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Abstract

Todo matemadtico conoce el resultado de Galois sobre la irresolubilidad por radicales de los polinomios
de grado quinto, redactado en 1831 y famésamente publicado en 1846 de forma pdstuma. Si tenemos
en cuenta la cantidad de intentos infructuosos que hicieron falta por parte de grandes matemadticos hasta
alcanzar este resultado, sorprende la celeridad con que Hermite publicé en 1859, en un libro titutalado
"Sur la résolution de I’equation du cinquieme degré", un método para resolver cualquier ecuacion quin-
tica recurriendo a ciertas propiedades algebraicas de las funciones elipticas. En este trabajo se explorara
ese método, pero el texto al que nos cefiirémos principalmente no serd el de Hermite, sino al de los
matematicos Viktor Prasolov y Yuri Solovyev "Elliptic functions and elliptic integrals", publicado en
1997.

Las funciones elipticas son funciones complejas f : C — C doblemente periddicas, i.e., funciones tales
que existen Q1,Q, € C para los cuales f(z+Q;) = f(z), i = 1,2, de forma que Q; y Q, son linealmente
independientes si se consideran como vectores en R?.

Puesto que el desarrollo necesario para estudiar la conexién entre funciones elipticas y ecuaciones
quinticas requiere muchos calculos bastante onerosos, se corre el riesgo de perder de vista el objetivo fi-
nal inmersos en cuentas aparentemente innecesarias. Por ello, dejaré aqui un breve esquema del camino
a seguir.

Primero, comenzaremos definiendo las funciones theta ®;(v|t) para i = 0,1,2,3; donde v, € C y
Im(7) > 0. Estas funciones se expresan mediante series de potencias de la siguiente forma:

@o(v|f) — Z (_l)mqmzeZTEimv’

m—=—oo
o 1\2 .
O1(v|t)=i Y, (_l)mq<m—j) omim=1)y.
m—=—oo
V|T Z q - em (2m— 1)7
m—=—oo
V|T qm 2mmv
m_z—oo

donde g := (1) = €*".
Las funciones theta no son doblemente periddicas en v, pero casi. Todas ellas se comportan de manera

bastante simple bajo los cambios de variable v +— v+ 1y v — v+ 7. Por ejemplo, para @3 (v|T) se tiene
O3(v+1]7) =Os3(v | 7),03(v+7[7) = ¢~ ™03 (4|).

Esta "casi" periodicidad nos permite considerar cocientes de funciones theta que si serdn doblemente
periddicos, y usando propiedas generales de las funciones doblemente periédicas hallaremos informa-
cién muy util de las funciones theta.

Eventualmente llegaremos a obtener una expresion de las funciones theta como productos infinitos, lo

il



iv Abstract

que motivard la definicion de las siguientes funciones:

k=1
A =g 501 -¢*),
k=1
fH(1)= \/iq% ﬁ(l +q2k).
k=1

Nuestro principal interés serd la funcién f(7), puesto que nos permite definir las funciones

T4+c
5

u(t) = f(1), vc('c):f< > and ve(7)= f(57), ¢=0,1,2,3,4.
(Aqui, ¢’ depende de c; luego veremos exactamente c6mo.)
Deduciremos seguidamente que estas funciones satisfacen una ecuacion llamada la "ecuacién modular":

V=) +duve+u° =0, ¢=0,1,2,3,4,00;

Especificamente, si u = f(7) se considera como un pardmetro, entonces las seis raices del polinomio
v — 1%V + 4uv +ub vienen dadas por v = v.(1).

Asi habremos logrado al fin hallar una conexién clara entre raices de polinomios y funciones elipticas
(aunque las funciones u y v, no son elipticas, la teoria de funciones elipticas es necesaria para estudiar

sus propiedades). La transformacién

(Voo =) (Vo1 — V1) (Vo2 —vo1)
\S/ﬁ3

donde los subindices se entienden médulo 5, nos dan las cinco raices del polinomio de grado cinco

W, =

) Z:071727374;

ww? +5)% —u'? + 64u~12.

