFT[K]. L.

Proor. Consider k£ any line that does not passing through the epipole. Note
that [k]«[. is a point, moreover, the point of the intersection of the lines [, and k.
Let’s denote it by x, since [k]xl. € l., the epipolar line (in the first image). Thus,
Flk]xl. = Fx = I/ (by 2™ property of the fundamental matrix F.) Analogously,
[k'] <l is the point which lies on the intersection of the lines k¥’ and [/. Denotyng
that point by x’ (because it lies on the epipolar line '), we obtain F'[k], I, =

2nd

F'x’ = [, (this last equality comes from the property of F.)

5. Image reconstruction from two views

In this section we address the question about what can be determined if we
only know the image points x;, X, and their correspondences. Without knowing
anything about the calibration (or position of the two cameras P and P’), we can
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compute a projective reconstruction of a scene from two views using the following

result:

Depending on the context and the data, this is what we mean by reconstruction.

e A reconstruction is the computation of (the coordinates of) a point in
a 3D space, starting with the coordinates of its image in a number of
cameras whose position is known.

e Projective reconstruction is the computation of the structure of a scene
from images (that are taken with uncalibrated cameras), inducing in a
scene structure, and camera motion that may differ from the true geom-

etry by an unknown 3D projective transformation.

THEOREM 3.5 (Projective reconstruction). Suppose that x; <> X is a set of
correspondences between points in two images and that the fundamental matriz F
is uniquely determined by the condition x;'Fx; = 0 Vi. Let (P1,P},{Xy}) and
(P2, P, {X2;}) be two reconstructions of the correspondences x; <> x,. Then 3 a
non-singular matric H s.t. P, = PoH, P} = PLH and Xy, = HXy; for all i,

except for those i s.t. Fx; =x."F =0

See the proof [7, p 266]

6. Description of the algorithm for solving the reconstruction problem

Let’s describe the process (the projective reconstruction) in other words, using

these three steps:

(1) Compute the epipolar geometry (represented by F, the fundamental ma-
trix) from point correspondences x; <> X,

(2) Now, compute the motion, the cameras P and P’ from F. We get P =
[1] 0], P = [[€]<F | €], where F'e’ = 0 (from the properties of F)

(3) Finally, compute the 3D structure X; from P, P’ and the point corre-
spondences X; <> X, (triangulation, see (9])).
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Corresponding points are images of the same scene point

Triangulation

C '
The back-projected points generate rays which intersect at the
3D scene point

FIGURE 5. Projective reconstruction via triangulation

6.1. Statement of the problem. The term reconstruction refers to the fol-
lowing problem. Given corresponding measured (i.e. approximated or noisy) image
points x; and x}, and (exact) cameras P and P’, compute the world (3D) point X.
In this case, there is a problem: because of the presence of noise, back projected

rays might not intersect (see ().

Now, we are going to describe three solutions from three different points of

view.

6.2. The vector solution. The vector solution is geometrically discribed in
Figure[7] The solution is given by the middle point of the segment minimizing the
distance between the back projected rays.
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\ rays are skew in space

C C’

L
image | . - image 2

Measured points do not lie on corresponding epipolar lines

FIGURE 6. A noise problem

C C’

Compute the mid-point of the shortest line between the
two rays

FIGURE 7. A vector solution

6.3. The algebraic solution. Let’s describe the linear solution, which is
referred to as the algebraic solution. To solve for X, use these equations x = PX
and x’ = P'X.
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For the 1%t camera:

P11 P12 P13 Pua PlT
P=|pa pn p3 pu|=|PT
P31 P32 P33z Paa P37

where P?" are the rows of P.

e Forming a cross product x x (PX) = 0 to eliminate unknown scale in
Ax =PX
r (P37TX) — (P'TX) =0
y (P¥TX) — (P?TX) =0
x (PQTX) —y(PTX) =0
e Realign as (first two equations only)
P37 _ p1T
|:yP3T_P2T :|X:0

Analogously for the 2" camera:
J}/PIST _ P/lT
[ y/P/3T _ pr2T ] X=0
Joining together gives
BX =0
where B is the (4 x 4)-matrix
sP3T — PIT
yP3T _ p2T
IE/P/3T _ P/IT
y/P/3T _ P/2T
from which X can be solved up to scale.
Note that, BX = 0 means that X € ker(¢), where ¢ is the map ¢ : R — R3.

