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INTRODUCCIÓN 

La propuesta de enseñanza de la Integral Definida para alumnos de 2º de 

Bachillerato que se presenta en este documento se va a llevar a cabo como Trabajo Final en 

el marco del Máster de Profesorado de Secundaria de la Universidad de Zaragoza. 

El concepto de Integral Definida es uno de los conceptos fundamentales del Análisis 

Matemático. Sin embargo, las investigaciones sobre la Integral Definida revelan la 

existencia de dificultades en el aprendizaje y comprensión de este concepto y la necesidad 

de una mayor indagación en este campo del conocimiento.   

 

A. SOBRE LA DEFINICIÓN DEL OBJETO MATEMÁTICO  

A.1. Nombra el objeto matemático a enseñar. 

El objeto matemático que se va a estudiar es el de la Integral Definida, 

correspondiente al área de Análisis. 

A.2. Indica el curso y asignatura en la que sitúas el objeto matemático. 

Según el currículo aragonés, en la Orden de 1 de Julio de 2008, (BOA nº 105, del 17 

de Julio de 2008), las integrales se enmarcan dentro del bloque de conocimiento de Análisis 

de la asignatura Matemáticas II cursada en 2º de Bachillerato de la modalidad de Ciencias y 

Tecnología. Se transcriben a continuación los contenidos referidos al objeto matemático 

que se fijan en la legislación para este curso: 

Integrales. El problema del área: aproximación intuitiva a la integral. Definición 

de integral definida de una función continua. La función área. Noción de primitiva. El 

teorema fundamental del cálculo integral. La regla de Barrow. Cálculo de integrales 

indefinidas inmediatas, por cambio de variable, por partes o racionales sencillas. 

Integrales definidas. Cálculo de áreas de regiones planas. 

Así como los criterios de evaluación: 
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5. Calcular áreas de regiones limitadas por rectas y curvas sencillas fácilmente 

representables, y aplicar este cálculo a situaciones de la naturaleza o la tecnología. 

Este criterio pretende evaluar la capacidad para aplicar algunas técnicas sencillas 

de búsqueda de primitivas: integración inmediata, por partes, descomposición en 

fracciones elementales y cambios de variables sencillos. También se trata de valorar si el 

alumnado comprende el significado de la integral definida y la relaciona con el cálculo de 

primitivas. 

Con este criterio se desea averiguar si los alumnos son capaces de aplicar el 

cálculo de primitivas de funciones sencillas al cálculo de áreas, analizando la gráfica 

correspondiente a cada situación y tomando las decisiones que correspondan para una 

correcta delimitación del recinto objeto del estudio. También se valorará que sepan 

identificar, en contextos del mundo físico o tecnológico, situaciones problemáticas que 

sean susceptibles de resolverse usando el cálculo integral. 

A.3. ¿Qué campo de problemas, técnicas y tecnologías asociadas al objeto 

matemático pretendes enseñar? 

El campo de problemas que se plantea en esta propuesta lo constituye, en primer 

lugar, el cálculo de áreas; y en segundo lugar, el cálculo de la integral definida de una 

función usando la relación entre integración y derivación de la función área. Queda fuera 

del estudio el cálculo de primitivas y profundizar en las aplicaciones del cálculo integral. Se 

pretenderá que la contextualización de los problemas sea a través de situaciones de la 

naturaleza o la tecnología donde sea necesario aplicar el cálculo integral; identificando así 

la integración no solo como cálculo directo de un área geométrica sino como cálculo de un 

área que representa una magnitud física determinada. 

En el primer campo de problemas, para calcular el área           
 

 
  de una 

función      continua en un intervalo       las técnicas que se utilizarán serán en un 

comienzo y para funciones sencillas, la aplicación de los conocimientos geométricos que ya 

poseen (área de un rectángulo, triángulo, trapecio…); y posteriormente, para funciones más 

complejas, el método de los rectángulos. En cuanto a las tecnologías, se empleará el 

software de geometría dinámica Geogebra para justificar el método de los rectángulos, 
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pudiendo visualizar las aproximaciones sucesivas conforme la anchura de los rectángulos 

se hace cada vez más pequeña.  

En el segundo campo de problemas, para hallar la integral definida en un intervalo, 

la técnica que se utilizará será regla de Barrow, que se justifica gracias al teorema 

fundamental del cálculo integral. De nuevo, usaremos Geogebra como herramienta sobre 

la que nos apoyaremos para demostrar y justificar geométricamente las técnicas 

mencionadas. 

 

B. SOBRE EL ESTADO DE LA ENSEÑANZA-APRENDIZAJE DEL 

OBJETO MATEMÁTICO 

B.1. ¿Cómo se justifica habitualmente la introducción escolar del objeto 

matemático? 

La forma tradicional de introducir estos temas a los alumnos es comenzar con el 

cálculo de primitivas o anti derivadas para después, una vez que los alumnos tienen 

suficiente destreza en el cálculo de las mismas, continuar con el teorema fundamental del 

cálculo y la regla de Barrow, es decir, las integrales definidas, convirtiéndose dichos 

conceptos en transparentes para los alumnos y sin llegar a ser asimilados correctamente 

(Llorens, 1997). Los efectos perniciosos que causa esta introducción se detallan en el 

apartado B.3. 

Esta propuesta abordará la integración con un cambio de orden de los dos temas: 

primero se tratará intuitivamente el cálculo de áreas de forma gráfica como introducción al 

concepto de integral para ir poco a poco afinando los cálculos mediante el álgebra y 

terminar al final relacionando la integración y derivación mediante los teoremas propios del 

tema.  

B.2. ¿Qué campos de problemas, técnicas y tecnologías se enseñan 

habitualmente? 
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El campo de problemas y técnicas que se enseñan habitualmente se corresponde con 

el que se pretende enseñar en esta propuesta. La diferencia radica fundamentalmente en el 

orden en el que se abordan. Cómo ya hemos mencionado, habitualmente la enseñanza de la 

integración comienza con el significado de integral como operación inversa a la derivación, 

y es de este significado de donde se suele partir para justificar e introducir las técnicas. En 

esta propuesta se trata precisamente de desvincular, inicialmente, la integración y la 

derivación, cuya relación aparecerá solo en última instancia; y tomar el significado de 

integral como área como la base sobre la que se construirán las tecnologías que empleemos 

y se justificarán las técnicas. 

B.3. ¿Qué efectos produce dicha enseñanza sobre el aprendizaje del 

alumno? 

Recogemos a continuación algunas de las ideas principales que presenta Aldana 

(2011) con respecto a este punto: 

“El aprendizaje del concepto de Integral Definida, de acuerdo con los resultados 

obtenidos en diversas investigaciones, presenta dificultades para los estudiantes que se 

manifiestan mediante la utilización mecánica, algorítmica y memorística de su definición; 

no logran establecer una conexión entre el pensamiento numérico, algebraico, geométrico 

y analítico; tienen problemas para interpretar las gráficas de áreas bajo curvas cuando la 

gráfica de la función pasa de ser positiva a ser negativa o presenta discontinuidades; en 

otros casos piensan la integral sólo asociada al concepto de área pero aislada de otros 

contextos; y demuestran dificultades para aplicar las propiedades de la Integral Definida. 

Resumiendo, los problemas en el aprendizaje del concepto de Integral Definida, se 

pueden sintetizar de la siguiente forma: 

 Generalmente los estudiantes identifican “Integral” con “primitiva”. La integral para 

ellos no comporta ningún proceso de convergencia ni tampoco un aspecto geométrico. 

Es por tanto, un proceso puramente algebraico, más o menos complicado, de modo que 

un estudiante puede conocer diversas técnicas de integración e incluso saberlas 

aplicar, y al mismo tiempo, no ser capaz de aplicarlas al cálculo de un área o ignorar 

por completo qué son las sumas de Riemann. La primera imagen que evocan muchos 
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estudiantes sobre integrar es la de “hallar una función de la que se conoce la 

derivada”. 

 Los estudiantes generalmente identifican las Integrales Definidas con la regla de 

Barrow, incluso cuando esta no pueda aplicarse. Es el caso de los resultados 

encontrados por Mundy (1984), donde un porcentaje alto de estudiantes no supo 

responder a la pregunta: ¿Por qué                   
  

  
             , es 

incorrecto? Esto pone en evidencia que el estudiante no sólo desconoce las condiciones 

para poder aplicar la regla de Barrow, sino que además muestra una desconexión 

entre la definición del concepto de Integral Definida y la imagen particular que tiene 

de este concepto matemático. 

 Falta de relación entre el concepto de Integral Definida y el de área. Muchos 

estudiantes no distinguen entre la Integral Definida como área y la Integral Definida 

cómo cálculo algebraico, porque no establecen una conexión entre la representación 

gráfica y la representación algebraica de una función y no son capaces de calcular el 

área bajo una curva a partir de su gráfica. En otros casos porque el estudiante no tiene 

los conceptos previos necesarios para resolver la tarea satisfactoriamente. En este 

sentido, Mundy (1984) encontró también que un 95% de los estudiantes respondieron 

incorrectamente a la pregunta: Calcular la         
 

  
, en la que les planteó varias 

opciones de respuesta; porque no saben integrar la función valor absoluto y no han 

logrado establecer una relación entre la representación algebraica formal y la 

visualización gráfica de la función. 