Después, usando la sustitucién
_ A@-AE
fA(7) (w3 (1) +5)

y(7)

se puede obtener la ecuacion
8 _ £8
5 fi—1h
Para concluir, veremos que cualquier ecuacién quintica se puede reducir a la forma y° +5y—a =0y
que

af?(t) = fi(t) = £ (7)

siempre se puede resolver para 7. Para eso, veremos que la solucion a esta ecuacion es un 7 tal que
fP=df?—e64=0.

Esta es una ecuacién cuadratica para t = f!2, con lo cual podemos hallar facilmente sus 24 raices. Si
ademds podemos invertir f(7), entonces s6lo quedaria comprobar los valores de T correspondientes a

, . 2 8 8 e, . .,
las 24 raices, y aquel que satisfaga af~(t) = f7(7) — f; (7) nos permitird hallar las raices de la ecuacion
quintica original. Asi, vemos que si ademads de invertir potencias (radicales) podemos invertir la funcién
f(7), entonces podemos resolver cualquier ecuacion quintica.
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Es en este punto donde surgen las dificultades computacionales. El problema de invertir f(7) no es en
absoluto trivial, y es por esta razén que un resultado aparentemente tan bueno como un algoritmo gen-
eral para la resolucién de ecuaciones quinticas es tan poco conocido: a nivel computacional no ofrece
ninguna ventaja, y cualquier método numérico ofrece mejores soluciones. De hecho, implementar este
algoritmo en un ordenador demostré ser un problema extremadamente complicado. Los primeros en
lograrlo fueron R.B.King y E.R.Canfield, y publicaron su método en un articulo titulado "An algebraic
algorithm for calculating the roots of a general quintic equation” en 1991 en el Journal of Mathemat-
ical Physics. Su trabajo se basa principalmente en el articulo de Kiepert "Auflosung der Gleichungen
Fiinften Grades" (1878) y el libro de Klein "Vorlesunger iiber das Ikosaeder"(1888). Un buen resumen
general de sus ideas se puede encontrar en "Beyond the quartic equation” del propio R.B.King.
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Chapter 1

Theory of elliptic functions

In what follows, by function we will mean complex meromorphic function, that is, functions which are
analytic in the whole complex plane except perhaps at a set of singularities without an accumulation
point.

Definition 1.1. Given a function f, we will say that Q is a period of f if at each regular point z

f(2)=rfz+Q) (1.1)
For example, Q = 27i is a period of the complex exponential €.
A simple consequence follows from the definition:
Corollary 1.1. Given a meromorphic function f with periods Qi,...,Q, and integers my,...,m,, then
mQ+...+m,Q,
is also a period of f, i.e., the set of periods of f is an abelian group with the usual sum operation.
Now we will see that periodicity behaves well under the usual operations with analytic functions.

Proposition 1.1. Let f and g have period Q. Then the following functions also have the same period:

flz+e), f(z2)*glz), f(2)g(z), chég, f'(z), ¢ € C aconstant.

Proof. We only have to be a bit more careful with f’(z). Given a regular point z of f, we can find § > 0
such that f is analytic in the discs D(z,8) and D(z+ €, d). Then, for & with |2| < & we have

fz4+Q+h)—f(z+Q)  f(z+h)—f(2)

h h
and we need only take the limit as 7 — 0. O

Proposition 1.2. Let f be a non-constant periodic function. Then there exists (t > 0 such that every
nontrivial period Q of f satisfies |Q| > u

Proof. Assume the contrary and let z € C be a nonsingular point of f. We may find a sequence of
periods {€4}77, such that
lim |Q| =0,
k—+o0

but then the fact that f is meromorphic implies that there exists some kg € N such that 7+ Q; is nonsin-
gular for every k > ko.
We may assume without loss of generality that kg = 0, but then

f(2) = flz+L)

o =0 for any k,
so it follows that FO) - Fat Q)
. — J(2+ 8
)= 1 Z Z —0
f (Z) k—l>r-§r—loc Q.k
and f is constant, as this holds for every non-singular z. O

1



2 Chapter 1. Theory of elliptic functions

1.1 Jacobi’s theorem

Definition 1.2. Given a function f with n periods Q1,...,Q,, we will say that they form a primitive set
of periods if any other period Q of f can be written as

Q=mQ+...+m,Q,,
where my,...,m, are integers, and this cannot be done if we eliminate any ; from the list.

