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Abstract

In this final degree project we will study the Hardy-Littlewood maximal operator in different set-
tings.

In the first chapter we define the Hardy-Littlewood maximal operator of a locally integrable function
f- The Hardy-Littlewood maximal operator will be proved to be positive and linear.

We will explain what it means that the Hardy-Littlewood maximal operator satisfies a (p, p)-weak
inequality and that the Hardy-Littlewood maximal operator satisfies a (p, p)-strong inequality. Also we
will prove that if a function satisfies a (p, p)-strong inequality, then it satisfies a (p, p)-weak inequality.

We will give an example to prove that the Hardy-Littlewood maximal operator doesn’t satisfy the
(1,1)-strong inequality.

We will show that the Hardy-Littlewood maximal operator satisfies the (1, 1)-weak inequality. Mo-
reover we will prove that for all p with 1 < p < oo, the Hardy-Littlewood maximal operator satisfies a
(p, p)-strong inequality.

Next, if f is a locally integrable function we will show that

] 1 _
) 150 = sy =o.

And as a consequence, if f is a locally integrable function

} 1
i i B) /B f)dy = f(x)
xeB
for almost every x € R”.
After defining the Lebesgue set of a locally integrable function and using the previous limits, we see
that if f is a locally integrable function, then almost every point belongs to the Lebesgue set.
To finish this chapter we define the bounded eccentricity {Uy } and prove that

1
i dy =
m(zflié!om(Ua) Uaf(y) y=f(2)

z€Uqy

for all point z which belongs to the Lebesgue set.

The target in the second chapter is to study the Hardy-Littlewood maximal operator in the set of the
dyadic cubes.

We define dyadic cubes and give some basic properties of these sets.

Also we define the Hardy-Littlewood dyadic maximal operator M f and the conditional expectation
of a locally integrable function f. We will relate the supreme of conditional expectations and the Hardy-
Littlewood dyadic maximal operator.

We will see that the Hardy-Littlewood dyadic maximal operator is of (1, 1)-weak type. Also we will
prove that the limit of conditional expectations of a function f is the function f.

An important result, which will be used in the last chapter, is the Calderén-Zygmund decomposition.
We prove that given an integrable function f and A4 > 0, there exists a sequence {Q;} of dyadic cubes
such as:
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v Abstract
1. f(x) < A for almost every x ¢ {J; Q-
1
2. m(U;Qj) < 7 15

1
- < n

A< m(Q;) ij_z *

We will give the relationship between the Hardy-Littlewood dyadic maximal operator M f and
the Hardy-Littlewood maximal operator M f. We will use this relationship to prove that the Hardy-
Littlewood dyadic maximal operator satisfies a (p, p)-strong inequality with 1 < p.

In the third chapter we will define the Hardy-Littlewood iterative maximal operator with order k of
a locally integrable function f.

And to prove that the limit when & tends to infinite of the Hardy-Littlewood iterative maximal
operator is || f||.., we will give a previous lemma which says that the limit when k tends to infinite of a
sequence (¢ )x>1 which belongs to (0,1) and ¢x1; = (1 —c¢y)cx+c¢p forall k > 1is 1.

Now, let w be a weight. In chapter four we study which conditions must w satisfy so as to have the
(p, p)-weak inequality

W e R M) > 20) < 5 [l wiods

Firstly, we deduce some necessary conditions for the (p, p)-weak inequality. These conditions,
which are known as the A,-conditions, are proved to be sufficient, as well.
Finally, if a weight satisfies the A ,-condition, we will prove the (p, p)-weak inequality.
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Capitulo 1

Introduccion a la funcion maximal de
Hardy-Littlewood

En este capitulo vamos a utilizar como referencias los apartados [3], [5] y [7] de la bibliografia.

La funcién maximal tiene una gran importancia en matematicas pues dada una funcion localmente
integrable f y un conjunto V, que puede ser un cubo o una bola, la funcién controla los limites de la
forma

. 1
m(ly)g om(V) /V f(y)dy.

La funcién maximal permite generalizar el teorema fundamental del calculo integral cldsico para
espacios de medida de Lebesgue.

Este operador estd relacionado con los operadores integrales de Calderén-Zygmund que juegan un
papel importante en las ecuaciones diferenciales ordinarias.

Ademads muchos de los operadores clasicos del andlisis cumplen una desigualdad de la forma

ITf(x)| < [Mf(x)|
o similiar.

Definicion. Una funcion medible en R" f se dice localmente integrable si para toda bola B C R" la
funcion f(x) Zp(x) es integrable.

Definicion. Sea f: R" — R localmente integrable en R" con n > 1. Se define la funcion maximal M f (x)

como 1
Mf(X)Ziggm(B)/Blf(y)\dy

con x € R" y donde el supremo se toma sobre todas las bolas B que contienen a x. En el trabajo m(B)
es la medida de Lebesgue de B.

Teorema 1. Dadas funciones localmente integrables en R" f,g :R" - Rconn>1y A €R,
1. Mf>0.
2. M(f+g) < Mf+Mg.
3. M(Af) = |A|MFf.

Demostracion. 1) Es inmediato, como |f| > 0

1 1
m(B)/B|f()’)|d)72 m(B)/BOdyZO'
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2 Capitulo 1. Introduccion a la funcién maximal de Hardy-Littlewood

Esto ocurre para toda bola que contiene a x por tanto
Mf>0.