Otros estudios, han demostrado el predomino del modo algebraico sobre el gráfico 

que tienen los estudiantes al resolver tareas de Cálculo Integral, hay un dominio de los 

procedimientos algorítmicos frente a los aspectos conceptuales. Al respecto, Orton (1980), 

(citado por Azcárate et al. 1996, p. 15) pone de manifiesto que existe “un nivel 

relativamente bueno en la manipulación de los algoritmos algebraicos que aparecen en los 

cálculos de primitivas de funciones y, sin embargo, dificultades en la conceptualización de 

los procesos de límite asociados al concepto de Integral Definida; por ejemplo, pocos 

alumnos fueron capaces de expresar de forma correcta que el valor exacto del área bajo 
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una parte de una parábola se podía obtener como el límite de sumas de franjas 

rectangulares”. Asimismo, hablan de otras dificultades en el cálculo de áreas limitadas 

por curvas que presentan valores negativos o discontinuidades, y afirman que “en 

palabras de Orton muchos estudiantes demuestran saber lo que tienen que hacer, pero 

cuando se les pregunta acerca de su método no saben realmente por qué lo hacen de esta 

manera” (Azcárate et al. 1996, p. 15).” 

 

C. SOBRE LOS CONOCIMIENTOS PREVIOS DEL ALUMNO 

C.1. ¿Qué conocimientos previos necesita el alumno para afrontar el 

aprendizaje del objeto matemático? 

Para que los alumnos puedan afrontar el aprendizaje de la integral definida es 

necesario que previamente conozcan los conceptos de: 

 Funciones y su representación gráfica. 

 Límites y sucesiones. 

 Derivadas. 

El concepto de derivada no es necesario para calcular el área bajo una curva; es 

necesario posteriormente para demostrar la conexión entre derivada e integral definida. 

C.2. La enseñanza anterior, ¿ha propiciado que el alumno adquiera esos 

conocimientos previos? 

Es de suponer que sí, dado que, según el currículo aragonés, en la Orden de 1 de 

Julio de 2008, (BOA nº 105, del 17 de Julio de 2008), los objeto matemáticos anteriormente 

citados en C.1 se fijan en la legislación para ser cursados previamente a la enseñanza de las 

integrales. A continuación se trascribe el bloque de Análisis que se presenta en la 

legislación: 

Límites. Sucesiones. Límite de una función en un punto: idea intuitiva. Límites 

laterales. Límites infinitos y límites en el infinito. Cálculo de límites: indeterminaciones. 

Límites asociados al número e. Noción de continuidad de una función en un punto: 
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relación entre la continuidad y los límites. Interpretación gráfica. Estudio de la 

continuidad de funciones: determinación y clasificación de las discontinuidades. 

Propiedades de las funciones continuas. 

Derivadas. Derivada de una función en un punto. Relación entre la derivabilidad y 

la continuidad. Interpretación gráfica de la derivabilidad. Interpretación en el mundo de la 

ciencia del concepto de derivada de una función en un punto. Obtención de la recta 

tangente a una curva en un punto. Estudio de la derivabilidad de funciones. Cálculo de 

derivadas. Derivadas sucesivas. Crecimiento y decrecimiento: extremos. Aplicación a 

problemas de optimización. Algunas propiedades de las funciones derivables: el teorema 

del valor medio. Concavidad y convexidad: puntos de inflexión. Estudio de las propiedades 

locales y globales de una función sencilla para realizar su representación gráfica. 

Utilización de programas de representación de funciones para el estudio de sus 

propiedades y la interpretación de los resultados obtenidos en la resolución de los 

problemas planteados. 

Integrales. El problema del área: aproximación intuitiva a la integral. Definición 

de integral definida de una función continua. La función área. Noción de primitiva. El 

teorema fundamental del cálculo integral. La regla de Barrow. Cálculo de integrales 

indefinidas inmediatas, por cambio de variable, por partes o racionales sencillas. 

Integrales definidas. Cálculo de áreas de regiones planas. 

C.3. ¿Mediante qué actividades vas a tratar de asegurar que los alumnos 

posean esos conocimientos previos? 

Para asegurar que los alumnos posean los conocimientos previos que necesitan para 

afrontar el estudio de la integral definida se llevará a cabo una prueba de evaluación inicial. 

Realizar esta prueba supone, además, un medio eficaz para presentar a los alumnos los 

conceptos e ideas fundamentales que deben tener para abordar la secuencia didáctica.  

Los ejercicios que aparecen en esta prueba van a permitir recordar conocimientos 

que los alumnos necesitarán en algunas de las actividades futuras que planteamos en esta 

propuesta y que se muestran en el apartado I. Entre estos conocimientos estarían el manejo 
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de progresiones geométricas, el cálculo de límites, la regla de L’Hopital para calcular 

algunos de estos límites y la resolución de algunas derivadas sencillas. 

EVALUACIÓN INICIAL 

1. Expresa la función                   como una función definida 

a trozos. 

 

2. Dada la siguiente progresión geométrica: 3, 6, 12, 24, 48… 

a) Calcula la razón r de la progresión. 

b) Calcula el término   .  

c) Calcula la suma    de los   primeros términos. 

3. Desarrolla estas sumas: 

          

 

   

                                           

 

   

  

4. Calcular los límites: 

      
   

        

     
                            

   

         

     
 

      
   

         

     
                         

   

             

    
 

5. Calcular los límites por L’Hopital: 

      
   

      

    
                            

   
      

 
   

6. Calcula la derivada de las siguientes funciones: 
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D. SOBRE LAS RAZONES DE SER DEL OBJETO MATEMÁTICO 

D.1. Cuál es la razón o razones de ser que vas a tener en cuenta en la 

introducción escolar del objeto matemático. 

La razón de ser que voy a tener en cuenta será la del cálculo de áreas, siguiendo la 

propuesta de Turégano (1994) sobre la introducción de la Integral Definida: 

“La idea es presentar la integral como una continuación de la noción de área, que 

los estudiantes conocen desde los primeros días de la escuela. Lo que empezó para los 

estudiantes de educación primaria con la medición de áreas de figuras en general, 

rectilínea o curvilíneamente limitadas, debe continuar en secundaria con el estudio de 

clases muy especiales: a saber, aquéllas que están limitadas por una curva sólo por arriba 

o por abajo. De hecho, estas figuras no son otra cosa que representaciones gráficas de una 

función      en un intervalo        .” 

 

D.2. ¿Coinciden con las razones de ser históricas que dieron origen al 

objeto? 

Efectivamente la aparición primera del concepto de integral va surgiendo poco a 

poco como método para calcular áreas. 

La primera figura que indagó en lo que hoy se conoce como cálculo integral fue 

Arquímedes. El matemático griego (287 a.C.) trató de calcular el área de curvas 

geométricas como el círculo, la parábola o la elipse. También elaboró un ingenioso método 

para calcular el volumen del segmento recto de paraboloide de revolución (Escudero, 
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1997). Realizó cálculos cuantitativos del área de figuras geométricas, basándose en 

propiedades características de estas curvas.  

En los siglos XVII y XVIII se produce el gran auge del cálculo. Galileo y Newton 

se encargaron de estudiar los sistemas de transformación que permiten pasar de los valores 

de las variables en el estado inicial a los valores que adquieren éstas en cualquier otro 

instante. Se pasó de la estática a la dinámica. Esto significó uno de los pilares más sólidos 

de la evolución de la matemática y su relación con el mundo de los fenómenos físicos. 

Por otra parte, Pierre Fermat (1601-1665) estudió las curvas geométricas de la 

forma ¿cómo se puede obtener la cuadratura de diferentes familias de curvas? o, lo que es 

lo mismo, cómo se calcula el área bajo la curva. Así, calculó el área bajo la curva       
 

en el intervalo       empleando un procedimiento de troceado del intervalo en forma de 

progresión geométrica. 

Pero fue Isaac Barrow (1630-1677) quien por primera vez puso en conexión los 

conceptos de derivada e integral, al darse cuenta de que la derivada de la función que 

proporciona el área bajo una curva es la función misma que representa dicha curva. 

D.3. Diseña uno o varios problemas que se constituyan en razones de ser de 

los distintos aspectos del objeto matemático a enseñar. 

Este problema sirve para repasar el concepto de área y para motivar el cálculo de 

áreas mediante aproximaciones sucesivas.  

PROBLEMA INTRODUCTORIO DEL CÁLCULO DE ÁREAS 

El gráfico de la figura representa el contorno de una isla dibujada en un papel 

cuadrícula, con cuadrados de lado unidad.  
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Se pide: 

a) Realiza una aproximación del área de la isla, acotándola entre las regiones formadas por 

los cuadrados totalmente contenidos en la isla y los cuadrados que contienen la isla. 

 

Área interior: 27 ud
2
 

Área exterior: 27 + 32 = 59 ud
2
 

27 ud
2 

< Área de la isla < 59 ud
2
 

 

 

b) Calcula el error máximo cometido si aproximamos el valor del área de la isla por el 

valor medio de los dos valores obtenidos en el apartado anterior. 