Theorem 1.1. There does not exist a nonconstant function with a primitive set of periods containing
n > 3 periods. If f is a nonconstant function and Q,Q' form a set of two primitive periods of f, then

Q

Proof. First we notice that in any bounded subset A C C we can only have a finite number of periods,
since otherwise we could find a compact subset C containing A and the periods would have an accumu-
lation point inside of C, wich in turn would yield a sequence of periods {€};>, with the property that
Q, —Q,, — 0 as m and n tend to infinity, so that we could obtain arbitrarily small periods of f contrary
to proposition 1.2. Now, given a period €, we may consider its integer multiples m€, all of which will
lie in a straight line L. We consider two separate cases, namely when all the periods of f lie in the line
L and when they don’t.

1. All the periods of f lie in L:

Consider the segment of L from —Q to Q. Since it contains finitely many periods, we may assume
that Q is of smallest modulus possible.

Now notice that any point of L can be expresed as tQ for € R, and that all the points mQ with
m € Z are periods. Moreover, these exhaust all the periods of f. Indeed, if we had Q' = rQ some
period of f, we could write t = m + r with m an integer and 0 < r < 1, and since mQ is a period
then Q = Q' — mQ = rQ is also a period with modulus r|Q2|. But then the only possibility that
doesn’t contradict our assumption of Q having the smallest possible modulus is that » = 0.

2. Not all the periods of f lie in L:

Let Q' be a period not lying in L and consider the triangle with vertices 0,Q,Q’. It can only
contain a finite number of periods, so by choosing some point in the interior or on the sides of
the triangle we arrive at a triangle containing fewer periods. Continuing this process we arrive at
a triangle wich only contains three periods lying at its vertices. Clearly we may assume that said
triangle is our original one with vertices 0,Q, Q.

We now consider the parallelogram with vertices 0,Q,Q', Q4 Q'; and notice that its "left half"
corresponds to our triangle, while the "right half" contains no period except at the vertices: if it
did contain some period Q;, then Qy = Q+ Q' — Q; would be a period lying in the "left half" but
not on its vertices, contradicting our assumption.

It is now easy to prove that all the periods of f are of the form mQ + m'Q’ for m,m’ € Z. Indeed,
given any period Q we may write it as Q = tQ ++'Q/. Letting t = m+r and t' = m’ + ' with
m,m’ € Z and 0 < r,r’ < 1 we find just as in the previous case that rQ + r’Q’ is also a period
lying in the parellelogram, and so the only possibility is that » = ' = 0 since it contains no other
periods than the vertices.

O]
This prompts the following definition:

Definition 1.3. We will say that a function f is elliptic if it has a primitive set of periods containing two
periods.
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1.2 Existence of elliptic functions

We are now going to prove the existence of elliptic functions. To do so, let us advance the definition
of one of the functions that shall be of crucial importance throughout the rest the text, the third theta
function. First, let v,7 € C with Im(7) > 0 and define ¢ := g(7) = ¢'"*. Now we consider the power
series

V | T Z e (m2T+2mv)in Z qm emev fOI‘V = (C Im( ) > 0.

m—=—oo m—=-—oo

Let us assume that 7 is fixed and consider ®3(v | 7) as a function of v.
To see that this series converges to an analytic function, notice that the ratio of two consecutive terms

has modulus
‘q2m+162niv‘ < ’q|2m+162n’\v\

and since |g| < 1, lim,, e |g|?""! = 0 so that @3(v | T) is a series of analytic functions which converge

uniformly inside the disk |v| < ¢ for arbitrary ¢ € C and thefore ®3(v | 7) is itself an analytic function.
For brevity, we will denote it by ®3(v). Observe that the change of variable v — v+ 1 leaves all the
terms of the series unchanged, so that ®3(v) = @3(v+ 1), while

O3(v+7) = Z qm 2imy g2m _ =1 o= 27y Z q(m+1)2ezm(m+1)v

m—=—oo m—=—oo

=g e @;(v) = A(v)O3(v),

where
A(V) — q71872n’1v.

