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Abstract

In this final degree project we will study the Hardy-Littlewood maximal operator in different set-
tings.

In the first chapter we define the Hardy-Littlewood maximal operator of a locally integrable function
f . The Hardy-Littlewood maximal operator will be proved to be positive and linear.

We will explain what it means that the Hardy-Littlewood maximal operator satisfies a (p, p)-weak
inequality and that the Hardy-Littlewood maximal operator satisfies a (p, p)-strong inequality. Also we
will prove that if a function satisfies a (p, p)-strong inequality, then it satisfies a (p, p)-weak inequality.

We will give an example to prove that the Hardy-Littlewood maximal operator doesn’t satisfy the
(1,1)-strong inequality.

We will show that the Hardy-Littlewood maximal operator satisfies the (1,1)-weak inequality. Mo-
reover we will prove that for all p with 1 < p ≤ ∞, the Hardy-Littlewood maximal operator satisfies a
(p, p)-strong inequality.

Next, if f is a locally integrable function we will show that

lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy = 0.

And as a consequence, if f is a locally integrable function

lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)dy = f (x)

for almost every x ∈ Rn.
After defining the Lebesgue set of a locally integrable function and using the previous limits, we see

that if f is a locally integrable function, then almost every point belongs to the Lebesgue set.
To finish this chapter we define the bounded eccentricity {Uα} and prove that

lı́m
m(Uα )→0

z∈Uα

1
m(Uα)

∫
Uα

f (y)dy = f (z)

for all point z which belongs to the Lebesgue set.
The target in the second chapter is to study the Hardy-Littlewood maximal operator in the set of the

dyadic cubes.
We define dyadic cubes and give some basic properties of these sets.
Also we define the Hardy-Littlewood dyadic maximal operator M4 f and the conditional expectation

of a locally integrable function f . We will relate the supreme of conditional expectations and the Hardy-
Littlewood dyadic maximal operator.

We will see that the Hardy-Littlewood dyadic maximal operator is of (1,1)-weak type. Also we will
prove that the limit of conditional expectations of a function f is the function f .

An important result, which will be used in the last chapter, is the Calderón-Zygmund decomposition.
We prove that given an integrable function f and λ > 0, there exists a sequence {Q j} of dyadic cubes
such as:

III
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1. f (x)≤ λ for almost every x /∈
⋃

j Q j.

2. m(∪ jQ j)≤
1
λ
|| f ||1.

3. λ <
1

m(Q j)

∫
Q j

f ≤ 2n
λ .

We will give the relationship between the Hardy-Littlewood dyadic maximal operator M4 f and
the Hardy-Littlewood maximal operator M f . We will use this relationship to prove that the Hardy-
Littlewood dyadic maximal operator satisfies a (p, p)-strong inequality with 1 < p.

In the third chapter we will define the Hardy-Littlewood iterative maximal operator with order k of
a locally integrable function f .

And to prove that the limit when k tends to infinite of the Hardy-Littlewood iterative maximal
operator is || f ||

∞
, we will give a previous lemma which says that the limit when k tends to infinite of a

sequence (ck)k≥1 which belongs to (0,1) and ck+1 = (1− c1)ck + c1 for all k ≥ 1 is 1.
Now, let w be a weight. In chapter four we study which conditions must w satisfy so as to have the

(p, p)-weak inequality

w({x ∈ Rn : M∗ f (x)> λ})≤ C
λ p

∫
Rn
| f (x)|p w(x)dx.

Firstly, we deduce some necessary conditions for the (p, p)-weak inequality. These conditions,
which are known as the Ap-conditions, are proved to be sufficient, as well.

Finally, if a weight satisfies the Ap-condition, we will prove the (p, p)-weak inequality.
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Capítulo 1

Introducción a la función maximal de
Hardy-Littlewood

En este capítulo vamos a utilizar como referencias los apartados [3], [5] y [7] de la bibliografía.
La función maximal tiene una gran importancia en matemáticas pues dada una función localmente

integrable f y un conjunto V , que puede ser un cubo o una bola, la función controla los límites de la
forma

lı́m
m(V )→0

1
m(V )

∫
V

f (y)dy.

La función maximal permite generalizar el teorema fundamental del cálculo integral clásico para
espacios de medida de Lebesgue.

Este operador está relacionado con los operadores integrales de Calderón-Zygmund que juegan un
papel importante en las ecuaciones diferenciales ordinarias.

Además muchos de los operadores clásicos del análisis cumplen una desigualdad de la forma

|T f (x)| ≤ |M f (x)|

o similiar.

Definición. Una función medible en Rn f se dice localmente integrable si para toda bola B ⊂ Rn la
función f (x)XB(x) es integrable.

Definición. Sea f :Rn→R localmente integrable en Rn con n≥ 1. Se define la función maximal M f (x)
como

M f (x) = sup
x∈B

1
m(B)

∫
B
| f (y)|dy

con x ∈ Rn y donde el supremo se toma sobre todas las bolas B que contienen a x. En el trabajo m(B)
es la medida de Lebesgue de B.

Teorema 1. Dadas funciones localmente integrables en Rn f ,g : Rn→ R con n≥ 1 y λ ∈ R,

1. M f ≥ 0.

2. M( f +g)≤M f +Mg.

3. M(λ f ) = |λ |M f .

Demostración. 1) Es inmediato, como | f | ≥ 0

1
m(B)

∫
B
| f (y)|dy≥ 1

m(B)

∫
B

0dy = 0.

1



2 Capítulo 1. Introducción a la función maximal de Hardy-Littlewood

Esto ocurre para toda bola que contiene a x por tanto

M f ≥ 0.

2) Dado cualquier x ∈ Rn,

M( f +g)(x) = sup
x∈B

1
m(B)

∫
B
| f (y)+g(y)|dy.

Por las propiedades del valor absoluto

M( f +g)(x)≤ sup
x∈B

1
m(B)

∫
B
| f (y)|dy+ sup

x∈B

1
m(B)

∫
B
|g(y)|dy = M f (x)+Mg(x).

3) Por las propiedades de las integrales

M(λ f )(x) = sup
x∈B

1
m(B)

∫
B
|λ f (y)|dy = |λ |sup

x∈B

1
m(B)

∫
B
| f (y)|dy = |λ |M f (x).

Definición. Sea 1≤ p<∞. Se dice que el operador maximal de Hardy-Littlewood es de tipo (p, p)-débil
si hay alguna constante C > 0 de modo que para toda función f ∈ Lp(Rn) y todo λ > 0,

m({x ∈ Rn : M f (x)> λ})1/p ≤ C
λ
|| f ||p .

Definición. Sea 1 ≤ p ≤ ∞. Se dice que el operador maximal de Hardy-Littlewood es de tipo (p, p)-
fuerte si hay alguna constante C > 0 de modo que para toda función f ∈ Lp(Rn)

||M f ||Lp ≤C || f ||p .

Teorema 2. Sean 1≤ p < ∞ y g : Rn→ R una función positiva y medible. Entonces para todo λ > 0,

m({x ∈ Rn : g(x)> λ})1/p ≤ 1
λ
||g||p .

Demostración.

m({x∈Rn : g(x)> λ})=m({x∈Rn : (g(x))p > λ
p})=

∫
{x∈Rn:(g(x))p>λ p}

dx=
∫
Rn

X{x∈Rn:(g(x))p>λ p}dx.

Como (g(x))p

λ p > 1 ∫
Rn

X{x∈Rn:(g(x))p>λ p}dx≤
∫
Rn

(g(x))p

λ p dx =
1

λ p ||g||
p
p .