Área isla aproximada = 
     

 
  43 ud

2 

Error máximo = 59 – 43 = 43 – 27 = 16 ud
2 

c) Si contamos los cuadrados que no caen totalmente dentro de la isla como medio 

cuadrado ¿cuál es la aproximación del área obtenida? ¿y el error máximo cometido? 

Área interior: 27 ud
2
 

Área exterior = 27 + 32/2 = 43 ud
2 

Área isla aproximada = 
     

 
  35 ud

2 

Error máximo = 43– 35= 35 – 27 = 8 ud
2 

d) Si subdividimos cada cuadrado unidad en cuatro cuadrados de área ¼ , calcula la 

aproximación del área y el error máximo cometido, igual que en el apartado b). 

¿Disminuye el error máximo cometido? 

 

Área interior: 140*1/4 =  35 ud
2
 

Área exterior: (140 +56)*1/4 = 49 ud
2
 

35 ud
2 

< Área de la isla < 49 ud
2
 

Área isla aproximada = 
     

 
  42 ud

2 

Error máximo = 49 – 42= 42 – 35 = 7 ud
2 
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Con este problema se introduce al alumno en la problemática del cálculo de áreas de 

recintos encerrados por una curva no regular y cómo puede ayudarnos el método de 

aproximaciones sucesivas de cuadrados cada vez más pequeños. Azcárate (1996, p.128) 

 

E. SOBRE EL CAMPO DE PROBLEMAS 

El campo de problemas que se presentan en esta propuesta didáctica es el que 

hemos presentado en el apartado A.3, y que se corresponden con: 

1. Cálculo de áreas y su relación con el concepto de suma de infinitos rectángulos. 

2. Conexión de la integración y la derivación a través de la función área. 

Los tipos de problemas concretos se pueden ver en la secuencia didáctica completa 

que se muestra en el apartado I de esta propuesta. 

 

F. SOBRE LAS TÉCNICAS 

Las técnicas que se van a enseñar son las que hemos nombrado con anterioridad en 

el apartado A.3.  

Para el cálculo de áreas:  

 La aplicación de los conocimientos geométricos elementales (área de un 

rectángulo, triángulo, trapecio…) 

 El método de los rectángulos. En el cuál se aproxima el área del recinto 

mediante aproximaciones sucesivas de rectángulos cada vez más estrechos.  

Para el cálculo de la integral definida a través de su conexión con la derivada: 

 La regla de Barrow, que se justifica por el teorema fundamental del cálculo 

integral. 
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Igualmente, los tipos de ejercicios que se van a presentar están reflejados en la 

secuencia didáctica del apartado I. 

 

G. SOBRE LAS TECNOLOGÍAS  

Las técnicas que hemos nombrado en el apartado anterior se justificarán en un 

primer momento a un nivel geométrico, utilizando el software Geogebra, y en segunda 

instancia se corroborarán a nivel analítico.  

Las actividades y procedimientos concretos dedicados a justificar las diferentes 

técnicas están bien detallados a lo largo de la secuencia didáctica que se presenta en el 

apartado I. 

En estas actividades se tratará que los alumnos traten de explorar la solución a los 

problemas siendo ellos los que intenten deducir las técnicas y su justificación, aunque será 

el profesor el que sirva de guía en el proceso y el que en última instancia institucionalice y 

formalice cada técnica. 

 

H. SOBRE LA METODOLOGÍA 

Se optará por una metodología sustentada en la resolución de problemas. Ésta se 

concretará del siguiente modo: el profesor planteará una situación problemática y se dejará 

a los alumnos que piensen y traten de resolver el problema; cuando los conocimientos que 

tienen no sean suficientes será el profesor el que tenga que orientar y dar pistas para buscar 

un camino alternativo, surgiendo de este modo los conceptos y técnicas que más tarde el 

profesor institucionalizará. 

En resumen, se procurará que en todo momento sean los alumnos los que se 

enfrenten a las situaciones planteadas, siendo ellos mismos los que se planteen preguntas y 

empleen diferentes alternativas para resolver los problemas. La labor del profesor no será la 
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de realizar exposiciones para transmitir saberes, sino que consistirá en diseñar y plantear 

problemas y actividades que potencien el aprendizaje y que sean adecuadas para que surja 

el conocimiento en el aula. Una vez que hayan trabajado de modo autónomo, será el 

profesor el encargado de realizar el proceso de institucionalización. 

Mención especial en la metodología del aula es el uso del software de geometría 

dinámica Geogebra. 

Geogebra es básicamente un procesador geométrico y un procesador algebraico, es 

decir, un compendio de matemática con software interactivo que reúne 

geometría, álgebra y cálculo, por lo que puede ser usado también en otras disciplinas como 

física. 

Con Geogebra pueden realizarse construcciones a partir de puntos, rectas, 

semirrectas, segmentos, vectores, cónicas, etc., mediante el empleo directo de herramientas 

operadas con el ratón o la anotación de comandos en la barra de entrada, con el teclado o 

seleccionándolos del listado disponible. Todo lo trazado es modificable en forma dinámica: 

es decir que si algún objeto B depende de otro A, al modificar A, B pasa a ajustarse y 

actualizarse para mantener las relaciones correspondientes con A. 

Geogebra permite el trazado dinámico de construcciones geométricas de todo tipo 

así como la representación gráfica, el tratamiento algebraico y el cálculo de funciones 

reales de variable real, sus derivadas, integrales, etc. 

 

I. SOBRE LA SECUENCIA DIDÁCTICA Y SU CRONOGRAMA 

I.1. Cronograma.  

La propuesta didáctica que aquí presentamos se va a desarrollar a lo largo de 

aproximadamente 12 sesiones de 55 min. Mostramos a continuación la secuenciación de las 

actividades: 

http://es.wikipedia.org/wiki/Geometr%C3%ADa
http://es.wikipedia.org/wiki/%C3%81lgebra
http://es.wikipedia.org/wiki/C%C3%A1lculo
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SESIÓN APARTADO ACTIVIDADES 

1 EVALUACIÓN INICIAL  Evaluación inicial  (apartado C.3) 

2 
JUSTIFICACIÓN DEL CÁLCULO DE 

ÁREAS 

 Justificación histórica  

 Problema introductorio (apartado D.3) 

3 
CAMPO 1: CÁLCULO DE ÁREAS.  

PROCEDIMIENTOS GEOMÉTRICOS 

 Actividad 1 , 2 y 3:  

Funciones constante, lineal y afín 

4 
CAMPO 1: CÁLCULO ÁREAS. 

SUMA DE RECTÁNGULOS.  
 Actividad 4: Función cuadrática 

5 

CAMPO 1: CÁLCULO ÁREAS. 

SUMA DE RECTÁNGULOS. 

SUMAS DE RIEMANN  E  

INTEGRAL DEFINIDA 

 Actividad 5:  Función exponencial 

 Institucionalización: Sumas de Riemann 

e integral definida 

6 
CAMPO 1: PROPIEDADES  

INTEGRAL DEFINIDA 

 Institucionalización: Propiedades 

integral definida 

 Actividad 6: Problemas de propiedades 

7 
CAMPO 1: PROBLEMAS 

CONTEXTUALIZADOS 
 Actividad 7: Problemas de aplicación 

8 

CAMPO 2: FUNCIÓN ÁREA. 

TEOREMA FUNDAMENTAL DEL 

CÁLCULO. 

 Actividad 8 y 9: Función lineal  

 Institucionalización:  Función área F(x) 

9 
CAMPO 2: TEOREMA 

FUNDAMENTAL DEL CÁLCULO. 

 Actividad 10:  Función proporcionalidad 

inversa 

10 
CAMPO 2: TEOREMA 

FUNDAMENTAL DEL CÁLCULO. 

 Actividad 11: Función coseno. 

 Institucionalización: Teorema 

Fundamental del Cálculo y Regla de 

Barrow. 

11 EVALUACIÓN  Prueba escrita 

12 EVALUACIÓN 
 Prueba práctica 

 Corrección pruebas. 
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I.2. Secuencia didáctica 

Siguiendo la idea principal ya propuesta por Turégano (1997) de introducir el 

concepto de integral como una continuación de la noción de área ya conocida por los 

estudiantes, la estructura de esta propuesta didáctica tiene dos puntos que corresponden con 

los dos campos de problemas que se pretenden enseñar. 

1. Cálculo de áreas y su relación con el concepto de suma de infinitos rectángulos. 

Notación de la integral definida. Propiedades de la integral. 

2. Conexión de la integración y la derivación mediante la función área (teorema 

fundamental del cálculo). Regla de Barrow.  

En el primer campo de problemas se comienza abordando el cálculo de áreas desde 

un enfoque totalmente aritmético y geométrico. De alguna forma es una especie de que los 

alumnos busquen procedimientos conocidos para calcular áreas. En esta etapa se le da 

sentido conceptual al cálculo de áreas. No es sólo el cálculo de un área geométrica lo que 

se halla, sino que ésta puede significar cualquier magnitud física que esté expresada como 

producto de otras dos magnitudes. Posteriormente, cuando los conocimientos aritméticos 

no sean suficientes para hallar el área se introducirá la técnica de la suma de rectángulos. 