Notice that here we are also abusing notation a bit, since A(v) does depend indirectly on 7 through g.
Taking logarithms and deriving two times we get

%lnﬂg(v%—r) = j—v}ln®3(v),
jvlnG)g(\H—l) %1[1@3(\/);

so that
2

d
o(v) = ﬁln@h(v).
is an elliptic function. Notice that, since d—ln 03(v) = 838, %ln ©3(v) only has poles of order one
at the zeros of ®@3(v) and thus ¢(v) only has poles of order one at the zeros of ®@3(v). But O3(v) is
a nonconstant analytic function, so its set of zeros cannot have an accumulation point, which together
with the previous observation goes on to say that ¢ (v) is meromorphic.

1.3 Liouville’s theorems

It is clear that given some fixed ¢ € C, any elliptic function with {Q,Q’} as a primitive set of periods is
completely determined by its values in the parallelogram

I, = {ZEC:z=c+rQ+r'Q’,Whereogr,r’< 1}

From now on we will call this I1, the fundamental parallelogram at ¢ and we will assume furthermore
that Im % > 0, so that if we run through its vertices ¢,c +Q,c+ Q' ¢ + Q+ €/ in that order it corre-
sponds to the positive orientation.

Theorem 1.2. The sum of the residues of an elliptic function with respect to any fundamental parallel-
ogram 11 is equal to zero
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Proof.

c+Q+Q/ c+Q/ c

c+Q
/ f(2)dz= / f(z)dz+ f(z)dz+ flz)dz+ f(z)dz.
Jn c

c+Q c+Q+Q/ c+Q!

The first and third integrals cancel each other with a change of variables z = { + Q' and the same
happens with the second and fourth integrals (by periodicity they are integrals of the same function in
opposite directions). O

Definition 1.4. Given a € C, we will say that z € C is an a-point of f if f(z) = a, and its multiplicity as
an a-point is the least integer k such that f*) (z) #0

Corollary 1.2. The number of poles with multiplicity of a nonconstant elliptic funtion f in a funda-
mental parallelogram is equal to the number of a-points with multiplicity, for arbitrary a.

Proof. Let
f'()
f(2)—a

which is itself an elliptic function. Now if { is a pole of order k of f, we have in a neighborhood of {

¢(z) =

for some g (z) analytic with g (&) # 0. Thus

_ ) _s1@E=0)—kei(z) 1 _ 1
(P(Z)_f(Z)—a_ g —az—=0k z-¢ —C

with /1 ({) = —k and so

res._¢ 9(2) = —k,

where res,_¢ ¢(z) denotes the residue of ¢(z) at C.
In a similar fashion, if { is an a-point of f of multiplicity k we have in a neighborhood of

f@)=a+ (=) ()
with g(z) analytic and g () # 0, so that again expanding ¢

8@)(z—C)+kea(z) 1 1
82(2) z—¢ z—¢

$(z) =

but in this case h,({) =k, and so

res,_c 9(2) = k
Since the a-points of f are all the singular points of ¢(z), and the sum of all of its residues equals zero,
the corollary is proved. 0

Theorem 1.3. (Liouville’s theorem) There does not exist a nonconstant elliptic function that is regular
in a fundamental parallelogram.

Proof. In that case the number of poles would be zero, and by the previous result the number of a-points
would be zero for arbitrary a, which is absurd. O

Corollary 1.3. Given an elliptic function f, the sum of the orders of its poles must be at least 2.