Consecuencia. Poniendo g = M f (que enseguida veremos que es medible) se deduce que si M es de
tipo (p, p)-fuerte entonces es de tipo (p, p)-débil. Al reves no es cierto. En lo que sigue vamos a probar
que:

1. M f es de tipo (p, p)-fuerte con 1 < p.

2. M f no es de tipo (1,1)-fuerte.

3. M f es de tipo (1,1)-débil.

Para las siguientes demostraciones necesitamos un resultado previo el teorema de recubrimiento de
Vitali.
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Teorema 3 (de recubrimiento de Vitali). Dada una colección finita B = {B1,B2, ...,BN} de bolas abier-
tas en Rn, existe una colección disjunta {Bi1 ,Bi2 , ...,Bik} ⊂ B tal que

m

(
N⋃

l=1

Bl

)
≤ 3n

k

∑
j=1

m(Bi j).

Demostración. Tomamos una bola Bi1 de B que posea el mayor radio y eliminamos de B la bola Bi1 y
todas las bolas que intersecan con Bi1 . Todas las bolas eliminadas están contenidas en la bola B̄i1 que es
la bola con el mismo centro de Bi1 y radio tres veces el radio de Bi1 .

Sea V el conjunto de las bolas restantes. Elegimos la bola Bi2 de mayor radio de V y eliminamos de
V la bola Bi2 y todas las bolas que intersecan con Bi2 .

Repetimos el proceso como mucho N veces para obtener una colección finita de bolas disjuntas
Bi1 ,Bi2 , ...,Bik con k ≤ N.

Tomamos B̄i j la bola con el mismo centro que Bi j y radio tres veces el radio de Bi j . Ya que cualquier
bola B en B interseca con alguna bola Bi j y tendrá menor o igual radio que Bi j , se tiene que B ⊂ B̄i j .
Por tanto

m
(
∪N

l=1Bl
)
≤ m

(
∪k

j=1B̄i j

)
≤

k

∑
j=1

m(B̄i j) = 3n
k

∑
j=1

m(Bi j).

A continuación vamos a dar otras propiedades de la función maximal de Hardy-Littlewood.

Teorema 4. Sea f una función localmente integrable en Rn. Entonces:

1. M f es medible.

2. M f cumple que

m({x ∈ Rn : M f (x)> α})≤ 3n

α
|| f ||1 ,

para todo α > 0 y donde || f ||1 =
∫
Rn
| f (x)|dx.

3. M f (x)< ∞ para casi todo x.

Demostración. 1) Tomamos
Eα = {x ∈ Rn : M f (x)> α}.

Hay que probar que Eα es un conjunto medible. Para todo y ∈ Eα existe una bola B tal que y ∈ B y

1
m(B)

∫
B
| f (z)|dz > α.

Todo punto x ∈ B cumple la anterior ecuación por tanto pertenece a Eα . Esto demuestra que Eα es un
conjunto abierto y por tanto medible.

2) Si Eα = /0 es el caso trivial ya que m( /0) = 0 y || f ||1 ≥ 0.
Supongamos ahora que Eα 6= /0.
Para cada x ∈ Eα existe una bola B que contiene a x tal que

1
m(B)

∫
B
| f (y)|dy > α o m(B)<

1
α

∫
B
| f (y)|dy.

Fijamos un conjunto compacto K ⊂ Eα . Por estar contenido en Eα K ⊆
⋃

x∈K Bx donde Bx es una
bola abierta que contiene a x y que cumple que m(Bx)<

1
α

∫
Bx
| f (y)|dy. Como K es compacto podemos

elegir un recubrimiento finito de K, es decir, K ⊂
⋃N

l=1 Bl . Aplicando el teorema de recubrimiento de
Vitali existe una subfamilia finita de bolas abiertas disjuntas en Rn Bi1 ,Bi2 , ...,Bik con
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m

(
N⋃

k=1

Bk

)
≤ 3n

k

∑
j=1

m(Bi j).

Como m(Bk)<
1
α

∫
Bk

| f (y)|dy para todo k = 1, ...,N

m(K)≤ m

(
N⋃

k=1

Bk

)
≤ 3n

k

∑
j=1

m(Bi j)≤ 3n
k

∑
j=1

1
α

∫
Bi j

| f (y)|dy =
3n

α

∫
⋃k

j=1 Bi j

| f (y)|dy

≤ 3n

α

∫
Rn
| f (y)|dy =

3n

α
|| f ||1 .

Como la medida de Lebesgue es regular interiormente m(Eα) = supK⊂Eα
m(K) donde el supremo

se toma sobre los conjuntos compactos K contenidos en Eα y m(K) ≤ 3n

α
|| f ||1 se cumple para todo

subconjunto compacto K de Eα

m(Eα)≤
3n

α
|| f ||1 .

3) Como el conjunto {x : M f (x) = ∞} ⊂ {x : M f (x)> α} para todo α ,

m({x : M f (x) = ∞})≤ lı́m
α→∞

m({x : M f (x)> α})≤ lı́m
α→∞

3n

α
|| f ||1 = 0.

Por tanto M f (x)< ∞ para casi todo x.

Antes del próximo resultado daremos un lema previo.

Lema 5. Si f es una función medible en Rn y 1≤ p < ∞, entonces∫
Rn
| f (x)|p dx = p

∫
∞

0
t p−1m({x ∈ Rn : | f (x)|> t})dt.

Demostración. Aplicando el teorema de Fubini∫
Rn
| f (x)|p dx =

∫
Rn

∫ | f (x)|
0

pt p−1dtdx

=
∫

∞

0
pt p−1

∫
Rn

X{| f (x)|>t}dxdt = p
∫

∞

0
t p−1m({x ∈ Rn : | f (x)|> t})dt.

Ejemplo. Sean D = {x ∈ Rn : ||x||< 1} y f (x) = XD(x).

|| f ||1 =
∫
Rn
|XD(x)|dx =

∫
Rn

XD(x)dx =
∫

D
dy = m(D).

Fijamos una bola B, en concreto, B = B(x,r) con r = 1+ ||x||.

1.0 0.5 0.5 1.0 1.5 2.0 2.5 3.0

1

1

2

3

4
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En esta figura el punto rojo es un punto cualquiera de R2, la figura verde es el círculo de centro el
origen y radio 1 y la recta azul une el punto rojo y el origen.

M f (x)≥ 1
m(B)

∫
B
| f (y)|dy =

1
m(B)

∫
Rn

XD(y)XB(y)dy

=
1

m(B)

∫
Rn

XD∩B(y)dy =
1

m(B)

∫
D∩B

dy =
m(D∩B)

m(B)
.

Dado y ∈ D, ||y− x|| ≤ ||y||+ ||x||< 1+ ||x||= r. Entonces

m(D∩B)
m(B)

=
m(D)

m(B)
=

m(D)

cnrn =
C
rn .

Para ver que ||M f ||1 = ∞ basta ver que
∫
Rn

1
(1+||x||)n dx = ∞.

Como
∫
Rn

1

||x||λ
dx < ∞ si y solo si λ > n y ||x||+1∼ ||x|| cuando ||x|| → ∞.

∫
Rn

1
(1+ ||x||)λ

dx < ∞ si y solo si λ > n.

En este caso λ = n por tanto
∫
Rn

1
(1+ ||x||)λ

dx = ∞ y ||M f ||1 = ∞.

Teorema 6. (estimación de tipo fuerte)
Sean n≥ 1,1 < p≤ ∞. Existe C > 0 tal que para todo f ∈ Lp(Rn)

||M f ||p ≤C || f ||p .