(See subsection 3.1, Chapter 2)

B =

The problem with this approach is that it does not minimize anything with a
meaningful geometrically, but it has the clear advantage that it extends to more

than two views.

Conclusion: If we have the fundamental matrix F we can obtain, using (3.5),
the matrices P and P’ in order to construct the rays (see Figure @ and by the
equations x = PX and x’ = P’X, we find the minimum distance between two
lines (see Figure [7)) whose midpoint is the solution sought X.
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6.4. Geometric and Statistical error. Here we only give a general idea of
the geometric-statistical error. This perspective will be explained in more detail

in section 2

The objective is to estimate a 3D point X that (exactly) satisfies the supplied
camera geometry, then it projects as
x=PX ¥ =PX
and the purpose is to estimate X from the image measurements x and x’, min-

imizing d(x,%)? + d(x’,X')?, where d(e,e) denotes the Euclidean distance (see

Figure .

min
X

Clx, x') = d(x, x)°* + d(x', x')°

The statistical machinery comes after assuming that the error follows a certain

distribution.

REMARK 3.6. If the measurement noise follows a Gaussian (or Normal) dis-
tribution of mean zero, ~ N (0,0%), then the minimizing geometric error is the

Maximum Likelihood Estimate of X.

See the [7, p 284-285]
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CHAPTER 4

Different algorithms for image resolution and correction

1. Basic DLT algorithm

The purpose of this section is to describe an algorithm to approximate a 2D
homography given a set of measured point images using the Direct Linear Trans-

formation (DLT) algorithm. We will also explain what we mean by approzimate.

1.1. General setting. As we know, 2D homography consists in: given a set
of points x; € P? and a corresponding set of points x/, compute the projective
transformation H such that Hx; = x}. To determine the 2D homography matrix
H, we need solve x; x Hx; = 0 for each i. A simple linear solution to H can be

calculated by expressing the transform in terms of a vector cross-product.

Now we denote the j-th row of the matrix H by h'", and x; by (z;, y;, w;).
Then,

th - X h% h% hé Z;
HXZ' = hQT * X5 = h% h% h% Y
W - x; re R3S hd) \w

Denoting x| as (), yl,w!)" the cross-product is given explicitly by:
yh3Tx; — wh?Tx;
x; x Hx; = | wh!'Tx; — 2/h3Tx;
vth?Tx; — y'h!Tx;
Since h/"x; = x] h/ for j = 1,2,3, we obtain a set of 3 equations for H that can

be written as in the following form:

T 1T 1T 1

wix, 0" —alx/ h? | =0
for T /T T 3

—Y;X; T;X; 0 h

Note that each column has 9 elements and the previous ecuation has the form
A;h=0.
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When each of the four coordinates being considered is presented in this form
we have a set of equations: A;h = 0. A is a (3 x 9)-matrix; H is a 9-vector whose

entries are those from the matrix H. This equation is linear in the unknown h.

It should be noted that whilst each set of coordinate matches leads us to a set
of three equations only two of them are linearly independent. Thus, it is standard
practice whilst using the DLT algorithm to ignore the third equation whilst solving

for H. The set of equations then becomes:

T T T h!
/ /
0 . —wiTxZ- _iniT n? | —o
/ / -
w;X 0 —T;X; h3

This set up the equation A;h = 0, where A4; is a (2 x 9)-matrix.

Each point correspondence gives 2 equations in the entries of H. With 4 points
correspondences, we have Ah = 0 where A is a (8 x 9)-matrix. Note that we can

determine H up to scale, or uniquely by setting ||h|| = 1.

1.2. Over-determined systems. If more than four point correspondences
are given, Ah = 0 is over-determined, and in general there will not be an exact

solution (since the measurements are inexact).

Given there is no exact solution to Ah = 0, it seems natural to minimize || Ahl||
subject to the constraint ||h|| = 1. This is what we referred to as approzimating

the solution at the beginning of the section.