2) Dado cualquier x € R",

M(f +g)(x) = sup m(lB) /B!f(y)Jrg(y)\dy.

xeB

Por las propiedades del valor absoluto

MU +8)0) < supos [[170)|dy+sup s [ 16(0)|dy = M)+ M)

3) Por las propiedades de las integrales

M0 = s [ O]y = Alsup—os [ 17(0)|dy = 12]M7()

xXEB m( ) xeB M
L]

Definicion. Sea 1 < p < oo. Se dice que el operador maximal de Hardy-Littlewood es de tipo (p, p)-débil
si hay alguna constante C > 0 de modo que para toda funcion f € LP(R") y todo A > 0,

m({reR" Mf() > 2D < 17,

Definicion. Sea 1 < p < oo. Se dice que el operador maximal de Hardy-Littlewood es de tipo (p, p)-
fuerte si hay alguna constante C > 0 de modo que para toda funcion f € LP (R")

Ml < CIIfI],-

Teorema 2. Sean 1 < p < ooy g:R" — R una funcién positiva y medible. Entonces para todo A > 0,
1
m({x € R": g(x) > A})'/P < 7 lsll,-
Demostracion.

m(lr € R g(x) > A}) =m({x € R": (g(x)) > A"}) = )

/{xeR"i(g(X))”>7L”}

Como % > 1

(g(x))” 1
/Rn P {xeRrr(g(x)p>arydx < /Rn = lIglI% -
O]

Consecuencia. Poniendo g = M f (que enseguida veremos que es medible) se deduce que si M es de

tipo (p, p)-fuerte entonces es de tipo (p, p)-débil. Al reves no es cierto. En lo que sigue vamos a probar
que:

1. Mf es de tipo (p,p)-fuerte con 1 < p.
2. Mf no es de tipo (1,1)-fuerte.
3. Mf es de tipo (1,1)-débil.

Para las siguientes demostraciones necesitamos un resultado previo el teorema de recubrimiento de
Vitali.
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Teorema 3 (de recubrimiento de Vitali). Dada una coleccion finita B= {B,Bs,...,By} de bolas abier-
tas en R", existe una coleccion disjunta {B;,,Bi,,...,B; } C B tal que

N k
m (U B]) < 3" Zm(B,])
=1 Jj=1

Demostracion. Tomamos una bola B;, de B que posea el mayor radio y eliminamos de B la bola B;, y
todas las bolas que intersecan con B;, . Todas las bolas eliminadas estdn contenidas en la bola Bil que es
la bola con el mismo centro de B;, y radio tres veces el radio de B;,.

Sea V el conjunto de las bolas restantes. Elegimos la bola B;, de mayor radio de V' y eliminamos de
V la bola B;, y todas las bolas que intersecan con Bj,.

Repetimos el proceso como mucho N veces para obtener una coleccién finita de bolas disjuntas
Bi] ,Biz, "'7Bik conk <N.

Tomamos Bij la bola con el mismo centro que B;; y radio tres veces el radio de B;;. Ya que cualquier
bola Z en B interseca con alguna bola B;; y tendrd menor o igual radio que B;;, se tiene que & C B;,.
Por tanto

k
m(U1B) <m(UiB,) < Y om(B,) =3 Y m(B,).
j=1 =

A continuacién vamos a dar otras propiedades de la funcién maximal de Hardy-Littlewood.
Teorema 4. Sea f una funcion localmente integrable en R". Entonces:
1. Mf es medible.
2. Mf cumple que .
m(fre B MF() > @) < 1Al

para todo & > 0y donde ||f||, :/ |f(x)|dx.
R»

3. M f(x) < oo para casi todo x.

Demostracion. 1) Tomamos
Eo={xeR":Mf(x) > a}.

Hay que probar que E, es un conjunto medible. Para todo y € E, existe una bola B talque y € By

m(lB)/Blf(z)ldz>a.

Todo punto x € B cumple la anterior ecuacidn por tanto pertenece a Ey. Esto demuestra que Ey es un
conjunto abierto y por tanto medible.

2) Si Eq = 0 es el caso trivial ya que m(0) =0y ||f]|, > 0.

Supongamos ahora que Ey # 0.

Para cada x € E, existe una bola B que contiene a x tal que

m(lB)/Byf(y)|dy>a 0 m(B)<;/B|f(y)ldy-

Fijamos un conjunto compacto K C Eq. Por estar contenido en Eq K C |J,cx B donde B, es una
bola abierta que contiene a x y que cumple que m(By) < é s, 1f(y)|dy. Como K es compacto podemos
elegir un recubrimiento finito de K, es decir, K C (J)_, B;. Aplicando el teorema de recubrimiento de
Vitali existe una subfamilia finita de bolas abiertas disjuntas en R" B;,B;,, ..., B;, con
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N k
m (U Bk> <3" Zm(Bij).
k=1 j=1

J

Como m(By) < /|f )|dy paratodo k=1,...,N
N

k
maogm(UBk)g il ,,_3"2 /|f Nay=2 [ 1p0)lay

k=1 j=1 ij

<= [ 1rwldy=2 sl

Como la medida de Lebesgue es regular interiormente m(Eq) = supg g, m(K) donde el supremo
se toma sobre los conjuntos compactos K contenidos en Eq y m(K) < %" [|f]|; se cumple para todo
subconjunto compacto K de E,

3]’!
m(Ea) < 11l
3) Como el conjunto {x: M f(x) =oo} C {x: Mf(x) > o} para todo ¢,

3n
. — o0 < { N < { _ =
(i MF(x) = ) < Jim m(fx: MF() > @) < lim > 1f]], =0
Por tanto M f(x) < oo para casi todo x. O

Antes del proximo resultado daremos un lema previo.

Lema 5. Si fes una funcion medible en R" y 1 < p < oo, entonces

[ lr@Pdas=p [ tm(xe R f@)] > )
R” 0

Demostracion. Aplicando el teorema de Fubini

£ ()l
/ ]f(x)|pdx:/ / ptP L drdx
R~ R JO

= [ ot [ Zypndadi=p [ xR @) > e

Ejemplo. Sean D ={x e R": ||x|| < 1} y f(x) = Zp(x).

Wil = [ 120@ldx= [ 2p)dx= [ dy=m(D)

Fijamos una bola B, en concreto, B= B(x,r) con r = 1+ ||x||.

4
3
2

4wryo 1.5 2.0 25 3.0
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En esta figura el punto rojo es un punto cualquiera de R?, la figura verde es el circulo de centro el
origen y radio 1y la recta azul une el punto rojo y el origen.