Demostración. Si p = ∞.
Por ser f ∈ L∞(Rn) entonces | f (x)| ≤ || f ||

∞
en casi todo punto. Usando la primera propiedad del

teorema 1

|M f (x)|= sup
x∈B

1
m(B)

∫
B
| f (y)|dy≤ sup

x∈B

1
m(B)

∫
B
|| f ||

∞
dy = || f ||

∞
.

Tomando el supremo obtenemos el resultado.
Si 1 < p < ∞.
Sea f ∈ Lp(Rn).
Fijamos un α > 0 cualquiera y definimos estas funciones:

g = f X{x;| f (x)|> α

2 } , h = f X{x;| f (x)|≤ α

2 }.

Entonces, f = g+h.
Además, |h(x)| ≤ α

2 para todo x, luego Mh(x)≤ α

2 para todo x. Por lo tanto, para todo x ∈ Rn,

M f (x) = M(g+h)(x)≤Mg(x)+Mh(x)≤Mg(x)+
α

2
.

Si M f (x)> α entonces Mg(x)> α

2 .

Luego

m({x ∈ Rn;M f (x)> α})≤ m
({

x ∈ Rn;Mg(x)>
α

2

})
.

Usando la propiedad 2 del teorema 4

m
({

x ∈ Rn;Mg(x)>
α

2

})
≤ 3n

α

2
||g||1 =

3n2
α

∫
{x;| f (x)|> α

2 }
| f (x)|dx.
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Por el lema 5

||M f ||pp =
∫
Rn
|M f (x)|p dx = p

∫
∞

0
α

p−1m({x ∈ Rn;M f (x)> α})dα

≤ p
∫

∞

0
α

p−1m
({

x ∈ Rn;Mg(x)>
α

2

})
dα ≤ p

∫
∞

0
3n2α

p−2
(∫
{x;| f (x)|> α

2 }
| f (x)|dx

)
dα.

Usando el teorema de Fubini

p
∫

∞

0
3n2α

p−2
(∫
{x;| f (x)|> α

2 }
| f (x)|dx

)
dα = 3n2p

∫
Rn
| f (x)|

(∫ 2| f (x)|

0
α

p−2dα

)
dx

= 3n2p
∫
Rn

2p−1

p−1
| f (x)|p dx =

3n2p p
p−1

|| f ||pp .

Teorema 7. Sea f una función integrable en Rn. Entonces

lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy = 0

y

lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)dy = f (x)

para casi todo x ∈ Rn.

Demostración. 1) Basta con probar que para cada α > 0 el conjunto

Eα =

x : lı́msup
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy > 2α


tiene medida nula ya que si esto ocurre el conjunto E =

∞⋃
n=1

E 1
n

tiene medida nula y el conjunto EC

(que es el complementario de E) cumple que si x ∈ EC

lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy = 0.

Fijando α , si g es continua con soporte compacto es una función acotada y |g| ≤ ||g||
∞

1
m(B)

∫
B
|g(y)−g(x)|dy≤ sup

y∈B
|g(y)−g(x)| .

Por ser g continua dado ε > 0 existe algún δ > 0 tal que si |y− x| < δ , |g(y)−g(x)| < ε . Si B es
cualquier bola tal que x ∈ B con diámetro menor que δ , se tiene supy∈B |g(y)−g(x)| ≤ ε y por lo tanto

1
m(B)

∫
B
|g(y)−g(x)|dy≤ ε.

Por tanto lı́m
m(B)→0

x∈B

1
m(B)

∫
B
|g(y)−g(x)|dy = 0 para todo x.

Por densidad para cada ε > 0 existe una función g continua de soporte compacto tal que || f −g||1 <
ε .
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Como
1

m(B)

∫
B
| f (y)− f (x)|dy

≤ 1
m(B)

∫
B
| f (y)−g(y)|dy+

1
m(B)

∫
B
|g(y)−g(x)|dy+ |g(x)− f (x)|

≤M( f −g)(x)+
1

m(B)

∫
B
|g(y)−g(x)|dy+ |g(x)− f (x)| ,

lı́msup
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy≤M( f −g)(x)+ |g(x)− f (x)| .

Sean Fα = {x : M( f −g)(x)> α} y Gα = {x : | f (x)−g(x)|> α} entonces Eα ⊂ (Fα ∪Gα).
Por la desigualdad de Chebyshev

m(Gα)<
1
α
|| f −g||1

y por el teorema 4 apartado 2)

m(Fα)<
3n

α
|| f −g||1 .

Así m(Eα)≤ 3n

α
ε + 1

α
ε . Como esto es cierto para todo ε > 0 se deduce que m(Eα) = 0.

2) Para cada x ∈ Rn,∣∣∣∣ 1
m(B)

∫
B

f (y)dy− f (x)
∣∣∣∣= ∣∣∣∣ 1

m(B)

∫
B
( f (y)− f (x))dy

∣∣∣∣≤ 1
m(B)

∫
B
| f (y)− f (x)|dy.

Basta con usar ahora el apartado 1).

Una consecuencia del anterior teorema es el siguiente corolario.

Corolario 8. Si f es una función localmente integrable, entonces para casi todo x ∈ Rn

lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy = 0.

En particular para casi todo x ∈ Rn

lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)dy = f (x).

Demostración. Este teorema es de carácter local, pues dado N ∈N, si |x| ≤N, los valores de 1
m(B)

∫
B f (y)dy

con diámetro de B menor que 1 dependen de las y tales que |y| ≤ N + 1. Así podemos suponer que
f ∈ L1(Rn).

La segunda conclusión se obtiene de la primera ya que∣∣∣∣∣∣ lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)dy− f (x)

∣∣∣∣∣∣=
∣∣∣∣∣∣ lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)− f (x)dy

∣∣∣∣∣∣≤ lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy= 0.

Definición. Sean E un conjunto medible y x ∈ Rn. Se dice que x es un punto de densidad de Lebesgue
de E si

lı́m
m(B)→0

x∈B

m(B∩E)
m(B)

= 1.
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Corolario 9. Suponiendo que E ⊂ Rn es un subconjunto medible entonces:

1. Casi todo c ∈ E es punto de densidad de E.

2. Casi todo c /∈ E no es punto de densidad de E.

Demostración. 1) Tomamos c ∈ E cualquiera, una bola B que contiene a c y f =XE∩B. La función f es
integrable en Rn.

Si c ∈ E, entonces c ∈ E ∩B y f (c) = 1. Además,

1
m(B)

∫
B

f (y)dy =
1

m(B)

∫
B
XE∩B(y)dy =

1
m(B)

∫
E∩B

dy =
m(B∩E)

m(B)
.

Aplicando el teorema 7

lı́m
m(B)→0

c∈B

m(B∩E)
m(B)

= lı́m
m(B)→0

c∈B

1
m(B)

∫
B

f (y)dy = f (c) = 1

para casi todo c ∈ E.
2) Si c /∈ E, entonces c ∈ EC ∩B y m(B) = m(EC ∩B)+m(E ∩B)

1 =
m(B)
m(B)

=
m(EC ∩B)

m(B)
+

m(E ∩B)
m(B)

.

Tomando ahora f = XEC∩B y siguiendo el mismo proceso que en el apartado 1) obtenemos que

lı́m
m(B)→0

c∈B

m(B∩EC)

m(B)
= lı́m

m(B)→0
c∈B

1
m(B)

∫
B

f (y)dy = f (c) = 1

para casi todo c /∈ E.
Por lo tanto

lı́m
m(B)→0

c∈B

m(E ∩B)
m(B)

= lı́m
m(B)→0

c∈B

(
1− m(EC ∩B)

m(B)

)
= 1− lı́m

m(B)→0
c∈B

m(EC ∩B)
m(B)

= 0.