Por último se terminará identificando la expresión del sumatorio con la notación de la 

integral definida. 

El segundo campo de problemas se ocupará del teorema fundamental del cálculo. 

Éste relaciona la derivación con la integración a través de la función área, llevándonos a la 

regla de Barrow, de manera que a partir de este momento se pueden calcular áreas 

conociendo la primitiva de la función que representa dicha área, sin tener que recurrir a 

resolver costosos sumatorios. 

 

CAMPO 1: CÁLCULO DE ÁREAS 

Para introducir el concepto de integral como cálculo de áreas el primer paso será 

presentar situaciones donde hallar el área de un recinto tenga una utilidad práctica. Los 

alumnos tienen que ver, incluso antes de nombrar la palabra integración, como calcular un 
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área puede ser una herramienta muy útil que nos simplifique el cálculo de una magnitud 

determinada. Una vez que entiendan la utilidad de calcular áreas, el cómo hacerlo irá 

apareciendo poco a poco. 

Todos los estudiantes en secundaria conocen el cálculo de áreas de figuras planas 

sencillas como el rectángulo, el triángulo, el trapecio, etc. En los primeros pasos, estos 

conocimientos serán suficientes, pero progresivamente irán surgiendo situaciones donde 

estos conocimientos no bastarán y será en este momento cuando aparezca la suma de 

infinitos rectángulos como solución a estas situaciones. 

Actividad 1: Función constante 

Un ciclista se desplaza a una velocidad constante de 20 km/h. 

a) ¿Qué espacio habrá recorrido al cabo de 3 horas? 

b) Representa la gráfica de la función velocidad      en unos ejes cartesianos. 

 

c) Halla el área limitada entre la recta      , el e e   , y las rectas          .  

¿Qué relación existe entre el área y el espacio recorrido? 

d) ¿Qué representa el área bajo la función      de la figura? ¿En qué unidades de 

medida se expresa? 

e) Supón ahora que el ciclista a las 3 horas sube su velocidad a 25 km/h durante las 2 

horas siguientes. Representa la gráfica de la función     . 
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f) Calcula el área bajo la función      a partir de la gráfica. 

g) ¿Cuál es el espacio recorrido por el ciclista en el intervalo [3, 5]? ¿en qué 

intervalo de tiempo recorre mayor distancia? 

En esta primera actividad quizás los alumnos no ven todavía la necesidad de 

calcular el área para hallar la magnitud ‘espacio recorrido’, puesto que se trata de un 

ejercicio muy simple que se resuelve de forma inmediata utilizando la conocida formula de 

espacio igual a velocidad por tiempo:      .  Sin embargo esta actividad nos ha 

permitido que aparezca el concepto de área bajo la curva de una función y relacionar esta 

área con una magnitud (‘espacio recorrido’), que es lo que pretendíamos en primera 

instancia.  

Se pueden plantear otros ejemplos en los que el área represente otras magnitudes. 

Por ejemplo: 

- La cantidad de tejido que produce una determinada empresa textil por unidad 

de tiempo, sabiendo que la producción es constante a  r  m  minuto. 

- El volumen de agua que obtenemos de un grifo abierto en un tiempo t, sabiendo 

que el agua fluye de forma constante a razón de 12  m  minuto. 

- La cantidad de luz que recibe una planta en un intervalo de tiempo t, 

suponiendo que la luz es recibida de forma constante a 1    lux hora;  

Para finalizar la actividad comprobamos geométricamente que el área bajo la curva 

de una función constante          en el intervalo       viene dada como: 
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Actividad 2: Función lineal 

Se dejar caer una piedra desde una azotea de la que no conocemos su altura. Pero 

hemos cronometrado que la piedra ha tardado 6 segundos en llegar al suelo. Ayuda: 

        , donde    es la velocidad inicial que en este caso es igual a 0 m/s y   es la 

aceleración de la gravedad que aproximamos a 10 m/s
2
.  

a) Representa la gráfica de la velocidad en función del tiempo. 

 

b) ¿Qué magnitud representa el área encerrada por la función v(t) en el intervalo    

[0, 6] en este problema? 

c) ¿Qué altura tiene la azotea? 

En esta actividad es bastante posible que muchos de los alumnos no recuerden la 

fórmula para calcular el espacio recorrido en un movimiento uniformemente acelerado: 

       
 

 
    .  En este caso, hallar el área del triangulo puede ser un recurso más 

sencillo que nos permite calcular la altura de la azotea con la misma precisión que la 

fórmula: 
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Comprobamos que, como en la actividad 1, el área bajo la curva tiene el significado 

de ‘espacio recorrido’: 

      

        
                  

 

Actividad 3: Función afín 

En un embalse que está casi al 100% de su capacidad se ha abierto la presa y el 

agua sale a una velocidad de 1000 m
3
/s. Cuando el embalse se ha vaciado un poco se 

decide cerrar la presa. Las compuertas tardan en cerrarse 10 segundos, de modo, que el 

caudal de agua que sale disminuye con el tiempo. El caudal del agua (m
3
/s) en este periodo 

sigue la siguiente función:                 

a) Representa la gráfica del caudal en función del tiempo. 

 

b) ¿Qué magnitud representa el área encerrada por la función c(t) en el intervalo [0, 

10] en este problema? 

c) Representa el área bajo la curva en el intervalo [0,4]  
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d) ¿Qué volumen de agua se ha expulsado 4 segundos después de empezar a cerrar 

las compuertas?   

En este caso, para hallar el volumen total de agua que ha salido a los 4 segundos, los 

alumnos tendrán que calcular el área del trapecio: 

                              
        

 
                            

Para finalizar la actividad comprobamos geométricamente que el área bajo la curva 

de una función afín             en el intervalo       viene dada como: 

          

   
 

 
                 

 
 

 

Si la función es de tipo lineal          , entonces: 
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Y si se trata de la función identidad         , entonces: 

       

   
 

 
              

 

 
             

 

 

 
         

 

 

Actividad 4: Función cuadrática 

Un avión acelera de 0 a 100m/s (360 km/h) en 5 segundos. Notamos que la 

variación de la velocidad entre 0 y 100 no es lineal, sino que cada vez la aceleración es 

mayor y la velocidad aumenta más rápidamente. La velocidad del avión en cada instante 

viene dada por la siguiente ecuación:          . ¿Qué espacio habrá recorrido el avión 

en esos 5 segundos? 

 – Para calcular el espacio recorrido por el avión en esos 5 segundos no conocemos 

ninguna fórmula que nos pueda ayudar; pero sabemos que, en este contexto, el área 

encerrada bajo la curva de la parábola representa la magnitud ‘espacio recorrido’. Aún así, 

seguimos teniendo el problema de que no sabemos calcular dicha área con los 

conocimientos geométricos que hemos estado utilizando hasta el momento. Recordando el 

problema inicial de la isla, proponemos atacar el problema considerando una aproximación 

al área buscada. –  

a) Representa la función            en el eje de coordenadas. 

b) Subdivide el intervalo [0,5] en 5 subintervalos de longitud  1 y calcula el máximo y 

el mínimo de la función            en cada subintervalo. 
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c) Dibuja los rectángulos que tienen por base la amplitud del subintervalo y por 

altura el máximo de la función en el subintervalo.  Se denominarán rectángulos 

superiores. 

d) Dibuja los rectángulos que tienen por base la amplitud del subintervalo y por 

altura el mínimo de la función en el subintervalo.  Se denominarán rectángulos 

inferiores. 

e) Calcula la suma de las áreas de los rectángulos superiores y la suma de las áreas 

de los rectángulos inferiores 

f) El área bajo la gráfica de la función será un número comprendido entre la suma de 

los rectángulos inferiores y superiores. Calcula dicha aproximación. 

– En este momento, para seguir contestando a las siguientes cuestiones, vamos a 

utilizar la herramienta Geogebra para facilitar los cálculos y visualizar mejor los resultados. 

Para ello, se les proporcionará a los alumnos un guión que les permita construir su propio 

applet de Geogebra y representar la situación del problema. Este guión aparece en el Anexo 

I de este trabajo de forma detallada, pero en la siguiente figura podemos ver la construcción 

a la que deben llegar los alumnos en este punto. – 

 

g) Considera ahora 10, 20, 40, 60, 80 y 100 subdivisiones, rellena la siguiente tabla y 

analiza lo que veas. 

n Suma Superior Suma Inferior Error 

5    
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10    

20    

40    

60    

80    

100    

h) Considera  una subdivisión en 5n subintervalos de longitud    
 

 
 . Calcula el área 

de los rectángulos superiores e inferiores en función de n. Ayuda: Se verifica la 

fórmula:                    
            

 
 

  

 
 

  

 
 

 

 
 

i) Toma límites cuando     y comprueba que las sumas superiores e inferiores 

convergen ambas al mismo valor. Este valor es el área bajo la curva de la función, 

esto es, el área que estamos buscando: 

   
   

           
   

                           

j) Introduce con el teclado la orden: Integral[v(t), x(A), x(B)]. El comando Integral[]  

está predefinido, el programa coloreara el recinto determinado bajo la curva de la 

función v(t) y las rectas verticales determinadas por los puntos A y B. Comprueba 

que este valor se corresponde con el hallado en el punto anterior. En el contexto 

del problema, ¿qué significado tiene el área bajo la curva? 