> i fONdy = 2 [ 250 23050y

1 _ 1 _ m(DNB)
_m(B)/Rn %DmB()’)d)’—m(B)/dey— m(B)

m(DNB) m(D) m(D) C
m(B)  m(B)  cu"

Para ver que ||[Mf||, = e basta ver que fR,, 1+|\XH) dx =

1
Como/ H Hldx<oos1ysolosz7l, >ny ||x|]|+ 1~ ||x|| cuando ||x|| — oo.
R ||x

1
————dx < oo siysolo si A >n.
/R" (1+ [[x[[)*

1
En este caso A = n por tanto /

dx = ooy M), = .
e (1+ ()2 !

Teorema 6. (estimacion de tipo fuerte)
Seann > 1,1 < p < oo, Existe C > 0 tal que para todo f € LP(R")

IMAIl, <ClIA,-

Demostracion. Si p = oo,
Por ser f € L”(R") entonces |f(x)| < ||f||.. en casi todo punto. Usando la primera propiedad del
teorema 1

) =sup s [ 170N dy < supos [y = 11

xeBMm

Tomando el supremo obtenemos el resultado.
Sil < p<oo,
Sea f € LP(R").
Fijamos un & > 0 cualquiera y definimos estas funciones:

E=F 2 rwi>ey b= <2y

Entonces, f =g+ h.
Ademids, |h(x)| < § para todo x, luego Mh(x) < § para todo x. Por lo tanto, para todo x € R”,

MF(x) = M(g+h)(x) < Mg(x) + Mh(x) < Mg(x) + 5

Si M f(x) > o entonces Mg(x) >
Luego

IR

o
m({x e R";Mf(x)>o})<m ({x e R Mg(x) > 5}) .
Usando la propiedad 2 del teorema 4

372 /
[f(x)dx.
o Jixl @)

R":Mg(x) > E1) < 2 [jgll, =
m{yxeR"; Mg(x) > 1)@ gy
2
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Porellema5

sl = [ Mrerds=p [ tm({x e RMr () > o)) da

< * p—1 n. g < /‘m n p—2 /
_p/o o m({xER sMg(x) > 2}) da<p A 320 < {x;lf(x)|>%}|f(x)|dx da

Usando el teorema de Fubini

= 2/f ()|
p / 3122 < / y f(x)|dx> do=3"2p / |f(x)] < / aP‘%la) dx
0 {xlF@)|>%} R" 0

3"2Pp
=3"2p (X)\”dX— AT
R~ p
O
Teorema 7. Sea funa funcion integrable en R". Entonces
T ) = r@ldy =0
—>0 m(B
y
tim s [ )y = )
im —— = f(x
m(B)—0 m(B) Jp YIey
xeB

para casi todo x € R".

Demostracion. 1) Basta con probar que para cada o > 0 el conjunto

Eq=<x: hmsup / lf () x)|dy >2a
B)—0 m
xEB

oo

tiene medida nula ya que si esto ocurre el conjunto £ = U E: tiene medida nula y el conjunto E¢
n:l n
(que es el complementario de E) cumple que si x € E€

)| dy=0.
aom /’f ‘ Y=

xEB

Fijando o, si g es continua con soporte compacto es una funcién acotada y |g| < ||g||..

755 1180~ &0y < suplgr) (1)
yEB

Por ser g continua dado € > 0 existe algin 6 > 0 tal que si [y —x| < 6, [g(y) —g(x)| < €. SiBes
cualquier bola tal que x € B con didmetro menor que §, se tiene sup,p[g(y) — g(x)| < € y por lo tanto

/Ig x)|dy <e.

B)—0 m
xeB

Por densidad para cada € > 0 existe una funcién g continua de soporte compacto tal que || f — g||, <

Por tanto hm / lg(y x)|dy = 0 para todo x.
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/!f (x)|dy

< [ 170) s |dy+—/|g (3| dy +[g(x) = £ ()

Como

<M =90+~ [ [80) = gl dy +lglo) — 1),

1f(y) = fx)|dy < M(f —g)(x) +|g(x) — f(x)].

lim sup
m(B)—0 M(B) /B
XEB

Sean Fo = {x :M(f —g)(x) > o} y G = {x:|f(x) —g(x)| > a} entonces Eq C (Fo UGq).
Por la desigualdad de Chebyshev

1
m(Ga) < — |17 el
y por el teorema 4 apartado 2)
3}1
m(Fa) <~ |If =l

Asim(Eq) < %8 + Le. Como esto es cierto para todo € > 0 se deduce que m(Eq) = 0.
2) Para cada x € R”,

'm(lB) [0y 1

Basta con usar ahora el apartado 1). O

=’m(lB)/B<f<y> f) dy‘s 5 0 =1y

Una consecuencia del anterior teorema es el siguiente corolario.

Corolario 8. Si fes una funcion localmente integrable, entonces para casi todo x € R"

)| dy=0.
%Om /|f | Y=

xEB

En particular para casi todo x € R"

lim o [ £y = £ (@),

m(B) %Om
xXEB
Demostracion. Este teorema es de cardcter local, pues dado N € N, si |x| < N, los valores de 7 f s f(y)dy
con didmetro de B menor que 1 dependen de las y tales que |y| < N + 1. Asi podemos suponer que
feLY(RY.
La segunda conclusién se obtiene de la primera ya que

) 1 N 1 B
) O =19 = | s 100 =00 < i s [ 100 = oy =
xe xe
O

Definicion. Sean E un conjunto medible y x € R". Se dice que x es un punto de densidad de Lebesgue
de E si BAE
N
lim MBNE)

m(B)—0 m(B)
x€B

=1.
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Corolario 9. Suponiendo que E C R" es un subconjunto medible entonces:
1. Casi todo c € E es punto de densidad de E.
2. Casi todo ¢ ¢ E no es punto de densidad de E.