Por tanto lı́mm(B)→0
c∈B

m(E∩B)
m(B) = 0 y no es punto de densidad en E.

Definición. Sea f una función localmente integrable en Rn. Se define el conjunto de Lebesgue de f
como el conjunto formado por todos los puntos x ∈ Rn tales que

lı́m
m(B)→0

x∈B

1
m(B)

∫
B
| f (y)− f (x)|dy = 0.

Nota 10. 1. Un punto x ∈ Rn pertenece al conjunto de Lebesgue de f si f es continua en x.

2. Si x ∈ Rn pertenece al conjunto de Lebesgue de f

lı́m
m(B)→0

x∈B

1
m(B)

∫
B

f (y)dy = f (x).

Con esto la primera parte del corolario 8 se puede escribir así:

Corolario 11. Sea f una función localmente integrable en Rn. Casi todo punto pertenece al conjunto
de Lebesgue de f .
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Definición. Sea x ∈ Rn. Una colección de conjuntos {Uα} se dice que converge regularmente a x si
existe una constante c > 0 tal que para cada Uα existe una bola B con x ∈ B, Uα ⊂ B y m(Uα)≥ cm(B).

Corolario 12. Sea f una función localmente integrable en Rn. Si {Uα} converge regularmente a z
entonces

lı́m
m(Uα )→0

z∈Uα

1
m(Uα)

∫
Uα

f (y)dy = f (z)

para todo z en el conjunto de Lebesgue de f .

Demostración. Si z ∈ B con Uα ⊂ B y m(Uα)≥ cm(B), entonces

1
m(Uα)

∫
Uα

| f (y)− f (z)|dy≤ 1
cm(B)

∫
B
| f (y)− f (z)|dy.

Como z pertenece al conjunto de Lebesgue

0≤ lı́m
m(Uα )→0

z∈Uα

1
m(Uα)

∫
Uα

| f (y)− f (z)|dy≤ lı́m
m(B)→0

z∈B

1
cm(B)

∫
B
| f (y)− f (z)|dy = 0.

Y de aquí se deduce el resultado.





Capítulo 2

Función maximal diádica

A partir de los trabajos de las páginas [1], [4] y [7] de la bibliografía escribimos este capítulo.

Definición. Sean n ∈ N, m ∈ Zn y k ∈ Z. Un cubo diádico en Rn de generación k es un conjunto de la
forma

Q = 2−k(m+[0,1)n).

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

La figura es un cubo diádico donde el cubo de lados negro es el cubo diádico de generación 0, los cubos
de lados rojos son los cubos diádicos de generación 1 y los cubos de lados azules son los cubos diádicos
de generación 2.

Además el cubo cuyo interior es de color azul claro es el cubo diádico de generación 1 con punto
inicial el origen y el cubo cuyo interior es de color verde es el cubo diádico de generación 2 con punto
inicial (1

2 ,
1
2).

Definición. Sea k ∈ Z. Se define la familia de todos los cubos diádicos {Qk} , donde Qk denota el
conjunto

Qk = {Q : m(Q) = 2−nk}.

Además denotaremos por Q = ∪k∈ZQk.

Nota 13. 1. Fijado k ∈ Z, todo x ∈ Rn pertenece a un único cubo diádico de generación k.

2. Dos cubos diádicos o bien son disjuntos, o bien uno de ellos está contenido en el otro.

3. Dado un cubo diádico Q de generación k, existe un único Q∗ de generación k−1 tal que Q⊂ Q∗

y m(Q∗) = 2nm(Q). El cubo Q∗ se llama el padre de Q.

4. Un cubo diádico de la familia Qk está contenido en un único cubo diádico de cada familia Q j

donde j < k y contiene 2n cubos diádicos de la familia Qk+1.

5. Un cubo cualquiera de lado menor que 2k corta como mucho a 2n cubos diádicos de generación
k.

11



12 Capítulo 2. Función maximal diádica

Lema 14. Sea Q1, ...,QN una colección finita de cubos diádicos con N ∈ N. Entonces hay una subco-
lección de cubos diádicos disjuntos Qn1 , ...,Qnk tal que

Qn1 ∪ ...∪Qnk = Q1∪ ...∪QN .

Demostración. Tomamos Qni como cubos diádicos maximales de la colección de cubos que no están
contenidos en ningún otro cubo de esta colección Q1, ...,QN . Por la anterior nota tenemos que son
disjuntos y cubren Q1, ...,QN .

Definición. Sea f una función localmente integrable en Rn. Definimos la función maximal diádica de f
como

M4 f (x) = sup
x∈Q

∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣ ,

con x ∈ Rn y donde el supremo se toma sobre todos los cubos diádicos Q que contienen a x.

Definición. Sean f una función localmente integrable en Rn, Qk la familia de cubos diádicos de gene-
ración k y x ∈ Rn. Se define la esperanza condicional de f respecto a la σ -álgebra engendrada por Qk
como

Ek f (x) = ∑
Q∈Qk

(
1

m(Q)

∫
Q

f
)

XQ(x).

La esperanza condicional cumple que para todo Q que pertenece a la σ -álgebra engredrada por
Qk ∫

Q
f (x)dx =

∫
Q

Ek f (x)dx

Sea Q = ∪kQk. Entonces se cumple que∫
Q

Ek f =
∫

Q
f .

Además para cada k la familia de todos los cubos diádicos de generación k Qk es una partición de
Rn. Entonces ∫

Rn
Ek f =

∫
Rn

f .

Lema 15. Sean f una función localmente integrable en Rn, Qk la familia de cubos diádicos de genera-
ción k ∈ Z, x ∈ Rn y Ek f (x) la esperanza condicional de f respecto a la σ -álgebra engredrada por Qk.
Entonces Ek ◦Ek+1( f ) = Ek+1 ◦Ek( f ) = Ek+1( f ). Es decir, la esperanza condicional es monótona.

Demostración. Dado Q un cubo diádico que pertenece a la σ -álgebra engredrada por Qk+1 también
pertenece a la σ -álgebra engredrada por Qk.

Como la esperanza condicional cumple que para todo Q que pertenece a la σ -álgebra engredrada
por Qk

∫
Q f (x)dx =

∫
Q Ek f (x)dx entonces∫

Q
Ek(Ek+1( f )(x))dx =

∫
Q

Ek+1( f )(x)dx

=
∫

Q
f (x)dx =

∫
Q

Ek( f )(x)dx =
∫

Q
Ek+1(Ek( f )(x))dx.

Nota 16. Sean f una función localmente integrable en Rn, Qk la familia de cubos diádicos de generación
k, x ∈ Rn y Ek f (x) la esperanza condicional de f respecto a la σ -álgebra engredrada por Qk. Entonces:

1) Todo x∈Rn pertenece a un único cubo diádico de generación k. Por tanto Ek f (x)=∑Q∈Qk

(
1

m(Q)

∫
Q f
)

XQ(x)=
1

m(Qx)

∫
Qx

f (y)dy donde Qx es el cubo diádico de generación k que contiene a x.
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Así

M4 f (x) = sup
x∈Q

∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣= sup

x∈Qx

∣∣∣∣ 1
m(Qx)

∫
Qx

f (y)dy
∣∣∣∣= sup

k∈Z
|Ek( f )| .

2)
||Ek( f )||

∞
≤ || f ||

∞
.

Además si |Ek( f )| ≤ || f ||
∞

en casi todo punto y 1≤ p < ∞

||Ek( f )||p ≤ || f ||p .

Teorema 17. Sean f una función integrable en Rn, k ∈ Z y λ > 0. Se tiene que

m({x ∈ Rn : M4 f (x)> λ})≤ 1
λ
|| f ||1 .