– En este punto introducimos la definición de integral, para nombrar al área bajo la 

curva; intervalo de integración, cómo los valores de x entre los que vamos a calcular el 

área; y la representación algebraica de la integral como:  

                          
 

 

 

El signo   significa la suma (una S degenerada) y significa en este caso, la suma de 

los infinitos rectángulos de altura      y base infinitesimal    – 

 



TFM: La integral definida en 2º de Bachillerato 

 

Página | 25  

 

k) Con ayuda de Geogebra calcula la integral de la función v(t) para diferentes 

intervalos de integración. Rellena la siguiente tabla. Intenta hallar la relación del 

valor de la integral con los valores de a y b.  

 a b Integral        
 

 
 

0 5 
 

 
   

0 4  

0 3  

1 5  

2 5  

2 4  

1 3  

 

Los alumnos deben poder llegar por sí mismos a la siguiente expresión: 

                                 
 

 

  
 

 
                        

 Por tanto, la integral de una función cuadrática de expresión general           

en un intervalo [a, b] cualquiera será: 

                                 
 

 

  
 

 
                        

Y para el caso de           en un intervalo [a, b] tendremos que: 

                                
 

 

  
 

 
                        

 

Hasta ahora hemos visto como calcular el espacio recorrido para diferentes 

situaciones: con velocidad constante, con velocidad que aumenta linealmente y con 

velocidad que aumenta cuadráticamente. Para cada tipo de función hemos hallado el área en 

el intervalo      , y hemos institucionalizado que a éste área se le llama Integral. 



TFM: La integral definida en 2º de Bachillerato 

 

Página | 26  

 

     
               
           

        
 

 

 

                  

         
 

 
         

      
 

 
         

Observando atentamente la tabla, es fácil que los alumnos puedan conjeturar la 

integral de una función de tipo            en un intervalo       

                            
 

 

    
 

   
             

 

A continuación vamos a intentar hallar la integral (área bajo la curva) de otras 

funciones elementales.  

Actividad 5: Función exponencial 

A las nueve de la mañana surge un rumor en el instituto que se difunde a un ritmo 

de             personas/hora. Sabiendo que t representa el número de horas 

transcurridas desde la aparición del rumor, calcular el número de personas que lo habrán 

oído a las 11 de la mañana.  

a) Representa la función             en el eje de coordenadas. 

b) Subdivide el intervalo [0,2] en 2 subintervalos de longitud  1 y calcula el valor de 

la función             en el punto medio de cada subintervalo. 

c) Dibuja los rectángulos medios  (que tienen por base la amplitud del subintervalo y 

por altura el valor de la función en el punto medio del subintervalo)  

d) Calcula la suma de las áreas de los rectángulos medios. 
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e) Subdivide ahora  el intervalo [0,2] en 4 subintervalos de longitud ½ y vuelve a 

realizar el apartado c y d. 

f) Halla la expresión de la suma de rectángulos medios si subdividimos el intervalo 

[0,2] en 2n subintervalos de longitud 1/n. Ayuda: La suma de una expresión 

geométrica de razón r se halla como:   
   

      

   
 

g) Halla el límite cuando     de la suma hallada en el apartado anterior. 

Interpreta el valor obtenido según el contexto del problema.  

En este momento, el profesor puede mostrar utilizando un applet de Geogebra como 

el resultado obtenido por los alumnos coincide con el valor mostrado en Geogebra cuando 

n toma valores cada vez mayores. También se puede optar porque sean los alumnos los que 

construyan de nuevo, por sí mismos, el applet; de tal modo que además refuercen el 

aprendizaje de esta herramienta tan útil.  

 

Sobre el applet de Geogebra se hallará el valor de la integral para distintos límites 

de integración, de tal modo que sean los alumnos los que tras unos cuantos ejemplos 

puedan conjeturar la expresión de la integral de un función de tipo exponencial         

           para un intervalo       como: 
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En el ejemplo anterior, para la función                           , la 

integral en el intervalo      , o lo que es lo mismo, el número de personas que oyen el 

rumor en las dos horas siguientes a iniciarse es igual a                      

           . 

 

Institucionalización: 

Sumas de Riemann 

Sea      una función continua y no negativa en      ; en general, una forma de 

calcular el área encerrada por la gráfica de  , el eje horizontal y las rectas verticales 

           es: 

 Dividir el intervalo       en   subintervalos que, para facilitar cálculos, se 

toman de la igual longitud    
   

 
, con los puntos                     

 En cada subintervalo           se toma un punto    y se obtiene la suma      de 

las áreas de los rectángulos de base                
   

 
 , y altura      : 

                                   

Estas sumas se suelen escribir como: 

           

 

   

   
   

 
      

 

   

 

y son conocidas como sumas de Riemann 

 Se toma como área A, el límite cuando     de    
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Integral definida 

Para una función continua      en el intervalo      , hemos calculado el área    en 

dicho intervalo como: 

      
   

        

 

   

     
   

                            

 

El área, y por lo tanto, el límite del sumatorio, es la integral definida de f de a hasta 

b, y se representa por         
 

 
. 

      
   

                 
 

 

 

   

 

Si existe este límite, decimos que f es integrable en [a, b] 
 

 

Integral definida y área bajo una curva 

Si   es no negativa en el intervalo      , la definición de        
 

 
 coincide con el 

área encerrada por la gráfica de  , el eje horizontal y las rectas verticales      y    . 

 Si         en      ,         
 

 
 es el área bajo la curva desde   hasta    

Si   es  negativa en      , entonces la función     es positiva en       y como 

         
                  

   , resulta que        
 

 
 será el número opuesto al que 

mide el área encerrada por la curva           desde   hasta   . Es decir: 

 Si         en      ,          
 

 
 es el área entre el eje de abscisas y la curva 

         desde   hasta  . 

 

 Por último, si   es  positiva o cero en        y negativa 

en     ,  

       
 

 
  valdrá       siendo    y     las áreas de las 

regiones indicadas en la figura 
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Propiedades de la integral definida  

             
 

 

         
 

 

 

En la definición de         
 

 
,  se ha supuesto que a < b. Pero ésta sigue teniendo 

sentido si b < a. En este caso, x cambia de  
   

 
   a   

   

 
 , es decir, las sumas cambian de 

signo, por lo que        
 

 
         

 

 
 

              
 

 
   

Análogamente a la propiedad 1, si a = b, x = 0, y por tanto        
 

 
   

           
 

 

            

Se justifica analíticamente observando que la igualdad se 

cumple de forma obvia para las sumas de Riemann, y 

gráficamente  

                                       
 

 

 

 

 

 

 

Se justifica analíticamente observando que la igualdad 

se cumple de forma obvia para las sumas de Riemann, y 

gráficamente  

               
 

 

          
 

 

             

Se justifica analíticamente observando que la igualdad 

se cumple de forma obvia para las sumas de Riemann, y 

gráficamente  
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Se justifica analíticamente observando que la igualdad se 

cumple de forma obvia para las sumas de Riemann, y 

gráficamente  

                              
 

 

   

Se justifica analíticamente observando que la igualdad se cumple de forma obvia 

para las sumas de Riemann. 

                             
 

 

        
 

 

 

En consecuencia de las propiedades 7, 5 y 4,                       

   por lo  ue        
 

 
        

 

 
     es decir,        

 

 
        

 

 
  

                                                  
 

 

 

 

Es consecuencia inmediata de las propiedades 8 y 3 

                
 

 

              
 

 

 

Por la propiedad 8:           
 

 
            

 

 
  y por 3: 

         
 

 
           

 

 
           

 

 
           

 

 
 

Así,          
 

 
 es mayor o igual que el número         

 

 
 

y que su opuesto.          
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Actividad 6: Propiedades de la integral definida 

Con la ayuda de Geogebra, representa gráficamente las funciones          

                                                 . Comprueba que: 

a)           
 

 
        

 

 
      

 

 
 

b)       
 

 
        

 

 
 

c)              
 

 
       

 

 
       

 

 
      

 

 
 

d)         
 

 
        

 

 
 

e)      
 

 
     

 

 
      

 

 
 

 

Actividad 7: Problemas de aplicación 

1.- Circulandia, una típica ciudad, está muy poblada cerca del centro pero su 

población decrece cuando nos alejamos de él. En efecto, su densidad de población 

es               –                     siendo   la distancia al centro en km. 

a) Si la densidad de población en los confines de la ciudad es 0, ¿cuál es el radio de la 

zona en la que viven? 

b) Calcula el número total de habitantes de la ciudad. 

 

2.- La densidad de coches ρ(x) (en coches por km) en los primeros 20 km de una 

autovía de salida de una gran ciudad viene dada por la función                

siendo   la distancia en km al comienzo de la autovía. 

a) Escribe una suma de Riemann para hallar el número de coches en esos 20 km con 

cinco intervalos de igual longitud tomando como punto muestra el extremo derecho 

del intervalo.  
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b) Calcula el número de coches en esos 20 km mediante una suma de Riemann con n 

intervalos de igual longitud tomando como punto muestra el extremo derecho del 

intervalo.  Ayuda:  Se verifican las siguientes ecuaciones. 