Demostracion. 1) Tomamos ¢ € E cualquiera, una bola B que contiene a c y f = Zgnp. La funcién f es
integrable en R”.
Sic € E, entonces c € ENBYy f(c) = 1. Ademds,

1 _ m(BNE)
B | 101y = / Dirn(y)dy = —) /Eﬂde—m(B) .

Aplicando el teorema 7

. m(BNE) /
1 —2=1i )d
m(zlsl)go m(B) (mio m(B FO)dy = fle) =
cEB cEB

para casitodo c € E.
2)Sic ¢ E, entonces c € ESNBym(B) =m(ECNB)+m(ENB)

m(B) _m(ENB) m(ENB)
m(B)  m(B) m(B)

1=

Tomando ahora f = Z5cqp y siguiendo el mismo proceso que en el apartado 1) obtenemos que

m(BNE®) /
lim ————— = )d
m(ér)rl)() m(B) ( —>0 m(B fO)dy=fle) =
ceEB ceEB
para casi todo ¢ ¢ E.
Por lo tanto
ENB ECNB ECNB
m(B)—0 m(B) m(B)—0 m(B) m(B)—0  m(B)
ceB ceB ceB
. m(ENB) __ .
Por tanto lim,, )0 B = 0 y no es punto de densidad en E. O

ceB

Definicion. Sea [ una funcion localmente integrable en R". Se define el conjunto de Lebesgue de f
como el conjunto formado por todos los puntos x € R" tales que

/!f ()l dy = 0.
*)Om

Nota 10. 1. Un punto x € R" pertenece al conjunto de Lebesgue de f si f es continua en x.

2. Six € R" pertenece al conjunto de Lebesgue de f

lim 5 10y = 10

m(B)—0 m
XEB

Con esto la primera parte del corolario 8 se puede escribir asi:

Corolario 11. Sea f una funcion localmente integrable en R". Casi todo punto pertenece al conjunto
de Lebesgue de f.
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Definicion. Sea x € R". Una coleccion de conjuntos {Uy} se dice que converge regularmente a x si
existe una constante ¢ > 0 tal que para cada Uy existe una bola B con x € B, Uy C By m(Uy) > cm(B).

Corolario 12. Sea f una funcion localmente integrable en R". Si {Uy} converge regularmente a z
entonces

lim
m(Uq)—0 m(Uqy) Ju

z€Uq

fdy = f(z)

para todo z en el conjunto de Lebesgue de f.

Demostracion. Siz € BconUy C By m(Uy) > cm(B), entonces

m(,l]a) [ 170 - @Iy < — /\f ()| dy.

Como z pertenece al conjunto de Lebesgue

1
0< I d lim / dy=0.
< tim s [ 0= f@y < im s [170) =S (@ldy =
z€Uq ZEB

Y de aqui se deduce el resultado. O






Capitulo 2

Funcion maximal diadica

A partir de los trabajos de las paginas [1], [4] y [7] de la bibliografia escribimos este capitulo.

Definicion. Sean n € N, m € Z" y k € Z. Un cubo diddico en R" de generacion k es un conjunto de la

forma
0 =2"*m+[0,1)").

1.0

0.8

0.6

0.4

0.2

012 0:4 0:6 018 1.0

La figura es un cubo diddico donde el cubo de lados negro es el cubo diddico de generacién 0, los cubos
de lados rojos son los cubos diddicos de generacién 1y los cubos de lados azules son los cubos diddicos
de generacién 2.

Ademais el cubo cuyo interior es de color azul claro es el cubo diddico de generacién 1 con punto
inicial el origen y el cubo cuyo interior es de color verde es el cubo diddico de generacion 2 con punto
c e . 11
inicial (5, 5).

Definicion. Sea k € 7. Se define la familia de todos los cubos diddicos {Qy} , donde Qy denota el
conjunto

Qi ={Q:m(Q)=2"}.
Ademds denotaremos por 2 = Upecz Q.
Nota 13. 1. Fijado k € Z, todo x € R" pertenece a un tnico cubo diddico de generacion k.

2. Dos cubos diddicos o bien son disjuntos, o bien uno de ellos estd contenido en el otro.

3. Dado un cubo diddico Q de generacion k, existe un unico Q* de generacién k — 1 tal que Q C Q*
y m(Q*) =2"m(Q). El cubo Q* se llama el padre de Q.

4. Un cubo diddico de la familia Qy estd contenido en un unico cubo diddico de cada familia Q;
donde j < k y contiene 2" cubos diddicos de la familia Q.

5. Un cubo cualquiera de lado menor que 2* corta como mucho a 2" cubos diddicos de generacién
k.

11



12 Capitulo 2. Funcién maximal diddica

Lema 14. Sea Q\,...,On una coleccion finita de cubos diddicos con N € N. Entonces hay una subco-
leccion de cubos diddicos disjuntos Qp, , ..., Op, tal que

0, U...UQy, =01 U...UQy.

Demostracion. Tomamos O, como cubos diddicos maximales de la coleccidn de cubos que no estin
contenidos en ningdn otro cubo de esta coleccién Qy,...,Qy. Por la anterior nota tenemos que son
disjuntos y cubren Qy, ..., On. O

Definicion. Sea f una funcion localmente integrable en R". Definimos la funcion maximal diddica de f

m(lQ) | oy

con x € R" y donde el supremo se toma sobre todos los cubos diddicos Q que contienen a x.

M f(x) = sup
xeQ

Y

Definicion. Sean f una funcién localmente integrable en R", Qi la familia de cubos diddicos de gene-
racion k' y x € R". Se define la esperanza condicional de f respecto a la 6-dlgebra engendrada por Qi

o Ef(x)=Y, (m(lQ)/Qf> Zo(x)-

Q€0

La esperanza condicional cumple que para todo Q que pertenece a la ¢-dlgebra engredrada por

Ok
/Qf(x)dx:/QEkf(x)dx

Sea 2 = U Q. Entonces se cumple que

/,@Ekf:/.,@f'

Ademds para cada k la familia de todos los cubos diddicos de generacion k Qy es una particion de

R”". Entonces
/ Exf = / f
n Rn

Lema 15. Sean f una funcion localmente integrable en R", Qy, la familia de cubos diddicos de genera-
cionk € Z, x € R" y E; f(x) la esperanza condicional de f respecto a la 6-dlgebra engredrada por Q.
Entonces E; o Ej1(f) = Ex+19Ex(f) = Ex1(f). Es decir, la esperanza condicional es mondtona.