Además
lı́m
k→∞

Ek f (x) = f (x)

en casi todo punto x ∈ Rn.

Demostración. 1) Como m{x∈Rn : M4 f (x)> λ}≤m{x∈Rn : M4 | f |(x)> λ}. Si {x∈Rn : M4 | f |(x)>
λ} ≤ 1

λ
|| | f | ||1 = 1

λ
|| f ||1 entonces m{x ∈Rn : M4 f (x)> λ} ≤ 1

λ
|| f ||1. Se puede suponer por esto que

f > 0 y es una función integrable en Rn. Para todo k ∈ Z

Ωk =
{

x ∈ Rn : Ek f (x)> λ ,E j f (x)≤ λ para todo j < k
}
.

Por la definición de la función maximal diádica M4 f (x) = supk∈Z |Ek( f )|. Si y ∈ ∪kΩk existe algún k1
tal que y ∈ Ωk1 . Como Ek f (x) ≤ |Ek f (x)| ≤ supk∈Z |Ek( f )| = M4 f (x) para todo x ∈ Rn y λ < Ek f (y)
entonces λ < M4 f (y).

Además dado y ∈ {x ∈ Rn : M4 f (x) > λ} por la definición de la función maximal diádica λ <
Ek( f )(y) para algún k y si existe un j < k tal que λ < E j( f )(y) por el lema 15 E j( f )(y)> Ek( f )(y) lo
cual contradice que Ek( f )(y) sea máximo.

Así
{x ∈ Rn : M4 f (x)> λ}= ∪kΩk.

Por la definición de la función maximal diádica de Hardy-Littlewood y por ser Ωk disjuntos se tiene que

m({x ∈ Rn : M4 f (x)> λ}) = ∑
k

m(Ωk)≤∑
k

1
λ

∫
Ωk

Ek f

=
1
λ

∫
∪kΩk

Ek f ≤ 1
λ

∫
Rn

Ek f =
1
λ

∫
Rn

f =
1
λ
|| f ||1 .

2)
Sea g continua. Dado ε > 0 existe algún δ > 0 tal que si |y− x| < δ , |g(y)−g(x)| < ε . Si Q es el

único cubo de {Qk} tal que x ∈ Q con diagonal menor que δ , se tiene |g(y)−g(x)| ≤ ε y por lo tanto

|Ekg(x)−g(x)|=

∣∣∣∣∣ ∑
Q∈Qk

(
1

m(Q)

∫
Q

g(y)dy
)

XQ(x)−g(x)

∣∣∣∣∣=
∣∣∣∣∣ ∑
Q∈Qk

(
1

m(Q)

∫
Q

g(y)−g(x)dy
)

XQ(x)

∣∣∣∣∣
≤ ∑

Q∈Qk

(
1

m(Q)

∫
Q
|g(y)−g(x)|dy

)
XQ(x)≤ ε.

Por tanto
lı́m
k→∞

Ekg(x) = g(x)
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en casi todo punto x ∈ Rn.
Sea f ∈ L1(Rn). Por densidad para cada ε > 0 existe una función g continua tal que || f −g||1 < ε .
Tomando fk = Ek f para todo k, gk = Ekg y λ > 0

| fk(x)− f (x)|= | fk(x)− f (x)±gk(x)±g(x)| ≤ | fk(x)−gk(x)|+ |gk(x)−g(x)|+ |g(x)− f (x)|

≤M4( f −g)(x)+ |gk(x)−g(x)|+ |g(x)− f (x)| .

Por tanto
lı́msup

k→∞

| fk(x)− f (x)| ≤M4( f −g)(x)+ |g(x)− f (x)| .

Sean Fλ = {x : M4( f −g)(x)> λ/2} y Gλ = {x : | f (x)−g(x)|> λ/2}. Entonces

{x ∈ Rn : lı́msup
k→∞

| fk(x)− f (x)|> λ} ⊂ (Fλ ∪Gλ ).

Por la desigualdad de Chebyshev

m(Gλ )<
2
λ
|| f −g||1

y por el apartado 1) del teorema

m(Fλ )<
2
λ
|| f −g||1 .

Así m({x ∈ Rn : lı́msupk→∞ | fk(x)− f (x)|> λ})≤ 2
λ

ε + 2
λ

ε .
Como esto es cierto para todo ε > 0 se deduce que m({x∈Rn : lı́msupk→∞ | fk(x)− f (x)|> λ}) = 0.
Además

Ek f (x) = ∑
Q∈Qk

Ek( f XQ)(x)XQ(x) con k ≥ 0

y f XQ es integrable. Entonces f es localmente integrable y lı́mk→∞ Ek f (x) = f (x) en casi todo punto
x ∈ Q para todo Q ∈ Qk. Luego también se cumple para casi todo punto x ∈ Rn.

Teorema 18. (Descomposición de Calderón-Zygmund) Sean f ∈ L1(Rn) con f > 0 y λ > 0. Entonces
existe una sucesión de cubos diádicos disjuntos {Q j} j∈Z que cumple:

1. f (x)≤ λ para casi todo x /∈
⋃

j Q j.

2. m(∪ jQ j)≤
1
λ
|| f ||1.

3. λ <
1

m(Q j)

∫
Q j

f ≤ 2n
λ .

Demostración. 1) Sean Ωk los conjuntos descritos como en el anterior teorema. Descomponemos los
Ωk en cubos diádicos disjuntos Qk que forman una familia {Q j}.

Sea x /∈
⋃

j Q j, es decir, x /∈ ∪kΩk. Entonces si Ek f (x)≤ λ para todo k, como lı́mk→∞ Ek f (x) = f (x)
en casi todo punto x /∈

⋃
j Q j

f (x)≤ λ en casi todo punto x /∈
⋃

j

Q j.

2) Usando la misma descomposición del apartado anterior

m(∪ jQ j) = m(∪kΩk) = m({x ∈ Rn : M4 f (x)> λ}).
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Por la desigualdad vista en el anterior teorema

m({x ∈ Rn : M4 f (x)> λ})≤ 1
λ
|| f ||1 .

3) Todo Q j ⊂ {Q j} j∈Z cumple que Q j ⊂Ωk para algún k. Por la definición de los Ωk tenemos

λ <
1

m(Q j)

∫
Q j

f .

Consideramos la familia de cubos {Q∗j} donde Q∗j es el padre de Q j. Entonces

1
m(Q j)

∫
Q j

f ≤
m(Q∗j)

m(Q j)m(Q∗j)

∫
Q∗j

f =
2nm(Q j)

m(Q j)m(Q∗j)

∫
Q∗j

f ≤ 2n
λ .

Lema 19. Sean f una función localmente integrable en Rn y x ∈ Qn. Existen constantes C′n y Cn que
dependen de n, tales que

C′nM f (x)≤M4 f (x)≤CnM f (x).

Demostración. Sea Q un cubo tal que x ∈ Q. Entonces Q ⊂ B(x,dQ), donde B(x,dQ) es la bola de
centro x de radio dQ con dQ la diagonal del cubo Q. Por el teorema de Pitágoras d2

Q = nl2
Q, donde lQ es

la longitud del lado del cubo Q. Usando la definición de la medida de Lebesgue

m(Q) = ln
Q =

1√
nn dn

Q y m(B(x,dQ)) = cndn
Q.

Así tenemos que∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣≤ 1

m(Q)

∫
Q
| f (y)|dy =

1
1√
nn dn

Q

∫
Q
| f (y)|dy≤ 1

1√
nn dn

Q

∫
B(x,dQ)

| f (y)|dy

=
cn
1√
nn

1
cndn

Q

∫
B(x,dQ)

| f (y)|dy =
cn
1√
nn

1
m(B(x,dQ))

∫
B(x,dQ)

| f (y)|dy≤ cn
1√
nn

M f (x).