              
       

 
 

                   
            

 
 

  

 
 

  

 
 

 

 
 

c) Calcula el número total de coches en esos 20 km utilizando las propiedades de la 

integral definida y las expresiones de la integral que ya conoces. Compara este 

resultado con el obtenido en el apartado anterior. 

 

 

CAMPO 2: CONEXIÓN DE LA INTEGRACIÓN Y LA DERIVACIÓN 

Hasta aquí, hemos estado calculando integrales definidas, bien por argumentos 

geométricos o bien calculando límites de sumas de Riemann; procedimiento este último 

que, como ya hemos, visto puede ser muy engorroso.  La búsqueda de una manera sencilla 

de calcular la integral es lo que llevó a Newton y a Leibniz a establecer las bases de lo que 

hoy conocemos como Cálculo Infinitesimal. 

  

Actividad 8: Función área 

Vamos a tomar de nuevo el problema que planteamos en la actividad 2: 

Se dejar caer una piedra desde una azotea de la que no conocemos su altura. Pero 

hemos cronometrado que la piedra ha tardado 6 segundos en llegar al suelo. Ayuda: 

        , donde    es la velocidad inicial que en este caso es igual a 0 m/s y   es la 

aceleración de la gravedad que aproximamos a 10 m/s
2
.  

a) Representa la gráfica de la velocidad en función del tiempo. 
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b) Calcula la integral definida        
 

 
. ¿Qué representa este valor en el contexto 

del problema? 

c) Calcula el espacio recorrido por la piedra cuando han transcurrido 1, 2, 3, 4, 5 

segundos. Dibuja los valores sobre la gráfica y trata de hallar la función del 

espacio recorrido en función del tiempo. 

 

Institucionalización: 

Función área o función integral F(x) 

Hasta ahora hemos calculado la integral definida de una función f de a hasta b como 

el área de una región concreta delimitada por la función     , el eje horizontal y las rectas 

      y       . 

Si dejamos un punto del intervalo fijo, a, y variamos el valor del otro extremo, b, de 

manera que pueda tomar cualquier valor de x, tendremos una función que nos dará el valor 

de la integral definida para cada uno de los intervalos [a, x]. A esta función se le llama 

función integral o función área       y se representa como: 
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Actividad 9: Conexión integración y derivación a través de la función área. 

En esta actividad continuamos con el problema anterior, pero visualizándolo con un 

applet de Geogebra. 

Abre el programa de Geogebra de Sada (2007) y redefine  la función como  

         . Contesta a las siguientes cuestiones: 

 

a) ¿Qué representa el área sombreada en el intervalo [0,6]? ¿Cómo se representa? 

b) ¿Qué relación hay entre el valor del área y el segmento vertical verde? 

c) Al mover el punto B se traza una curva. Compara los valores que toma la curva con 

los obtenidos en la actividad anterior.  

d) ¿Cómo definirías a la función que dibuja la curva? ¿Cuál es su expresión 

analítica? 

e) Derívala y compárala con la función f(x). 

f) Resume tus conclusiones. 

 – Sobre este mismo applet podemos dibujar cualquier otra función f(x)  y su 

función área F(x); y además obtener la derivada de esta función para comprobar la relación 
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entre la derivada de F(x) y f(x). Proponemos visualizar algunas de las funciones 

elementales que hemos visto hasta ahora, como la función cuadrática o exponencial. –  

Antes de institucionalizar el teorema fundamental del cálculo se plantearán algunos 

problemas más para distintas funciones. 

 

Actividad 10: Conexión integración-derivación: función de proporcionalidad 

inversa 

Considera la  función       
 

 
  en el intervalo genérico [1, x]. Se pide: 

a) Dibuja la función f(x) con lápiz y papel. 

b) Utiliza Geogebra visualizar gráficamente la función área              
 

 
 bajo 

la curva f(x.) 

 

c) Calcula la derivada de la función área              bajo la curva f(x) y verifica 

que se obtiene la función       
 

 
  de partida. 

 

Actividad 11: Conexión integración-derivación: función coseno 

En un cable ideal, supuesta resistencia nula, se aplica un campo eléctrico en 

dirección longitudinal de valor                    Se sabe que el trabajo realizado por 

el campo eléctrico para mover una carga   desde un punto   hasta otro punto   viene 

dado por             
 

 
  donde   es la carga, que esta uniformemente repartida de 
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forma constante a lo largo del cable; mientras que el potencial viene expresado por 

       
   

 
. Se pide: 

a) ¿Que representa la función área E (x) de la función campo eléctrico? 

b) Utiliza el programa de Geogebra Sada (2007) con la función f(x) = 1 + cos(x) para 

visualizar graficamente la función área. 

 

c) Calcula la diferencia de potencial entre dos puntos distantes un periodo  . 

 

Institucionalización: 

El teorema fundamental del cálculo. 

Vamos a repasar alguna de las funciones que hemos estudiado y de las cuales ya 

hemos hallado su función área       Además también hemos comprobado que para estas 

funciones se cumple que: 

             

Es decir, que dada una función     , la derivada de su función área      es dicha 

función       
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Pero ésta relación que vemos para estas funciones, ¿se cumplirá para cualquier tipo 

función? Vamos a comprobar de forma gráfica que esta relación siempre se cumple: 

  

Construimos ahora el rectángulo de base         –     y altura     , siendo 

  
     

 
 

    

 
   

 

 
  el punto medio del intervalo          de tal manera que el 

área de este rectángulo se aproxime al área de la región:        –     .   

Por lo tanto, tendremos que:         –                         
       –    
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Utilizando Geogebra podemos comprobar gráficamente que cuanto más pequeño se 

hace  , el punto   está cada vez más cerca y más cerca de  , de tal manera que      

    . 

 

  

Podremos escribir entonces que: 

   
   

       –     

 
    

   
     

 

 
       

Como por la definición de derivada 

         
   

      –    

 
   

se tiene  que:   

           

 

           

 

El teorema fundamental del cálculo integral afirma que: 

La función integral      asociada a una función      continua y derivable 

cumple: 
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En consecuencia, el problema de calcular el área bajo una curva de una función 

continua se reduce a la búsqueda de una función F(x) de la función f, de forma que 

            .  Es decir el problema geométrico del área se ha reducido a un problema 

analítico. 

Regla de Barrow. 

Tal como hemos visto, es fácil comprobar que: 

                     
 

 

                             
 

 

                                   
 

 

 

 

 

 

 

 

 

 

 

Utilizando ahora el teorema fundamental del cálculo integral que establece la 

relación existente entre derivación e integración, se establece un método para calcular 

       
 

 
  siguiendo estos pasos: 

1. Buscamos una función     , tal que            

2. Calculamos             

3.        
 

 
         

            

Este método se conoce con el nombre de Regla de Barrow 
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J. SOBRE LA EVALUACIÓN 

La evaluación de esta unidad va a constar de una prueba escrita de 1 hora de 

duración y de una prueba práctica que se llevará a cabo en la sala de ordenadores haciendo 

uso de la herramienta Geogebra. La prueba escrita supondrá el 70% de la nota global 

mientras que la prueba práctica tendrá un valor del 25%. El 5 % restante será evaluado 

mediante la observación en clase del trabajo y actitud de los alumnos. 

 

PRUEBA CON GEOGEBRA 

Como hemos comentado a lo largo del trabajo, el uso de applets con el software 

Geogebra es fundamental, tanto para introducir los conceptos como para entender y 

justificar las técnicas. En este sentido, consideramos algo positivo que, siguiendo la 

dinámica de la unidad, se evalúe a los alumnos la capacidad de usar una herramienta útil 

para la resolución de problemas. La prueba se desarrollará en 30 min y constará de dos 

problemas, referidos a los dos campos de problemas que hemos planteado en este trabajo. 

Problema 1: Cálculo de áreas. Construcción de un applet de Geogebra. 

De un grifo el agua sale con una velocidad dada por la siguiente función:      

 

 
                   . Se pide: 

a) Representa la función        
 

 
   . 

b) ¿Qué representa el área el encerrada entre la función v(t), el eje OX y dos rectas 

cualquiera           ? ¿Qué significado físico tiene el área en este problema? 

c) Acota superiormente e inferiormente el área bajo la curva de la función v(t) en el 

intervalo [0,10]. Para ello divide el intervalo en 10 subintervalos. 

d) Realiza una tabla con la suma superior y la suma inferior y el error de 

aproximación para n =10, 20, 40 y 60. 
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e) Calcula el número de particiones del intervalo necesarias para que el error de 

aproximación sea menor o igual a 2,5. 

f)  Calcula el valor exacto del área y comprueba que este valor se encuentra entre las 

cotas inferiores y las cotas superiores halladas en el apartado anterior. 

Criterio de evaluación: 

- Dar significado físico al área bajo la curva 

- Saber utilizar Geogebra para hallar sumas de Riemann superiores e inferiores. 

- Comprobar la convergencia de las sumas de Riemann al valor de la integral 

cuando n tiende a infinito. 