Demostracion. Dado Q un cubo diddico que pertenece a la o-algebra engredrada por Q. también
pertenece a la 6-dlgebra engredrada por Q.
Como la esperanza condicional cumple que para todo Q que pertenece a la o-dlgebra engredrada

por Ok Jo f(x)dx = [, Erf(x)dx entonces

[ BB (1))dx = [ Ber(Hedx
0 o

- /Q F)dx = /Q E(f)(x)dx = /Q Eyor (Ex(£)(x))dx.
Il

Nota 16. Sean f una funcién localmente integrable en R”, Oy la familia de cubos diddicos de generacion
k,x € R"y Eif(x) la esperanza condicional de f respecto a la o-dlgebra engredrada por Qy. Entonces:

1) Todo x € R” pertenece a un tnico cubo diddico de generacion k. Por tanto Ey f (x) = Y pcq, (@ Jof ) Zolx) =

@ Jo, f(v)dy donde QO es el cubo diddico de generacion k que contiene a x.
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Asi

M f(x) = sup
xeQ|m

|, 70| =suplEe(r)

1
)d
/f y‘ erl m(Qx) Jo, keZ

HE (oo < 11 F1]oo-
Ademés si |E;(f)| < ||f]].. en casi todo puntoy 1 < p < e

2)

HECAI, < A1, -

Teorema 17. Sean f una funcion integrable en R", k € Z y A > 0. Se tiene que

m(fr e B Maf() > ) < £ 171

Ademds

lim £y f(x) = £ (x)

k—boo

en casi todo punto x € R".

Demostracion. 1) Comom{x € R" : Ma f(x) >A} <m{x€R":Ma |f|(x) >A}.Si{xeR":Ma |f] (x) >
A} < % Ifl ] = % || f1]; entonces m{x € R" : Mp f(x) > A} < % || £1];- Se puede suponer por esto que
f > 0y es una funcién integrable en R". Para todo k € Z

Q= {xeR": Ef(x) > A,E;f(x) <A para todo j<k}.

Por la definicién de la funcion maximal diddica Ma f(x) = supey |[Ex(f)|. Siy € U existe algin k;
tal que y € Q,. Como E;f(x) < |Erf(x)| < supyey |[Ex(f)| = Maf(x) paratodox € R" y A < Exf(y)
entonces A < Ma f(y).

Ademis dado y € {x € R" : Ma f(x) > A} por la definicién de la funcion maximal diddica A <
Ei(f)(y) para algtin k y si existe un j < k tal que A < E;(f)(y) por el lema 15 E;(f)(y) > Ex(f)(y) lo
cual contradice que Ex(f)(y) sea maximo.

Asi

{x e R" ZMAf()C) > )L} = UL

Por la definicién de la funcién maximal diddica de Hardy-Littlewood y por ser € disjuntos se tiene que
1
m({x ER":MAf(x) > A1) = Xm(@) <Y 5 /Q Ef
k 3 k

1
=7 UkaEkf< /Ekf A/ f= !le

2)
Sea g continua. Dado € > 0 existe algtin d > 0 tal que si |[y—x| < 6, |g(y) —g(x)| < €. SiQesel
tnico cubo de {Qy} tal que x € Q con diagonal menor que 8, se tiene |g(y) — g(x)| < € y por lo tanto

Qer< 5 [ ) —etaidy) 2ot
< X (g o0 -slar) 209 <

lim Eyg(x) = g(x)

k—boo

|Erg(x) — g(x)| =

y <m(1Q> / g(y)dy> Zox) —g(x)| =

Q€0

Por tanto
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en casi todo punto x € R".
Sea f € L'(R"). Por densidad para cada € > 0 existe una funcién g continua tal que ||f — g||, < €.
Tomando f; = Ef paratodo k, gx = Exgy A >0

[fie() = )] = [fe(x) = () £ gu(x) £ 8 ()| < |filx) — 8 () + [ (x) — g (x)[ + [ (x) — f ()]

SMA(f—8)(x) +[8k(x) — g(¥) + |g(x) = f(x)].
Por tanto

limsup | fi(x) — £ (x)] < Ma(f —g)(x) +[8(x) = f()].

k—ro0

Sean F) = {x : Ma(f—g)(x) >A/2} y G = {x:|f(x) —g(x)| > A/2}. Entonces

{x e R" : limsup | fx(x) — f(x)| > A} C (F, UG)).

k—ro0

Por la desigualdad de Chebyshev

2
m(Gy,) < I’\f—g’h

y por el apartado 1) del teorema
2
m(Fy) < 5 I1f =l

Asi m({x € R" : limsup;_,.. | fx(x) — f(x)| > A}) < %£+ %8.
Como esto es cierto para todo € > 0 se deduce que m({x € R" : limsup,_,.. | fe(x) — f(x)| > A}) =0.
Ademads

Exf(x) = Z E(fZ0)(x)Zo(x) con k>0
Q€0

y fZp es integrable. Entonces f es localmente integrable y limy_,.. Ex f(x) = f(x) en casi todo punto
x € Q para todo Q € Q. Luego también se cumple para casi todo punto x € R". O

Teorema 18. (Descomposicién de Calderon-Zygmund) Sean f € L'(R") con f >0y A > 0. Entonces
existe una sucesion de cubos diddicos disjuntos {Q} jcz que cumple:

1. f(x) < A para casi todo x ¢ U, Q.

1
2. m(U;Q;) < T A1,

1
m(QJ) Q;

Demostracion. 1) Sean Q; los conjuntos descritos como en el anterior teorema. Descomponemos los
Q en cubos diddicos disjuntos Oy que forman una familia {Q;}.