Proof. The case where f is constant is trivial. The only case that would contradict the assertion would
be for f to have a simple pole at a single point {y. But then the residue of f at {, would be different
from O, contradicting theorem 1.2. O



Chapter 2

Theta functions

Recall how we proceeded to define the third theta function in section 1.2. First, we fix T € C with
Im(7) >0 and let g := g(7) = ¢'"*. Now the theta functions can be defined through the following power
series:

oo

O(v|7)= Y (~1)"g™ emm 2.1)
oo ) .
(V ‘ ’C) — Z (_l)mq(m—%) em(mel)v (2.2)
Z C] -1 em (2m—1)v (2.3)
- m* 2mimy
Y 4" (2.4)

We will assume for convenience that 7 is fixed and that the theta functions depend only on v, so for

brevity we will denote
0;(v):=0;(v|1),i=0,1,2,3.

Now let .
AWV) =AW | 1) =q e 2. (2.5)

By straightforward substitutions we obtain the following indentities:

Or(v+1) =0x(v) fork=0,3 and O (v+1) = —O(v) fork = 1,2

2.6
Or(v+ 1) =A(v)O(v) for k =2,3 and O (v+ 1) = —A(v)O(v) for k =0, 1. (2.6)
Moreover, all of the theta functions can be easily expressed in terms of @3(v) as follows:
[=S) 2 .
® ( ) ®3 < > qm 27'L'zmv Tim __ (71)mqm eZﬂ:zmv7
I’ﬂ;“’ }n:z—oo
(ot 1-—
O(v)= ie™("=3) @, <v+ 2T)
771:1 v— i qm Zﬂlmv Tim —mm‘L'
mM—=—oo
- o) o) 2.7)
=i (_l)mq m=3) oW 2m—1 v,
m:z—oo
@2(1/) _ efni(vf§)®3 (V _ %) _ efm'(vf%) m;mquEZnimve—mmv
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2.1 Zeros of theta functions

Let us recall the identities in (2.6) and, in particular, ®;(—v) = —@;(v). Because it is analytic, we
inmediately deduce that ®;(0) = 0. Moreover, since ®;(v+1) = —0;(v) and @, (v+17) = —A(v)O;(v),
we see that @ (m+nt) = 0 for all m,n € Z. Let us prove that these are in fact all its zeros. We will
proceed using the well-known fact from complex analysis that, given a function f analytic in an open
domain U with n zeros in U counting multiplicities, one has

1o @) _
2ni Jou f(2)

Recall that A(v) = g~ e 2V = ¢~#(*+2%) 50 in particular A(v) # 0. Together with the equations
@1(V+ 1) = @1(\/)

and
O1(v+17) = —A()® (v),

we deduce that it is only necessary to study the zeros of ®;(v) inside the parallelogram I1, of vertices
% (where ¢ = #).

Derivating the two previous equations with respect to v yields

so that
Oy +1) @)
O;(v+1)  0O(v)
O (v+1) _ —A(1)0:1(v) —AW)O(v) _A'(v)  ©i(v) _ ; 0 (v)
O it A0 (V) A Tew - e
(Recall that A(v) = g~ e 2™ = ¢~ #(2v+7)),
o,

Thus, when we integrateg—l along the boundary of the parallelogram, the integrals along the vertical
sides will cancel each other while at the horizontal lines only the term 27i will remain, and therefore

Lo,

2mi Jon O (2)

We conclude that all the zeros of ®;(v) are given by n+m7t, n,m € Z and they are all simple zeros. If
we look at the relations in 2.7, we can see that all the zeros of the theta functions are simple and are
given by

function Op(v) 0;(v) 0,(v) 03(v)

its zeros  m—+ (n+%) T m+nt m+%+m’ m—+ % + (n+ %) T

2.2 The relation ®% = @‘2t + @3

Let ®; = ©;(0) fori =0,2,3 and ©®} = @/ (0) (this particularity for ®; (v) will be justified in subsequent
sections). We will call these constants the theta constants. Let us now fix arbitrary a,b € C and consider
the function

o) = 9B 0830

O5(v)
Using the identities in (2.7) to make the substitutions v — v+ 1 and v — v+ 7, we check that % is an
elliptic function. We may now choose a fundamental parallelogram IT so that only the zero 5 of @y (v)
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lies inside of it. Since T is neither a zero of ®,(v) nor of ®3(v) we may choose a,b # 0 such that

a@%(%) + b@%(%) = 0. Recall that in the previous section we said that all the zeros of the theta functions
are simple so that at £, » will have a pole of order no more than one. But we have already seen in
Liouville’s theorem’s section, corollary 1.3, that it cannot have a single pole of order one, so it must be
constant by theorem 1.2. Substituting v = 0 and v = 7, respectively, in the relation