Criterio de calificación: 

- El problema supondrá  1,5 puntos sobre 2,5 que vale la prueba práctica. Los 

apartados a) y b) valdrán 0,15 puntos cada uno y los otros cuatro apartados c), 

d), e) y f) valdrán 0,3 puntos. 

 

Problema 2: Teorema fundamental del cálculo. 

En este problema se les proporcionará un applet equivalente a los desarrollados 

por Sada y que hemos utilizado durante la unidad didáctica. La modificación principal 

será que el punto A sobre el eje X no se podrá desplazar. El motivo de esta modificación 

quedará explicado en las siguientes cuestiones.  Se continuará con la contextualización del 

problema 1. 

a) Redefine la función para tener        
 

 
    

b) Escribe la expresión analítica de la función área.  

c) Enuncia y comprueba el teorema fundamental del cálculo. 

d) Desplazando únicamente el extremo de integración B sobre el eje X, halla la 

cantidad de litros totales que han salido del grifo entre los instantes 2 y 7 segundos. 

e) Calcula el volumen total de agua que habría salido en el intervalo de tiempo [2,7] 

si hubieran habido dos grifos en vez de uno. 
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Criterio de evaluación: 

- Enunciar y comprobar el teorema fundamental del cálculo. 

- Utilizar la propiedad aditiva y la propiedad multiplicativa de la integral. 

Criterio de calificación: 

- El problema supondrá 1 punto sobre 2,5. Los apartados a) y b) valdrán 0.125 

puntos cada uno, y  los apartados c), d) y e)  valdrán 0,25 puntos cada uno. 

 

PRUEBA ESCRITA 

La prueba escrita tendrá una duración de una hora y constará de 4 problemas. 

 

Problema 1: (2 puntos) 

Dada la función      
 

 
   : 

a) Halla la integral definida en el intervalo [0, 4] haciendo el límite de sumas de 

Riemann. Para ello toma como punto de cada subintervalo el extremo derecho. 

Ayuda:                    
            

 
 

  

 
 

  

 
 

 

 
 

b) A partir del resultado anterior, calcula: 

-  
 

 
    

 

  
            -             

 

 
          

 

Criterio de evaluación: 

- Hallar la suma Riemann en un intervalo [a,b] de una función lineal. 

- Entender el significado conceptual y geométrico de la integral. 

Criterio de calificación: 

- El apartado a) valdrá 1 punto, de los cuales, plantear correctamente la suma de 

Riemann valdrá 0,75 y resolver el límite 0,25. 

- El apartado b) valdrá 1 punto, 0,5 cada subapartado. 
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Problema 2: (3 puntos) 

Se considera la función     =  

 
                                               
                            

  

 
                            

             

   

Dibuja la función y calcula el área total encerrada bajo la curva de la función en el 

intervalo [-5, 2e].  

Criterio de evaluación: 

- Resolver integrales definidas en las que haya que utilizar la propiedad de 

aditividad de intervalo y en las que, cuando f(x) es negativa, haya que tomar el 

valor del área como el opuesto al valor de la integral.  

- Resolver la integral mediante métodos geométricos en los dos primeros 

intervalos y mediante la regla de Barrow en el último intervalo. 

Criterio de calificación: 

- Calcular el área de los dos primeros intervalos: 1 punto 

- Calcular el área del tercer intervalo: 1 punto 

- Aplicar las propiedades de la integral para hallar el área total: 1 punto 

 

Problema 3: (1 punto) 

Se trasplanta un árbol y se observa que su tasa de crecimiento a los x años es de 

  
 

      
 metros/año. Calcula los metros que ha crecido el árbol del segundo al quinto 

año. 

Criterio de evaluación: 

- Resolver, mediante la integral definida y utilizando la regla de Barrow, 

problemas contextualizados. 

Criterio de calificación: 

- Plantear la integral definida: 0,25 puntos 

- Resolver la integral utilizando la regla de Barrow: 0,75 puntos 
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Problema 4: (1 punto) 

Un resorte elástico situado en un plano horizontal tiene un extremo fijo a una 

pared. Se tira del extremo libre hasta alargarlo 10 cm. Halla el trabajo (W) que realiza el 

muelle cuando su extremo libre pasa desde los 10 cm hasta los 5 cm respecto de la 

posición de equilibrio. La constante elástica del muelle es k = 2000 N/metro.  

Ayuda:                        
  

  
         

  

  
 

Criterio de evaluación: 

- Resolver, mediante la integral definida y utilizando la regla de Barrow, 

problemas relacionados con la Física. 

Criterio de calificación: 

- Plantear la integral definida con las unidades correctas: 0,25 puntos 

- Resolver la integral utilizando la regla de Barrow: 0,75 puntos 

 

 

 

 

 

 

 

 

 

 

 

 



TFM: La integral definida en 2º de Bachillerato 

 

Página | 46  

 

K. SOBRE LA BIBLIOGRAFÍA Y PÁGINAS WEB 

ALDANA BERMÚDEZ, E. (2011). Comprensión del concepto  de integral definida en el 

marco de la teoría “APOE”. Tesis doctoral. Universidad de Salamanca. 

ARANDA, C.; CALLEJO, M.L. (2011). Un experimento de enseñanza con applets de 

geometría dinámica. Investigación en Educación Matemática XV, pp. 247-256.  Ciudad 

Real: Sociedad Española de Investigación en Educación Matemática, SEIEM. 

AZCÁRATE C., CASADEVALL M., CASELLAS E., BOSCH D. (1996). Cálculo 

Diferencial e Integral. Educación Matemática en Secundaria Editorial Síntesis, S.A 

ESCUDERO BAYLÍN, M. (1997). Fermat y Arquímedes en la clase de integrales. Suma, 

24, pp. 77-79. 

LLORENS FUSTER, JOSÉ L. y SANTOJA GÓMEZ, FRANCISCO J. (1997). Una 

interpretación de las dificultades en el aprendizaje del concepto de integral. Divulgaciones 

matemáticas, v.5, No. 1/2, pp. 61-76. 

GUTIERREZ, I.A. (2013). La integral definida. Trabajo Fin de Máster en Profesorado de 

Educación Secundaria. Universidad de Zaragoza. 

SADA ALLO, M. Webs Interactivas de Matemáticas  

http://docentes.educacion.navarra.es/msadaall/geogebra/derivadas.htm 

TURÉGANO MORATALLA, P. (1997). El aprendizaje del concepto de integral. Suma, 26, 

pp. 39-52. 

TURÉGANO MORATALLA, P. (1998). Del área a la integral. Un estudio en el contexto 

educativo. Enseñanza de las ciencias, 16 (2), pp. 233-249. 

 

 

http://dialnet.unirioja.es/servlet/autor?codigo=3133249
http://docentes.educacion.navarra.es/msadaall/geogebra/derivadas.htm


 

 

 

 

 

 

 

ANEXOS 



TFM: La integral definida en 2º de Bachillerato                                     Anexos 

 

Página | 48  

 

ANEXO I: GUIÓN PARA LA CONSTRUCCIÓN DE UN APPLET DE 

GEOGEBRA 

A continuación se presenta un guión (Gutiérrez, 2013) que se les proporcionará a los 

alumnos para la construcción de un applet de Geogebra.  El guión que aquí se muestra está 

adaptado para el desarrollo de la actividad 4 de este trabajo, pero se podrá adaptar 

fácilmente  para cualquier otro tipo de ejercicio, ya que presenta las nociones básicas del 

manejo de Geogebra que se necesitarán para el estudio de la integral definida. 

 Abre un nuevo documento Geogebra en el que estén habilitados los ejes de 

coordenadas. Introduce con el teclado la función           . El programa dibuja la 

gráfica de la función. Para una mejor visualización, con el botón derecho del ratón 

selecciona una relación Eje X: Eje Y = 1:20. 

 Introduce con la función  “nuevo punto” del menú dos puntos que el programa 

denotará A y B, y sitúalos en el eje de abscisas, en x = 0 y x = 5. Dichos puntos 

representan los límites del intervalo donde queremos hallar el área. Puede 

comprobarse que dichos puntos pueden desplazarse fácilmente con el ratón. 

 Crea un “deslizador” con la ayuda del menú. Introduce un rango de variación desde 1 

a 100, con un salto de 1 unidad y una anchura de 200 (al pinchar en deslizador con el 

ratón, se abre una ventana donde se pueden introducir fácilmente dichos parámetros). 

 Podemos situar el deslizador a la derecha de la gráfica de la función, renombrarlo con 

la letra n y comprobar que pinchando con el ratón podemos variar el parámetro n a 

cualquier valor entre 0 y 100. Colocamos el deslizador en n = 5. 

 Introduce con el teclado la orden: SumaInferior[v(t), x(A), x(B) n]. El comando 

SumaInferior[]  está predefinido, el programa dibujará los rectángulos inferiores de 

amplitud la longitud del intervalo dividido por n, y guardará en una variable el valor 

numérico de las sumas inferiores que representan las sumas de las áreas de dichos 

rectángulos. Podemos renombrar la variable y denominarla SumasInf. 
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 Introduce con el teclado la orden: SumaSuperior[f(x), x(A), x(B) n]. El comando 

SumaSuperior[] también está predefinido, el programa dibujará los rectángulos 

superiores de amplitud la longitud del intervalo dividido por n, y guardará en una 

variable el valor numérico de las sumas superiores que representan las sumas de las 

áreas de dichos rectángulos. Podemos renombrar la variable y denominarla SumasSup. 