Seax ¢ U; Qj, es decir, x ¢ UL Entonces si Eyf(x) < A para todo k, como limy_.. Ex f(x) = f(x)
en casi todo punto x ¢ U, Q;

3.A<

F<2mA.

f(x) <A en casi todo punto x ¢ UQJ"
J

2) Usando la misma descomposicion del apartado anterior

m(U;Q;) = m(UrQy) = m({x e R" : Mp f(x) > A}).



La funcién maximal de Hardy-Littlewood 15

Por la desigualdad vista en el anterior teorema

m(fr € R Maf() > ) < 2 1]

3) Todo Q; C {Q;}jez cumple que Q; C & para algtin k. Por la definicién de los € tenemos

1

A
= m(QJ) 0

f.

Consideramos la familia de cubos {Q;‘} donde Q}‘. es el padre de Q;. Entonces

)/* e

< <2"A.
n(0y) Jo,” = m@)m(0; ©)m(@) Jo' =

O

Lema 19. Sean f una funcion localmente integrable en R" y x € Q". Existen constantes C), y C,, que
dependen de n, tales que

CMf(x) <Mpf(x) <CMf(x).

Demostracion. Sea Q un cubo tal que x € Q. Entonces Q C B(x,dyp), donde B(x,dgp) es la bola de
centro x de radio dp con dgp la diagonal del cubo Q. Por el teorema de Pitdgoras dé = nlé, donde [y es
la longitud del lado del cubo Q. Usando la definicién de la medida de Lebesgue

1
m(Q) =l =—=dy vy m(B(x,dg)) = cudyp.

NG

Asi tenemos que

i o] < [iroiay ALy
¢ 1 _ ; Cn
= s TN = T g ey VO M)

Esto ocurre para todo cubo Q que contenga a x por tanto también ocurre para el supremo, por lo que
Maf(x) <CMf(x)conC, = 4.

'

Veamos la otra desigualdad. La bola B(x, r) estd contenida en un cubo Q, de lado 2r con r>0. Como

m(Qy) = (2r)"

1 1 1
B e Nt == [ gy < [ f)lay
7 g on
T e 2m o, F)ldy = o m(00) Jo. FOdy < -Maf(x).
Por tanto C, M f(x) < Ma f(x). -

Proposicion 20. Sean 1 < p <eoy f € LP(R") una funcion. Se cumple que

(M 1]], <111l
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Demostracion. Caso p = oo,

Por ser la integral de ‘@ fo(y)dy‘ >0

1 1
swp gy ! Wy‘ =St |7 Jy ‘
Por tanto
| 1 1
- d d - d
8|y Ly 00| < s [0t < s [y

1
”f”wi‘ggm@/g y=[|flle

Tomando el supremo obtenemos el resultado.

Enelcasodeque 1 < p < oo.

Por el anterior lema anterior M f(x) < C,M f(x) para toda funcién f localmente integrable en R”
y para todo x € R".

Por el teorema 6 ||[Mf]| , < C||f]| ,- Ast

|[Maf]], < CallMAIl, < CCIIfIl, = cplIf1l,-



Capitulo 3

Funcion maximal reiterada

Este capitulo sobre la maximal reiterada se obtiene de una revista que es la referencia [6] de la
bibliografia.

Definicion. Sean f una funcion localmente integrable y k € N. Se define la funcion maximal de Hardy-
Littlewood reiterada de orden k como
MEf(x) = MM f)(x)
donde M f es la funcion maximal de Hardy-Littlewood.
Ademds M f(x) = M f(x).

El siguiente lema es esencial para probar que el limite cuando k tiende a infinito de la funcién
maximal de Hardy-Littlewood reiterada de orden k de una funcién f es la norma infinito de f.

Lema 21. Dada una sucesion (c;)7 | que cumple
1. c € (0, 1),
2. ¢ckr1=(1—c1)ex+c1 para todo k > 1,

entonces lim ¢, = 1.
k—>oo

Demostracion. Vamos a demostrar por induccién que ¢, € (0,1) para todo k > 1.
Para k = 1 es evidente ya que por la condicién (1) 0 < ¢y < 1.
Suponiendo que 0 < ¢x—; < 1. Por la condicién (2)

ce=1—ci)er—1+c1.

Como 0 < cp,c4-1 <1y0< (1 —¢y)<1tenemosque 0 < (1—cj)cp—1 < (l—¢p) <1
AsiO < (1—cy)ck_1+c1 <1ycr€(0,1) paratodo k > 1.
Como
Ck+1 —Ck = (lfcl)ck+cl fck:cl(lfck) >0

la sucesion (c;);, es mondtona creciente.

Por tanto la sucesion tiene limite y / = limy_cx € (0,1]. Por (2) I = limy_yeo 11 = limyyeo(1 —
c1)cx+ ¢y entonces I = (1 —cy)l+c¢y. Es decir, 0 = ¢ (1 —1) luego I = 1.

Asi

lim ¢; = 1.
k—yoo

Teorema 22. Sean f € L*(R") y x € R". Entonces
lim M f(x) = || ] -
k—ro0

17
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Demostracion. Si ||f||.. = 0 la demostracion es trivial ya que

Mf(x) = sup

xeB m

1
5 oy < sup s [y = ...
Asi Mf(x) =
Veremos por induccién que M* f(x) < ||f||.. para todo k > 1.
El caso de k = 1 lo hemos probado antes.
Suponemos que M* £ (x) < || £]l.. -
Para k+1

M f(x) = sup

/ |M*f(y)|dy < sup
xEB m(

5 J ey =]
Si || f||.. # 0 para todo € € (0, ||f]|..) podemos definir el conjunto

We ={xeR": [f(x)| = [I/]l.. — &}

Para todo punto fijo a € R” existe un R > 0 tal que

m(We NB(a,R)) > —m(W).