Esto ocurre para todo cubo Q que contenga a x por tanto también ocurre para el supremo, por lo que
M4 f (x)≤CnM f (x) con Cn =

cn
1√
nn
.

Veamos la otra desigualdad. La bola B(x,r) está contenida en un cubo Qx de lado 2r con r>0. Como
m(Qx) = (2r)n

1
m(B(x,r))

∫
B(x,r)

| f (y)|dy =
1

cnrn

∫
B(x,r)
| f (y)|dy≤ 1

cnrn

∫
Qx

| f (y)|dy

=
2n

cn

1
2nrn

∫
Qx

| f (y)|dy =
2n

cn

1
m(Qk)

∫
Qx

| f (y)|dy≤ 2n

cn
M4 f (x).

Por tanto C′nM f (x)≤M4 f (x).

Proposición 20. Sean 1 < p≤ ∞ y f ∈ Lp(Rn) una función. Se cumple que∣∣∣∣M4 f
∣∣∣∣

p ≤ || f ||p .
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Demostración. Caso p = ∞.
Por ser la integral de

∣∣∣ 1
m(Q)

∫
Q f (y)dy

∣∣∣≥ 0∣∣∣∣∣sup
x∈Q

∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣
∣∣∣∣∣= sup

x∈Q

∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣ .

Por tanto

sup
x∈Q

∣∣∣∣ 1
m(Q)

∫
Q

f (y)dy
∣∣∣∣≤ sup

x∈Q

1
m(Q)

∫
Q
| f (y)|dy≤ sup

x∈Q

1
m(Q)

∫
Q
|| f ||

∞
dy

= || f ||
∞

sup
x∈Q

1
m(Q)

∫
Q

dy = || f ||
∞
.

Tomando el supremo obtenemos el resultado.
En el caso de que 1 < p < ∞ .
Por el anterior lema anterior M4 f (x) ≤CnM f (x) para toda función f localmente integrable en Rn

y para todo x ∈ Rn.
Por el teorema 6 ||M f ||p ≤C || f ||p. Así∣∣∣∣M4 f

∣∣∣∣
p ≤Cn ||M f ||p ≤CnC || f ||p = cp || f ||p .



Capítulo 3

Función maximal reiterada

Este capítulo sobre la maximal reiterada se obtiene de una revista que es la referencia [6] de la
bibliografía.

Definición. Sean f una función localmente integrable y k ∈N. Se define la función maximal de Hardy-
Littlewood reiterada de orden k como

Mk f (x) = M(Mk−1 f )(x)

donde M f es la función maximal de Hardy-Littlewood.
Además M1 f (x) = M f (x).

El siguiente lema es esencial para probar que el límite cuando k tiende a infinito de la función
maximal de Hardy-Littlewood reiterada de orden k de una función f es la norma infinito de f .

Lema 21. Dada una sucesión (ci)
∞
i=1 que cumple

1. c1 ∈ (0,1),

2. ck+1 = (1− c1)ck + c1 para todo k ≥ 1,

entonces lı́m
k→∞

ck = 1.

Demostración. Vamos a demostrar por inducción que ck ∈ (0,1) para todo k ≥ 1.
Para k = 1 es evidente ya que por la condición (1) 0 < c1 < 1.
Suponiendo que 0 < ck−1 < 1. Por la condición (2)

ck = (1− c1)ck−1 + c1.

Como 0 < c1,ck−1 < 1 y 0 < (1− c1)< 1 tenemos que 0 < (1− c1)ck−1 < (1− c1)< 1.
Así 0 < (1− c1)ck−1 + c1 < 1 y ck ∈ (0,1) para todo k ≥ 1.
Como

ck+1− ck = (1− c1)ck + c1− ck = c1(1− ck)> 0

la sucesión (ci)
∞
i=1 es monótona creciente.

Por tanto la sucesión tiene límite y l = lı́mk→∞ ck ∈ (0,1]. Por (2) l = lı́mk→∞ ck+1 = lı́mk→∞(1−
c1)ck + c1 entonces l = (1− c1)l + c1. Es decir, 0 = c1(1− l) luego l = 1.

Así
lı́m
k→∞

ck = 1.

Teorema 22. Sean f ∈ L∞(Rn) y x ∈ Rn. Entonces

lı́m
k→∞

Mk+1 f (x) = || f ||
∞
.

17



18 Capítulo 3. Función maximal reiterada

Demostración. Si || f ||
∞
= 0 la demostración es trivial ya que

M f (x) = sup
x∈B

1
m(B)

∫
B
| f (y)|dy≤ sup

x∈B

1
m(B)

∫
B
|| f ||

∞
dy = || f ||

∞
.

Así M f (x) = 0.
Veremos por inducción que Mk f (x)≤ || f ||

∞
para todo k ≥ 1.

El caso de k = 1 lo hemos probado antes.
Suponemos que Mk f (x)≤ || f ||

∞
.

Para k+1

Mk+1 f (x) = sup
x∈B

1
m(B)

∫
B

∣∣Mk f (y)
∣∣dy≤ sup

x∈B

1
m(B)

∫
B
|| f ||

∞
dy = || f ||

∞
.

Si || f ||
∞
6= 0 para todo ε ∈ (0, || f ||

∞
) podemos definir el conjunto

Wε = {x ∈ Rn : | f (x)| ≥ || f ||
∞
− ε}.

Para todo punto fijo a ∈ Rn existe un R > 0 tal que

m(Wε ∩B(a,R))≥ 1
2

m(Wε).

Sea Vε =Wε ∩B(a,R) y

S( f ) = {x ∈ Rn : x es un punto de Lebesgue de f y Mk( f ),k = 1,2, ...}.

Cuando y∈Vε ∩S( f ) | f (y)| ≥ || f ||
∞
−ε por pertenecer y a Vε , también ya que y∈ S( f ) Mk f (y)≥

|| f ||
∞
− ε para todo k ≥ 1 .

Sea x ∈ B(a,R) por la definición de función maximal de Hardy-Littlewood

M f (x)≥ 1
m(B(a,R))

∫
B(a,R)

| f (y)|dy.

Además ya que Vε ⊆ B(a,R)

1
m(B(a,R))

∫
B(a,R)

| f (y)|dy≥ m(Vε)

m(B(a,R))m(Vε)

∫
Vε

| f (y)|dy≥ m(Vε)

m(B(a,R))
(|| f ||

∞
− ε).

Llamando r =
m(Vε)

m(B(a,R))
> 0 tenemos que M f (x)≥ r(|| f ||

∞
− ε).

Tenemos que

M2 f (x)≥ 1
m(B(a,R))

∫
B(a,R)

|M f (y)|dy

=
1

m(B(a,R))

∫
Vε

|M f (y)|dy+
1

m(B(a,R))

∫
B(a,R)\Vε

|M f (y)|dy

≥ m(Vε)

m(B(a,R))
(|| f ||

∞
− ε)+

m(B(a,R))−m(Vε)

m(B(a,R))
1

m(B(a,R))−m(Vε)

∫
B(a,R)\Vε

|M f (y)|dy

≥ m(Vε)

m(B(a,R))
(|| f ||

∞
− ε)+

m(B(a,R))−m(Vε)

m(B(a,R))
r(|| f ||

∞
− ε) = (r+ r(1− r))(|| f ||

∞
− ε).