O2(v) = ™ Doy(v - 2),
we get
T _mit Tt T it T
@2(5) =e 4 @3(0), and @2(0) —e 4 @3(—5) —e 4 @3(5)
Hence,

T

365(5) +b®%(%) = aB’®3 + bB*®3, where B=¢ ¢ .

For the particular choice of a = —@% and b = ©%, the relation aBz®§ +bB?@3 = 0 is satisfied and thus
h is constant or, in other words, there is some ¢ € C such that

—@%(v)@% + @%(v)@% = c@%(v).

To compute ¢, set v = 1. The function ®, vanishes at this point, yielding ®3(1)®3 = c®3(3). But

2
©(v) = @3(v+3), and from this we easily derive @) = @3(3) and @y(5) = ©3(1). All of this implies
003 = ¢,

and so
@2
c= 0.

Thus
®3(v)03 — ©3(v)®; = B5(v)0y,

and in particular for v = 0 we obtain the desired relation

03 =03 +6}. (2.8)

2.3 Representation of theta functions by infinite products

The numbers m+ 3 + (n+ )7, m,n € Z are the zeros of the function
[oe] 2 X
@3 (V) —_ Z qm ekav'
m—=—oo
Set s = e*™. The substitution v — s sends the zeros of ®;3(v) to the points

. 1 . 1 .
eZm(m—‘rz)eZm(n-i-z)’r _ _q2n+17 where ¢ = P

Let us put these points into two sets:
A= {_q_la_q_3,_q_5>"'}
A :{_ 1 _ 3 _ 5 }
2 q 9y q Y q 3ot

The limit point of A is e while that of A, is 0.
To proceed, we need to briefly recall some results on the convergence of series. Recall the definition of
uniform convergence:
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Definition 2.1. We say that a sequence of functions f; converges uniformly to a function f on a set E
if for any € > 0 there exists some n € N such that | f(x) — fi,(x)| < € forevery m >nand x € E.

Thus, knowing that } ;" , |g?*~!| converges, it is straightforward that the sequence of functions
gn(s) = Y4, |g%*'s| converges uniformly to g(s) = |s| X5, |¢*!|. Moreover, g,(s) is bounded on
every compact subset K C C, so we can guarantee that [T, (1 + g**~1s) converges uniformly on every
compact subset K C C (see Walter Rudin’s Real and complex analysis[4]; theorem 15.4.)

Hence, on every compact subset of C,

ﬁ 1+q2k 1
k=1

is the uniform limit of analytic functions, so 4, is analytic in C (see Complex analysis by Joseph Bak
and Donald J.Newman [5]; theorem 7.6.). It can be seen that its set of zeros if precisely A; (again
theorem 15.4 from Rudin’s Real and complex analysis).
Consider also the function

ﬁ 2k 1 71

k=1

It is clear that h(s) = hi (1), so it is an entire function except at s = 0, and its set of zeros is Ao.

Now consider the function 4(s) = h1(s)hy(s) and let 2(v) = h(e*™). From what we have seen, the set
of zeros of / is that of ®;3(v). We also remark the important fact that, since > # 0 for all v € C, we
avoid the unique pole of / at s = 0 and thus A(v) is entire in C.