1
2
Sea Ve = WeNB(a,R) y

S(f) = {x € R" : x es un punto de Lebesgue de f y M*(f),k=1,2,..}.

Cuandoy € VeNS(f) |f()| > ||f||.. — & por pertenecer y a Ve , también ya que y € S(f) M*f(y) >
||f]l.. — € paratodo k > 1.
Sea x € B(a,R) por la definicion de funcién maximal de Hardy-Littlewood

1
MF) 2 s / UGS

Ademis ya que Ve C B(a,R)

! m(Ve) m(Ve)
R o TON > s [ 170y > s 1Al —e).
Llamando r = (n;gf;)) > 0 tenemos que M f(x) > r(||f]|.. — €)-
Tenemos que | .
M0 > s [ IMAO)lay
:m(mla,R))/v ‘Mf(y)|dy+ﬂ’M/lg(aR)\v IMf(y)|dy
m(Ve) B m(B(a,R)) —m(Ve) 1
= n(B(a.R)) (Al &)+ m(B(a,R))  m(B(a,R)) —m(Ve) /B(M)\VE IMf(y)ldy
m(Ve) m(B(a,R)) —m(Ve)

2 (B(QR))(HJ‘HOQ—SH m(B(a.R)) r([1flle —&) = (r+r(1=r)(|If]l.. — €)-

Creamos la sucesion ¢; =ry cx+1 = c1 + (1 —¢1)cx paratodo k > 1.
Entonces M2 f(x) > c2(||f]|.. — €) para todo x € B(a,R).
Por induccién suponemos que para todo x € B(a,R)

M f(x) = (|| 1] — €)-
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Entonces

Kt 1 .
M lf(x) > m(BKa,R))/B(QR) |M f(y)‘dy
1 1
= a0 oy MO 5 g, MO
m(Ve) m(B(a,R)) —m(Ve) 1 )
- M(W”w e m(B(a,R))  m(B(a,R)) —m(V¢) /B(a,R)\Vg M f(y)|dy
2 V(e MEERD )

= (r+a(=r)(lfll. —&) = (et + (1 =c)) (|| fll — &) = cir1 (| [l — &)-

Por el lema anterior h’lgninka f(x) >1|f||.. — € asi cuando € — 0
— 00
liminfM* £ (x) > || £]]...
k—>oo
Por la definicién de la funcién maximal de Hardy-Littlewood, tenemos que
limsupM“f(x) < |||l
k—yo0

Luego
]}mekf(x) =1fll
—>00

para todo x € B(a,R). Haciendo que R — < se cumple para todo x € R”".






Capitulo 4

Acotacion con pesos

En este capitulo vamos a usar la referencia [2] de la bibliografia.

Definicion. Un peso w es una funcion medible (con respecto a la medida de Lebesgue) definida en R"
y localmente integrable que toma valores en [0,oo].

Definicion. Sean w un pesoy 1 < p < oo, Definimos

LP(w) = {f medible definida en R" : /]R" |f ()P w(x)dx < oo}’

L”(w) = {f medible definida en R" : sup |f(x)| < 00}

xeR”?

LP

loc

(w) = {f medible definida en R" : / | f(x)|" w(x)dx < oo para todo K C R" compacto}.
K

Definicion. Sean f una funcion, 1 < p < ooy w un peso. Se define la norma p de f como sigue

||f||p = (/]R" |f(x)|pw(x)dx> P .
Sip=o0
[1F 1o = sup |F(x)].
xeRn

Definicion. Sea f : R" — R localmente integrable en R" con n > 1. Se define la funcion maximal
M* f(x) como

1
MF () = sup 03

con x € R" y donde el supremo se toma sobre todos los cubos Q que contienen a x.

JREEIES
Q

Sean f una funcién localmente integrable en R” y x € R”. Existen constantes C,, y C, que dependen

de n, tales que
CMf(x) < M"f(x) < CuM f(x).

Teorema 23. Sean f : R" — R localmente integrable en R" conn > 1, w un peso, 1 < p < ooy C > 0.
Si||M*fll, < Cl|fll,, entonces para todo A >0

w({x e R M) > A0 < 5 [ 170wl

21
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Demostracion. Por la desigualdad de Chebyshev

w{x eR": M f(x) > A}) =w({x € R" - (M"f)"(x) > A7}) < HM*pr < HfH”
O

Lema 24. Sean f una funcion no negativa, Q un cubo en el que f(Q) = fQ f >0y A un niimero tal que

0<A< f((Q)) Entonces

QC{xeR":M"(fZp)(x) >A}.

Demostracion. Sea x € Q. Por la definicién de funcién maximal

M (2000 2 s [ 170 2oy = i [ Ol dy= o [ roray= L8>

O

Teorema 25. Sean 1 < p < oo, w un peso'y C > 0 de modo que para cualquier f € LP(w) y cualquier
A >0, w{x eR": M*f(x) > A}) < 55 fpu |£(x)|P w(x)dx. Entonces:

1. w(Q) < 15 Jo | f(0)]" w(x)dx.
2. w(Q) (49)" < lplf1"w.
3. Tomando f = 25 conSC Q, w(Q) ( o)
Demostracion. 1) Como Q C {x e R" : M*(fZp)(x) > A}
w(Q) <w({x e R": M"(f Z)(x) > A}).

) <cw(S).

Luego, por hipétesis,

w(Q) < 55 [ P Zotwiar = 7 [ 1) w

1) 19)
2) Como 1) ocurre para todo A < Q) Q)

)4
w(©Q) (,{f(g))) <c[ir
3) Usando f = 25, f(Q) :fo:fQ%/S:m(S) YfQ |f’pWZfQ Zsw = [gw=w(S).

Entonces por el apartado 2)
S p
w(@) (20 < onts)

entonces haciendo que A —

Corolario 26. Con las condiciones del teorema anterior, se tiene:

1. w> 0 en casi todo punto salvo si es identicamente nula.