Let A = UDV' be the SVD descomposition of A, where U and V are or-
thogonal matrices and D is diagonal with the singular values of A. We want to
minimize ||UDVThH = [[DVTh|| subject to ||h|| = [[VTh|| = 1. Since D is a
diagonal matrix whose diagonal contains all the singular values of A, the solution
is given by the smallest of these, say V'h = (0,...,0,1)". Thus h is the last

column of V.

The resulting algorithm, known as the basic DLT algorithm, is summarized in
the following steps.
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1.3. The Basic DLT algorithm. Given n, 2D to 2D point correspondences
X; — X, t = 1,...,n with n > 4, determine the 2D-homography matrix H such
that x; = Hx;.

The algorithm is briefly described as follows:

(1) For each correspondence, compute the 2 X 9 matrix A;.

(2) Merge the A;’s into a single matrix A which is a (2n x 9)-matrix.

(3) Obtain the SVD of A. The unit singular vector corresponding to the
smallest singular value is the solution h.

(4) Recover H from h.

2. Statistical cost functions and MLE (Maximum Likelihood

Estimation)

To apply this approach we will assume that the image coordinate measure-
ment errors obey a Gaussian probability distribution (possibly after removing the

outliers).

We denote by Ax the estimated error, subordinated to a Gaussian distribution
with variance o2, take x = X + Ax, where x represents the measured image points

and X represents the true values of the points.

Assuming that the noise (on each measurement) is independent, the probability

density function of each measured point x is

pr) = (5 ) ¢ ).

2mo?

2.1. Error in only one image. For simplicity, let’s consider first the case
when the errors are only in the second image. The PDF (the probability density

function) of the noise-perturbed data is given by:

fwwﬂmzﬂ(1>memwv

2o
(A
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The log-likelihood of the set of correspondences is
1 2
/ / —
log Pr({x} | H) = — Z d (%}, HX;)" + k,
where k is a constant.

The Maximum Likelihood estimate (MLE) of H (the homography). In

other words, it minimizes

> d(x), Hx;)”.

So, MLE is equivalent to minimizing the geometric error function for several
points (for two points we have described it in section [6.4)).

2.2. Error in both images. Similarly, the PDF of the perturbed data is

Pr({x;,x.} | H,{X;}) = H ( 1 )26<d(xi,xi)2+d(x;,Hxi)2>/(202)

2w o2

Therefore, the MLE of the projective transformation H and the correspondences,

is one that minimizes

D d(x, )+ d(x), Hx;)

2.3. RANSAC algorithm. A general and successful robust estimator is a
RANdom SAmple Consensus (RANSAC). The RANSAC technique counts the

number of inliers that are within e of their predicted location (see [8, p 9-10]).

Let S be a set that contains outliers. The purpose of this algorithm is to reduce
the sample data inliers in order to obtain the minimal data set that determines a
robust fit of a model to the data set S.

The RANSAC robust estimation algorithm:

e Calculate the model from a subset, made by selecting randomly a sample
of s data points from S.
e Determine the set of data points .S; (the consensus set) which are within
a distance threshold ¢ of the model.
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e If the number of inliers (the size #5S; of \S;) is greater than some threshold
T, re-estimate the model using all the points in .S; and terminate.

o If #5; < T, select a new subset and repeat the above.

e After N trials the largest consensus set S; is selected, and the model is

reestimated using all the points in the subset .S;.

In this algorithm there are three constraints that need to be explained: the

thresholds ¢ and 7', and the number of trial samples V.

2.4. The thresholds ¢ and 7. The value ¢ is chosen so that a point whose
distance to the model is less than ¢ has a certain probability p; of being an inlier.
Usually ¢ is chosen empirically. However, one can also assume, as mentioned before,

that the measurement error follows a normal distribution with zero mean N(0, o).

The other threshold T" determines the consensus set. An acceptable rule is one
for which the consensus set has a number of points similar to the inliers assumed
to be in the original data set. For example, if € is the probability that a point is
an outlier and n = #5, then T'=n(1 — ¢).

2.5. Adaptive algorithm for determining the number of RANSAC
samples N. Oftentimes it is not reasonable to calculate the model for all possible
choices of s data in the set S. The number of selections N (each of s points)
required can be determined in order to ensure that one of the samples contains
no outliers with a probability p. For instance, for p = 0.99 and given € and s, the

number of samples can be obtained as:
(3) N = log(1 —p)/log(1 — (1 — €)s).