Creamos la sucesión c1 = r y ck+1 = c1 +(1− c1)ck para todo k ≥ 1.
Entonces M2 f (x)≥ c2(|| f ||∞− ε) para todo x ∈ B(a,R).
Por inducción suponemos que para todo x ∈ B(a,R)

Mk f (x)≥ ck(|| f ||∞− ε).
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Entonces
Mk+1 f (x)≥ 1

m(B(a,R))

∫
B(a,R)

∣∣Mk f (y)
∣∣dy

=
1

m(B(a,R))

∫
Vε

∣∣Mk f (y)
∣∣dy+

1
m(B(a,R))

∫
B(a,R)\Vε

∣∣Mk f (y)
∣∣dy

≥ m(Vε)

m(B(a,R))
(|| f ||

∞
− ε)+

m(B(a,R))−m(Vε)

m(B(a,R))
1

m(B(a,R))−m(Vε)

∫
B(a,R)\Vε

∣∣Mk f (y)
∣∣dy

≥ m(Vε)

m(B(a,R))
(|| f ||

∞
− ε)+

m(B(a,R))−m(Vε)

m(B(a,R))
ck(|| f ||∞− ε)

= (r+ ck(1− r))(|| f ||
∞
− ε) = (c1 + ck(1− c1))(|| f ||∞− ε) = ck+1(|| f ||∞− ε).

Por el lema anterior lı́minf
k→∞

Mk f (x)≥ || f ||
∞
− ε así cuando ε → 0

lı́minf
k→∞

Mk f (x)≥ || f ||
∞
.

Por la definición de la función maximal de Hardy-Littlewood, tenemos que

lı́msup
k→∞

Mk f (x)≤ || f ||
∞
.

Luego
lı́m
k→∞

Mk f (x) = || f ||
∞

para todo x ∈ B(a,R). Haciendo que R→ ∞ se cumple para todo x ∈ Rn.





Capítulo 4

Acotación con pesos

En este capítulo vamos a usar la referencia [2] de la bibliografía.

Definición. Un peso w es una función medible (con respecto a la medida de Lebesgue) definida en Rn

y localmente integrable que toma valores en [0,∞].

Definición. Sean w un peso y 1≤ p < ∞. Definimos

Lp(w) =
{

f medible de f inida en Rn :
∫
Rn
| f (x)|p w(x)dx < ∞

}
,

L∞(w) =
{

f medible de f inida en Rn : sup
x∈Rn
| f (x)|< ∞

}
y

Lp
loc(w) =

{
f medible de f inida en Rn :

∫
K
| f (x)|p w(x)dx < ∞ para todo K ⊂ Rn compacto

}
.

Definición. Sean f una función, 1≤ p≤ ∞ y w un peso. Se define la norma p de f como sigue
Si 1≤ p < ∞

|| f ||p =
(∫

Rn
| f (x)|p w(x)dx

) 1
p

.

Si p = ∞

|| f ||
∞
= sup

x∈Rn
| f (x)| .

Definición. Sea f : Rn → R localmente integrable en Rn con n ≥ 1. Se define la función maximal
M∗ f (x) como

M∗ f (x) = sup
x∈Q

1
m(Q)

∫
Q
| f (y)|dy

con x ∈ Rn y donde el supremo se toma sobre todos los cubos Q que contienen a x.

Sean f una función localmente integrable en Rn y x ∈Rn. Existen constantes C′n y Cn que dependen
de n, tales que

C′nM f (x)≤M∗ f (x)≤CnM f (x).

Teorema 23. Sean f : Rn→ R localmente integrable en Rn con n≥ 1, w un peso, 1≤ p < ∞ y C > 0.
Si ||M∗ f ||p ≤C || f ||p, entonces para todo λ > 0

w({x ∈ Rn : M∗ f (x)> λ})≤ C
λ p

∫
Rn
| f (x)|p w(x)dx.

21
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Demostración. Por la desigualdad de Chebyshev

w({x ∈ Rn : M∗ f (x)> λ}) = w({x ∈ Rn : (M∗ f )p(x)> λ
p})≤ 1

λ p ||M
∗ f ||pp ≤

C
λ p || f ||

p
p .

Lema 24. Sean f una función no negativa, Q un cubo en el que f (Q) =
∫

Q f > 0 y λ un número tal que

0 < λ < f (Q)
m(Q) . Entonces

Q⊂ {x ∈ Rn : M∗( f XQ)(x)> λ}.

Demostración. Sea x ∈ Q. Por la definición de función maximal

M∗( f XQ)(x)≥
1

m(Q)

∫
Q
| f (y)|XQ(y)dy =

1
m(Q)

∫
Q
| f (y)|dy =

1
m(Q)

∫
Q

f (y)dy =
f (Q)

m(Q)
> λ .

Teorema 25. Sean 1 ≤ p < ∞, w un peso y C > 0 de modo que para cualquier f ∈ Lp(w) y cualquier
λ > 0, w({x ∈ Rn : M∗ f (x)> λ})≤ C

λ p

∫
Rn | f (x)|p w(x)dx. Entonces:

1. w(Q)≤ C
λ p

∫
Q | f (x)|

p w(x)dx.

2. w(Q)
(

f (Q)
m(Q)

)p
≤C

∫
Q | f |

p w.

3. Tomando f = XS con S⊂ Q, w(Q)
(

m(S)
m(Q)

)p
≤Cw(S).

Demostración. 1) Como Q⊂ {x ∈ Rn : M∗( f XQ)(x)> λ}

w(Q)≤ w({x ∈ Rn : M∗( f XQ)(x)> λ}).

Luego, por hipótesis,

w(Q)≤ C
λ p

∫
Rn
| f (x)|p XQ(x)w(x)dx =

C
λ p

∫
Q
| f (x)|p w(x)dx.

2) Como 1) ocurre para todo λ < f (Q)
m(Q) entonces haciendo que λ → f (Q)

m(Q)

w(Q)

(
f (Q)

m(Q)

)p

≤C
∫

Q
| f |p w.

3) Usando f = XS, f (Q) =
∫

Q f =
∫

Q XS = m(S) y
∫

Q | f |
p w =

∫
Q XSw =

∫
S w = w(S).

Entonces por el apartado 2)

w(Q)

(
m(S)
m(Q)

)p

≤Cw(S).

Corolario 26. Con las condiciones del teorema anterior, se tiene:

1. w > 0 en casi todo punto salvo si es identicamente nula.

2. w es localmente integrable salvo si es identicamente infinita.

Demostración. 1) Si w = 0 en un conjunto de medida positiva S, como

w(Q)

(
m(S)
m(Q)

)p

≤Cw(S) = 0

w(Q) = 0 para todo Q que contenga a S. Luego w = 0 en casi todo punto de Q.
2) Si w(Q) = ∞ para algún Q y por el apartado 3 del anterior teorema también se cumple para todo

S⊂ Q.
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Usando el apartado 3) del teorema 25 con p = 1

w(Q)

m(Q)
≤C

w(S)
m(S)

.

Sea a = ı́nf{w(x) : x ∈ Q} el ínfimo esencial salvo conjuntos de medida nula. Para todo ε > 0 existe un
conjunto Sε ⊂ Q tal que m(Sε)> 0 y w(x)≤ a+ ε , para todo x ∈ Sε . Entonces

w(Q)

m(Q)
≤C(a+ ε) para todo ε > 0

y
w(Q)

m(Q)
≤C ı́nf

x∈Q
w(x).

De lo anterior obtenemos la siguiente definición.

Definición. Se llama clase de pesos A1 al conjunto de pesos w que satisfacen la siguiente condición,
existe C > 0 tal que

w(Q)

m(Q)
≤Cw(x)

en casi todo punto x ∈ Q y para todo cubo Q. A esto se le llama condición A1.

Nota 27. La anterior condición también se puede escribir como

M∗w(x)≤Cw(x)

para casi todo punto x ∈ Rn.