The transformation v — v+ 1 leaves the value s = e**” unchanged, so h(v+41) = h(v). On the other
hand, the change of variables v — v+ 7 replaces s with e2#"¢>™* = s4%; hence,

fz(v—i—r):H<1+q2k+1s>n(l+q2k 3 71) H( Vs 1s> (I+q 's™! H(l—i—q%*ls’l)
k=1 =1 1+qs k=1 k=1
L+g s, —1 —27iv],
— h — mvh
gy M0 =g e h0)
Recall that @3(v+ 1) = A(v)®3(v) = ¢ 'e 2™ @;(v), and so the function (?f((v;) is an entire elliptic

function, and therefore a constant as we have seen when proving Liouville’s theorem. Therefore,
— CH<1 +q2k71€27nv)(1 4 q2k71672ﬂ'i\/)' (29)
k=1

We also gather here for future use similar expressions for the rest of the theta functions:

_ CH 2k 1 27':11))(1 _q2k—le—2m’\/) (2'10)

@1 (v) = 2sin(mv)gre [J (1 — ¢**e¥™) (1 — g*e~27) (2.11)
k=1

©,(v) = 2cos(v) q4cH (14 g% ™) (1 + g*e2m) (2.12)

These expressions are easily obtained using that of @3(v) and substituting it in the definition of the other
theta functions, but the calculations are lengthy and not very enlightening.
Now, let us prove that

c:ﬁ(l—qz"). (2.13)

k=1
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Consider the sequence of functions

n

Fn(s):H(l_qZkfls)(l 2k—1 71 Z ak

k=1 k=—n
This sequence converges uniformly to the function

d _ 1 & 2
H 2k l q2k 1 l) 7@)0( ) . Z (—l)qu Sk.

k=1 k=—c0

Comparing the coefficients of degree zero in s we get

1 .
o= nh_rilo ap(n).
For every n € N, observing the coefficient of s” in the product [Tf_;(1 — ¢*~1s)(1 — g*~1s71)

conclude that ,

an(n) = (—1)"g 30 = (1,
The last equality is obtained by noticing that
2n(2n+1) _nn+1) ,

1+3+...+(2n—1):(1+2+...+2n)—(2+4+...+2n): > -2 > =n".
Moreover,
Fn(qzs) B (1_q2n+1s)(1_q71s71) B 1_q2n+ls
Fu(s) — (I—gs)(1—¢g* 1571~ gs—g™’
and so
(g5 —q Z a(n Prsk = —(1— g+l Z ax(n
k=—n k=—n
ie.,
Z ak n+k Z ak 2n+1_q2k+1)sk+1.
k=—n k=—n

Now, if we compare the coefficients for s in both sums we get

ai(n)(1—g*"Y),

ag(n) = P gl
comparing the coefficients for s>
( ) . ag(l’l)(l _qZ(nJrZ)) .
A= T e T 3

and so on. Substituting these equations recursively we eventually reach the expression

T (1 —g?"Hh) s i (1—g*" )
HZ;(I)(CIZHH _ q2k+1) Hz;é<q2k+1 _ q2n+1)

ap(n) = ay(n)

we

where we have canceled the term (—1)" in a,(n) = (—1)"¢"" by changing the sign of every factor in the

denominator.
We can rewrite this expression in a more convenient way. To do so, we need only observe that

H(q2k+1 _q2n+1) — (ql _q2n+1>(q3 _q2n+1) o (anfl _q2n+1)
k=0

_ q1+3+.“+(2n71)(1 o q2n)(1 o q2n72) o (1 _q2)

n
2
=q" [J(1—4¢*)
k=1
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hence - o
n 1— n-+ n 1— n+
ap(n) = qn2 Hle( q ) _ Hk:nl( q )
Iho(g¥ =g+ I (1—-¢%)
To conclude, we are now going to prove that lim,, .. [T/_, (1 —g>" %)) = 1.
First, let |g|> = o < 1. Since |¢*"*0) < |¢|*" = o, we get

1_al’l< ll_qz(n+k)| < 1+a11’

and so .
(1 . an)n < H|1 _q2(n+k)‘ < (1_+_an)n'
k=1

Taking logarithms, this yields

n
nin(1 —a") <In <H\1 —q2<"+’<>> <nln(1+a").
k=1

Considering the well-known facts from analysis that In(1 + x) ~ and lim,,_,.nx" = 0 when [x| < 1,
X—

we conclude
lim nln(1+ ") = 0;

n—ro0
hence

n
. _ 2(n+k) —
e fn-ov) -

ie. .
: _ 2(n+k)|
’}lmkl Il\l q |=1.