2. w es localmente integrable salvo si es identicamente infinita.
Demostracion. 1) Siw = 0 en un conjunto de medida positiva S, como

m(S) >”
wiO)| —= ) <Cw(S)=0
@ (25 <onts
w(Q) = 0 para todo Q que contenga a S. Luego w = 0 en casi todo punto de Q.
2) Si w(Q) = oo para algtin Q y por el apartado 3 del anterior teorema también se cumple para todo
SCoQ. ]
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Usando el apartado 3) del teorema 25 con p =1

w(Q) _ ~w(S)
n(0) = Cm(s)

Sea a = inf{w(x) : x € O} el infimo esencial salvo conjuntos de medida nula. Para todo € > 0 existe un
conjunto S C Q tal que m(Sg) >0y w(x) < a-+ €, para todo x € S,. Entonces

:}128 <C(a+¢€) paratodo €>0
’ (©
w(Q .
wgc;ggw(x).

De lo anterior obtenemos la siguiente definicion.

Definicion. Se llama clase de pesos Ay al conjunto de pesos w que satisfacen la siguiente condicion,
existe C > 0 tal que

@ < Cw(x)

m(Q) ~

en casi todo punto x € Q y para todo cubo Q. A esto se le llama condicion Aj.

Nota 27. La anterior condicién también se puede escribir como

M*w(x) < Cw(x)

para casi todo punto x € R”.

Usando el apartado 2) del teorema 25 para p > 1 y tomando f = wfv%l Zo

w(Q) (m(IQ)/Qw‘P”)pgc/Qw—p'l.

De aqui se obtiene la siguiente definicion.

Definicion. Sea 1 < p < oo. Se llama clase de pesos A, al conjunto de pesos w que satisfacen la siguiente
condicion, existe C > 0 tal que para todo cubo Q

w(Q) (m(IQ)/QW"I])péC/prll,
(i) (e ) =

A esto se le llama condicion A,,.

o0 sea,

Teorema 28. Sean w un pesoy 1 < p < oo. Son equivalentes:

1. Existe C > 0 tal que para toda f € L (w) y para toda A > 0
n * C P
w({x €R": M f(x) > A}) < ﬁ/w £ ()P wlx)dx.

2. weA,.
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Demostracion. La necesidad de que w € A, 1o hemos probado antes.

Suponemos que f > 0.

Sea p = 1. Suponemos que w € A . Tomando una sucesién de cubos diddicos disjuntos {Q;} ez
como en el teorema de descomposicion de Calderén-Zygmund. Como en el teorema 17 se puede ver
que U;Qj ={x e R": M f(x) > A}.

Sea Q% el cubo con el mismo centro que Q; y el doble del lado de Q; para cada cubo Q; en {Q;}jcz.

Queremos ver que {x € R" : M f(x) >4"A} C UJ-Q?

Seax ¢ U; Q?. Sea Q un cubo cualquiera centrado en x y k € Z el tnico entero tal que 2¢~! <(Q) <
2% donde [ (Q) es el lado del cubo Q. El cubo Q corta como mucho a 2" cubos diddicos de lado 2k=1,
Ri,Ry,....,R, conm < 2",

2.0

15

x

1.0

(, Puede ser R; = Q; para algin j? Mas en general: sea R un cubo diddico tal que R; C R; ;Puede ser
R = Q; para algtin j?

No, porque como se ve en la figura x € R? y sin embargo by gé U; Q2

Asi que, por la construccion de los Q;, deducimos que -~ f RS < A

Por tanto

I-ZIM(Q)M(R,-) R~ = mQ)

Es decir, para todo x ¢ J; Q? se tiene que M f(x) < 4"A, de donde se obtiene que {x € R" :
Maf(x)>4"A} C U jQﬁ. Por las desigualdades entre las funciones maximales esto también se cumple
para el operador M* f.

Como m(Q%) = 2'm(Q))

m

wxdx<2/ ;m

2
/ (Qé) / X)dx = ZZ” w(x)dx.
{xER™M f(x)>472} (07) o
Usando el apartado 3 del teorema de descomposicion de Calderén-Zygmund y las desigualdades entre

los operadores maximales de Hardy-Littlewood

Zz Q) 4§w(x)dx§ A;/ij(y) <n1(Q§)/Q§W(x>dx> dy <> UJ.ij(y)M w(y)dy

J
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<2 [ romrwiay<c [ om

W{rE R M () > A1) <€ [ FGIwlndy

Sea p > 1y suponemos que w € A,. Usando la desigualdad de Holder y que w € A,

(s 1) = (o et )
< (g ) Gt o) =i (i)

De aqui se deduce que
P
W(Q) < ('}%) JAIRE (.1

Sea ahora f € L”(w). Podemos suponer que f € L' ya que si no lo hubieramos razonado con f; =
S ZB(o.x) con B(0,k) la bola de centro 0 y radio k > 0 de donde obtendriamos constantes independientes
de k.

Tomando una sucesion de cubos diddicos disjuntos {Q;} jcz como en el teorema de descomposicion
de Calder6n-Zygmund pero con 4™ "A enlugarde A, U;Q;={xeR":M*f(x) > A}.

Sea Q; el cubo con el mismo centro que Q; y el triple del lado de Q; para cada cubo Q; en {Q;} ez
hay que dilatar tres veces en lugar de dos porque estamos usando M*.

De manera andloga al caso de p = 1 tenemos que {x € R" : M* f(x) > A} C UJ-Q?

Usando la funcién f = Zp, en la desigualdad (4.1) y como Q; C Q?

m(03)\” m(0)\” 3
() e (28 o (2

Usando lo anterior y la desigualdad (4.1)

w(lx € R M f(x) > 2) < Y wl(@)) <37 L w(@)) 3"”2( AR
J J

Por la construccién de {Q;} - 10 )) >47"L. Asi

wrE (i) L= (3) [ e (5) [ e (5) L

O]

Observacion. Aungue no lo vamos a ver la acotacion (p,p)- fuerte con 1 < p < oo se cumple si y solo
siw e A,
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