REMARK 4.1. To get an idea of the automatic estimation of a homography
between two images using RANSAC, consult [T, p 123].

Here is a sketch of the algorithm:

o If N =00, then sample count ==
e While N > sample count Repeat
- Choose a sample and count the number of inliers.
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- Set € = 1—(number of inliers) /(total number of points)
- Set N from e and with p = 0.99.
- Increment the sample count by 1.

e Terminate.

3. An complete algorithm to estimate H from image correspondences

In order to summarize the previous sections, we will describe a complete al-
gorithm for the Maximum Likelihood estimate H of the homography mapping

between the images, knowing n > 4 image point correspondences.

The MLE also involves solving for a set of subsidiary points {x;}, which mini-
mize

Z d (XZ‘, }2@)2 +d (X;, }A(;>2 .
Algorithm:

e Use the linear normalized DLT algorithm, or use RANSAC to compute
H from four point correspondences.

e Geometric minimization (of Sampson error). Minimize the Sampson ap-
proximation to the geometric error. Either use the Newton algorithm, or
the Levenberg-Marquardt algorithm.

e Geometric minimization (of Gold Standard error). Compute an initial
estimate of the subsidiary variable {X;} using the measured points {x;}

or the Sampson correction to these points. Then minimize the cost

D d(xi, %) + d (x,%)”.
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Appendix

Geometric visualization of points in space and their projections un-

der a given camera matrix

Steps to take:

(1) I define the elements of the (3 x 4) camera matrix P, denoting them by
py; with i =1,2,3;j =1,2,3,4.

(2) Then create the matrix M = [Py 53] (square, 3 x 3) from the first three
columns of P.

(3) T check that M is regular, calculating its determinant and denote it by
m = det(M)

(4) To get the center C from the camera, we need the minors of P (See [T7,
p 163])

(5) For this I consider T the 4" coordinate of C.

(6) The first coordinate of the center of the camera is: ¢; = /T with e =
det(E). E is the minor of order 3 x 3, formed by the 2"¢ 3¢ and 4
column of P.

(7) Analogously, we obtain the other coordinates of point C:

co = f/T with f = det(F'), where F' is the minor of order 3 x 3, formed
by the 1%, 3" and 4" column of P and c3 = h/T with h = det(H), where
H is the minor of order 3 x 3, formed by the columns: 1%,2"¢ and 4.

(8) The principal plane (denoted by PP in SAGE) is given by the 3" row
of P.

(9) We take C the point (in projective coordinates) of the center of the cam-
era.

(10) me = P - C (to check that C, the center of the camera, is the one-
dimensional right null space).
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(11) T construct g, a line that passes through C and is perpendicular to the
principal plane 7

(12) Choose a point A € g.

(13) I define a new P, plane, the camera plane, which passes through A and
it is parallel to 7.

(14) take y, the vector perpendicular to P., and passing through points C, A.

(15) I evaluate the C in the P4, plane to see what sign it has (a = —1).

The image below shows point D, the image point of B (when B, a world point,

is in front of the projection camera).

) Pcam : Plano(A, PP)
— -0.2x- 15y + 1.2z = 254.44

u = Vector(C.A)

O ~13.73
— | -103
82.4

a = sgn(—c2+1.2¢3—152.32)

— -1

O kk1{x,y,z} = SegundoMiembro(Pcam)

— 254.44
O kk2(x,y,z) = PrimerMiembro(Pcam)
e 02x-15y+12z
kk3(x,y,z) = kk2(x,y,z) — kkl(x,y,z)
@

e —02x—-15y+1.2z—254.44

kk4 = kk3(c1, ¢, c3)
— -256.14

B2 = B (0,1,0)
— 768.73

)

B esta fuera de camara

(=
-

O j : Recta(B,C)
— X = (-0764.20, 768.73, 3120.39) + A (9773.39, -781.54, -3136.3)

D = Interseca(j, Pcam)

— (-541.57, 31.23, 160.8)

The image below shows the case when B, a world point, is NOT front of the
projection camera:
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All of these algebraic and geometric calculations help us to visualize the process
of projection camera.
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Following this process in geogebra we get to build and see the famous trian-
gulation problem (it will be seen in detail in the exposition of this final master’s

work).
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