Usando el apartado 2) del teorema 25 para p > 1 y tomando f = w−
1

p−1 XQ

w(Q)

(
1

m(Q)

∫
Q

w−
1

p−1

)p

≤C
∫

Q
w−

1
p−1 .

De aquí se obtiene la siguiente definición.

Definición. Sea 1≤ p<∞. Se llama clase de pesos Ap al conjunto de pesos w que satisfacen la siguiente
condición, existe C > 0 tal que para todo cubo Q

w(Q)

(
1

m(Q)

∫
Q

w−
1

p−1

)p

≤C
∫

Q
w−

1
p−1 ,

o sea, (
1

m(Q)

∫
Q

w
)(

1
m(Q)

∫
Q

w−
1

p−1

)p−1

≤C.

A esto se le llama condición Ap.

Teorema 28. Sean w un peso y 1≤ p < ∞. Son equivalentes:

1. Existe C > 0 tal que para toda f ∈ Lp(w) y para toda λ > 0

w({x ∈ Rn : M∗ f (x)> λ})≤ C
λ p

∫
Rn
| f (x)|p w(x)dx.

2. w ∈ Ap.
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Demostración. La necesidad de que w ∈ Ap lo hemos probado antes.
Suponemos que f ≥ 0.
Sea p = 1. Suponemos que w ∈ A1 . Tomando una sucesión de cubos diádicos disjuntos {Q j} j∈Z

como en el teorema de descomposición de Calderón-Zygmund. Como en el teorema 17 se puede ver
que ∪ jQ j = {x ∈ Rn : M4 f (x)> λ}.

Sea Q2
j el cubo con el mismo centro que Q j y el doble del lado de Q j para cada cubo Q j en {Q j} j∈Z.

Queremos ver que {x ∈ Rn : M4 f (x)> 4nλ} ⊂ ∪ jQ2
j .

Sea x /∈
⋃

j Q2
j . Sea Q un cubo cualquiera centrado en x y k ∈Z el único entero tal que 2k−1 ≤ l(Q)<

2k donde l(Q) es el lado del cubo Q. El cubo Q corta como mucho a 2n cubos diádicos de lado 2k−1:
R1,R2, ...,Rm con m≤ 2n.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

x

Q
R4

R1 R2

R3

¿ Puede ser Ri = Q j para algún j? Más en general: sea R un cubo diádico tal que Ri ⊆ R; ¿Puede ser
R = Q j para algún j?

No, porque como se ve en la figura x ∈ R2 y sin embargo x /∈
⋃

j Q2
j .

Así que, por la construcción de los Q j, deducimos que 1
m(Ri)

∫
Ri

f ≤ λ .

Por tanto
1

m(Q)

∫
Q

f ≤
m

∑
i=1

1
m(Q)

∫
Q∩Ri

f =
m

∑
i=1

m(Ri)

m(Q)

1
m(Ri)

∫
Q∩Ri

f

=
m

∑
i=1

2kn

m(Q)

1
m(Ri)

∫
Q∩Ri

f ≤
m

∑
i=1

2kn

m(Q)

1
m(Ri)

∫
Ri

f .

Como 2k−1 ≤ l(Q)

m

∑
i=1

2kn

m(Q)

1
m(Ri)

∫
Ri

f ≤
m

∑
i=1

2kn

m(Q)
λ ≤ 2nmλ ≤ 4n

λ .

Es decir, para todo x /∈
⋃

j Q2
j se tiene que M4 f (x) ≤ 4nλ , de donde se obtiene que {x ∈ Rn :

M4 f (x)> 4nλ} ⊂ ∪ jQ2
j . Por las desigualdades entre las funciones maximales esto también se cumple

para el operador M∗ f .
Como m(Q2

j) = 2nm(Q j)

∫
{x∈Rn:M4 f (x)>4nλ}

w(x)dx≤∑
j

∫
Q2

j

w(x)dx = ∑
j

m(Q2
j)

m(Q2
j)

∫
Q2

j

w(x)dx = ∑
j

2n m(Q j)

m(Q2
j)

∫
Q2

j

w(x)dx.

Usando el apartado 3 del teorema de descomposición de Calderón-Zygmund y las desigualdades entre
los operadores maximales de Hardy-Littlewood

∑
j

2n m(Q j)

m(Q2
j)

∫
Q2

j

w(x)dx≤ 2n

λ
∑

j

∫
Q j

f (y)

(
1

m(Q2
j)

∫
Q2

j

w(x)dx

)
dy≤ 2n

λ

∫
∪ jQ j

f (y)M∗w(y)dy
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≤ 2n

λ

∫
Rn

f (y)M∗w(y)dy≤C
2n

λ

∫
Rn

f (y)w(x)dy

y

w({x ∈ Rn : M∗ f (x)> λ})≤C
2n

λ

∫
Rn

f (y)w(x)dy.

Sea p > 1 y suponemos que w ∈ Ap. Usando la desigualdad de Hölder y que w ∈ Ap(
1

m(Q)

∫
Q
| f |
)p

=

(
1

m(Q)

∫
Q
| f |w

1
p w−

1
p

)p

≤
(

1
m(Q)

∫
Q
| f |p w

)(
1

m(Q)

∫
Q

w−
1

p−1

)p−1

≤ 1
m(Q)

∫
Q
| f |p w C

(
w(Q)

m(Q)

)−1

.

De aquí se deduce que

w(Q)≤
(

m(Q)

f (Q)

)p ∫
Q
| f |p w. (4.1)

Sea ahora f ∈ Lp(w). Podemos suponer que f ∈ L1 ya que si no lo hubieramos razonado con fk =
f XB(0,k) con B(0,k) la bola de centro 0 y radio k > 0 de donde obtendriamos constantes independientes
de k.

Tomando una sucesión de cubos diádicos disjuntos {Q j} j∈Z como en el teorema de descomposición
de Calderón-Zygmund pero con 4−nλ en lugar de λ , ∪ jQ j = {x ∈ Rn : M∗ f (x)> λ}.

Sea Q3
j el cubo con el mismo centro que Q j y el triple del lado de Q j para cada cubo Q j en {Q j} j∈Z

hay que dilatar tres veces en lugar de dos porque estamos usando M∗.
De manera análoga al caso de p = 1 tenemos que {x ∈ Rn : M∗ f (x)> λ} ⊂ ∪ jQ3

j .
Usando la función f = XQ j en la desigualdad (4.1) y como Q j ⊂ Q3

j

w(Q3
j)≤

(
m(Q3

j)

f (Q3
j)

)p ∫
Q3

j

| f |p w =

(
m(Q3

j)

m(Q j)

)p ∫
Q3

j

XQ j w =

(
m(Q3

j)

m(Q j)

)p

w(Q j).

Usando lo anterior y la desigualdad (4.1)

w({x ∈ Rn : M∗ f (x)> λ})≤∑
j

w(Q3
j)≤ 3np

∑
j

w(Q j)≤ 3np
∑

j

(
m(Q j)

f (Q j)

)p ∫
Q j

| f |p w.

Por la construcción de {Q j}
f (Q j)
m(Q j)

> 4−nλ . Así

3np
∑

j

(
m(Q j)

f (Q j)

)p ∫
Q j

| f |p w≤ 3np
∑

j

(
4n

λ

)p ∫
Q j

| f |p w= 3np
(

4n

λ

)p ∫
∪ jQ j

| f |p w≤ 3np
(

4n

λ

)p ∫
Rn
| f |p w.

Observación. Aunque no lo vamos a ver la acotación (p,p)- fuerte con 1 < p ≤ ∞ se cumple si y solo
si w ∈ Ap.
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