 Introduce con el teclado la orden: SumaSuperior[f(x), x(A), x(B) n],  SumaInferior[f(x), 

x(A), x(B), n] 

 El programa guardará en una variable el valor numérico de la diferencia entre las 

sumas superiores y las sumas inferiores. Podemos renombrar la variable y 

denominarla Error. 

 En el menú podemos activar el apartado vista algebraica y podemos visualizar el valor 

de todas las variables que aparecen en el programa. Alternativamente, con el botón 

derecho del ratón podemos ir a “propiedades del ob eto” activar la opción “mostrar 

nombre y valor” y dichas variables aparecerán escritas junto a la gráfica con su 

nombre y valor. 

 Solo una vez llegado al apartado i) de la actividad: Introduce con el teclado la orden: 

Integral[v(t), x(A), x(B)]. El comando Integral[]  está predefinido, el programa 

coloreara el recinto determinado bajo la curva de la función v(t) y las rectas verticales 

determinadas por los puntos A y B.  
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ANEXO II: SOLUCIONES PROBLEMAS 

En este anexo no aparecen las soluciones de todas y cada una de las actividades, 

sino que se muestran solo aquellos problemas y apartados de mayor complejidad y que 

consideramos oportuno añadir en este anexo. 

Actividad 4: Función cuadrática 

Un avión acelera de 0 a 100m/s (360 km/h) en 5 segundos. Notamos que la 

variación de la velocidad entre 0 y 100 no es lineal, sino que cada vez la aceleración es 

mayor y la velocidad aumenta más rápidamente. La velocidad del avión en cada instante 

viene representada en la siguiente gráfica, dada por la siguiente ecuación:          . 

¿Qué espacio habrá recorrido el avión en esos 5 segundos? 

 

h) Considera  una subdivisión en 5n subintervalos de longitud    
 

 
 . Calcula el área 

de los rectángulos superiores e inferiores en función de n. Ayuda: Se verifica la 

fórmula: 

                  
            

 
 

  

 
 

  

 
 

 

 
 

 

Solución: 

El área de los rectángulos superiores vendrá dada como: 

                                

El área de los rectángulos inferiores vendrá dada como: 
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Por tanto, 

          
 

 
    

 

 
      

  

 
  

 

 
     

 

 
 

 

    
 

 
 

 

      
  

 
 

 

   

 
  

  
                 

  

  
 
               

 
   

             

   
  

    
   

 
 

  

  
 

 

   
     

  

 
 

  

  
 

 

   
  

               
 

 
      

    

 
  

 

 
       

 

 
 

 

      
    

 
 

 

   

 
  

  
                

  

  
 
               

 
   

             

   
  

    
   

 
 

  

  
 

 

   
     

  

 
 

  

  
 

 

   
  

 

i) Toma límites cuando     y comprueba que las sumas superiores e inferiores 

convergen ambas al mismo valor. Este valor es el área bajo la curva de la función, 

esto es, el área que estamos buscando: 

   
   

           
   

                           

Solución 
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Demostración:                    
            

 
 

 

La suma                   se puede hallar a partir de la siguiente tabla 

en donde la última fila representa la suma de las dos columnas externas. 

                           

                        

                        

  

                               

                                                  

 

En la última fila se puede simplificar y sustituir         por  
      

 
, ya que se 

trata de la suma de los   primeros términos de una progresión aritmética     . 

Despejando: 

          
        

      
       

 
 

                     

 
  

 
            

 
 

 

 

Actividad 5: Función exponencial 

A las nueve de la mañana surge un rumor en el instituto que se difunde a un ritmo 

de             personas/hora. Sabiendo que t representa el número de horas 

transcurridas desde la aparición del rumor, calcular el número de personas que lo habrán 

oído a las 11 de la mañana.  

a) Halla la expresión de la suma de rectángulos medios si subdividimos el intervalo 

[0,2] en 2n subintervalos de longitud 1/n. Ayuda: La suma de una expresión 

geométrica de razón r se halla como:   
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Solución: 

El área de los rectángulos medios será: 

                                   

      
 

 
            

 

  
    

 

  
       

    

  
   

Por tanto, 

             
 

  
    

 

  
      

    

  
  

  

 
   

 
      

    
     

La expresión entre [] es la suma de 2n primeros términos de una progresión 

geométrica de razón    
 

  ,  con primer término     
 

   , y último término      
    

  . 

Esta suma vale: 

   
   

       

   
 

 
    
    

 
    

 
  

 
 
   

 
 

    
    

 
  

 
 
   

 
 

 
         

 
 
   

       
 

 
  

 
 
   

 

        
  

 
       

 
 
  

 
 
   

 

b) Halla el límite cuando     de la suma hallada en el apartado anterior. 

Interpreta el valor obtenido según el contexto del problema. 0 

                    
  

 
       

 
 

  

 
 
   

          
 

   
   

   
 
    

  

                     
   

   
 

        
   

    
 

 
 

                 

 

 

Actividad 7: Problemas de aplicación 

1.- Circulandia, una típica ciudad, está muy poblada cerca del centro pero su 

población decrece cuando nos alejamos de él. En efecto, su densidad de población 

es               –                     siendo   la distancia al centro en km. 
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a) Si la densidad de población en los confines de la ciudad es 0, ¿cuál es el radio de la 

zona en la que viven? 

Solución:  

                   –              

                                                           

b) Calcula el número total de habitantes de la ciudad. 

Solución:  

El número total de habitantes será igual a la integral definida de 0 hasta 3 de      , 

o lo que es lo mismo, al área bajo la curva de la función      en el intervalo [0, 3]: 

 

                     
       

 

 

 

                  

 

 

 

2.- La densidad de coches ρ(x) (en coches por km) en los primeros    km de una 

autovía de salida de una gran ciudad viene dada por la función                

siendo   la distancia en km al comienzo de la autovía. 

a) Escribe una suma de Riemann para hallar el número de coches en esos 20 km con 

cinco intervalos de igual longitud tomando como punto muestra el extremo derecho 

del intervalo.  

Solución: 
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b) Calcula el número de coches en esos 20 km mediante una suma de Riemann con n 

intervalos de igual longitud tomando como punto muestra el extremo derecho del 

intervalo.  

 Ayuda:  

              
      

 
 

                   
            

 
 

  

 
 

  

 
 

 

 
 

Solución: 
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c) Calcula el número total de coches en esos 20 km utilizando las propiedades de la 

integral definida y las expresiones de la integral que ya conoces. Compara este 

resultado con el obtenido en el apartado anterior. 

Solución: 
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ANEXO III: SOLUCIONES PRUEBA ESCRITA 

Problema 1 

Dada la función      
 

 
   : 

a) Halla la integral definida en el intervalo [0, 4] haciendo el límite de sumas de 

Riemann. Para ello toma como punto de cada subintervalo el extremo derecho. 

Ayuda:                    
            

 
 

  

 
 

  

 
 

 

 
 

Solución: 

           

 

   

   

      
 

 
            

 

 
    

 

 
      

  

 
 

   
 

 
    

  

 
 

 

   

 
 

 
  

 

 
  

  

 
 

  

   

  
  

  
    

 

   

  
  

  
 
            

 
  

 
  

  
 
         

 
 

  

 
 

  

 
 

  

   
 

 
 

 
    

 

 

     
   

      
   

 
  

 
 

  

 
 

  

   
  

  

 
 

b) A partir del resultado anterior, calcula: 

-  
 

 
    

 

  
            -             

 

 
          

Solución: 
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Problema 2: (3 puntos) 

Se considera la función     =  

 
                                               
                            

  

 
                            

             

   

Dibuja la función y calcula el área total encerrada bajo la curva de la función en el 

intervalo [-5, 2e].  

Solución: 

 
 

             
   

 
 

   

 
  

 

 

  

 

    
  

 
  

 

 

  

 

   

 
 

 

  

 

              
                                            

 

     
  

 
   

  

 
         

 

 

Problema 3: (2 puntos) 

Se trasplanta un árbol y se observa que su tasa de crecimiento a los x años es de 

  
 

   
 metros/año. Calcula los metros que ha crecido el árbol del segundo al quinto año. 
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Solución 

                                                    
 

      
 

 

 

   

    
 

      
 

 

 

     
 

 

    
 

      

 

 

      
 

      

 

 

      
 

   
 
 

 

  

    
 

 
 

 

 
 
 

 

   
 

 
 

                                                            

 

Problema 4: (2 puntos) 

Un resorte elástico situado en un plano horizontal tiene un extremo fijo a una 

pared. Se tira del extremo libre hasta alargarlo 10 cm. Halla el trabajo (W) que realiza el 

muelle cuando su extremo libre pasa desde los 10 cm hasta los 5 cm respecto de la 

posición de equilibrio. La constante elástica del muelle es k = 2000 N/metro.  

Ayuda:                        
  

  
         

  

  
 

Solución 

                       
    

    

        
  

 
 
    

    

                          