We have proved converge in modulus, but we will need some further consideration to prove convergence.
Let us then consider the argument function arg : C — [—7, 7).
It can be seen that the following two inequalities hold:

" "
—arctan | ——— | < arg(1 —¢") <arctan [ ——— | .
(\/1 — lgl> V1=lgl”

The idea is that the problem of maximizing arg(1 — ¢") restricted to |¢| = 1 is equivalent to maximizing
m over a circle of radius 1 centered at (1,0), and the second problem can be easily solved with basic
analysis techniques using derivatives.

Now, since |g| < 1, Y5 |¢|" converges. Moreover, arctan(x) ~ x when x — 0 and lim,,_,..(1—|g[*") =1,
SO

and the limit test for series guarantees the convergence of ¥’ arctan | —-4" .
g 4 Yili ( Vi-laP
Now, for every n € N let o, = arg(1 —¢"). The previous inequality implies that the series Y5, 0%
converges, and so does in particular the subseries ) ;> | Q.
Letnow B, =Y}, O (n1k)- It is a basic fact that the convergence of )" ap implies
lim 3, = 0.

n—oo

On the other hand
n
arg (H 1— q2("+k)> =B, +n' (27)

k=1
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for some appropriate n’ € Z.

In other words,
n

H(l _qZ(n+k)) _

k=1

- (1 _q2(n+k))
k=1

(cos(Bn) + isin(B)),

and since f3, tends to zero while the product converges in modulus, we have

n n
. _ 2(n+k)) N
fim [T (14 [,}52[_10
After this long detour, going back to ¢ we simply have

)=ﬁ(1—q2")-

k=1

1 — g? k) ‘] (cos(0) +isin(0)) = 1.

. 1
¢ = lim
n— ao(n

2.4 The relation ® = 710,0,0;

Formulas 2.9-2.12 imply that

@) = B (0) = cf[(l —g ) (2.14)
k=1
@, = @,(0) zzq%cﬁ(1+q2")2 (2.15)
k=1
03 =03(0)=c ] (1+4g% 12 (2.16)
k=1
@, = @)(0) zznq%cﬁ(l — g2 (2.17)
k=1

The last equation needs some justification. Using formula 2.11, we get

1 i j
26i S g 2k ,2miv 1— 2k ,—2miv
0}(0) = tim 20 _ j, 28i0(@)gellisy (1 = g7e™) (1 g7 )
v—0 Vv v—0 v
2sin(m = —
:hqu%cH(l—qZk)z:27[qicn(l—q2k)2
v—0 1% k=1 k=1

where in the last equality we have used the equivalence sinx %
X—

. oo 1 .
Now, since [T;_; (1 — qzk)2 = 2, we have 0 =2mg 3. Therefore, the equation

/1 = 71'@0@2@3
will follow from N
[T - D+ +* 1) =1. (2.18)
k=1
This is easy to prove. Indeed, notice that
- 21y T 2k = k
[Ta- DT -¢*) =TT -4,
k=1 k=1 k=1

and taking limits
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ie.

oo oo oo oo

[Ta-H=TI0-M 11 - "=

k=1 k=1 k=1 k
On the other hand, it is straightforward that

[Ta+70+aH =[]0+,

1

(1-¢"(1-¢’

k)fl

k=1 k=1
and thus
[Ta-Ha+a0+4 =01 - 0+ =T -1 - " =1
k=1 k=1 k=1

as we wanted.

2.5 Dedekind’s n-function and the functions f, 11, f>.

Let

)=at (=),

This function is called Dedekind’s eta function. Let us also define the three following functions:

f(r)=¢ % f[ (1+q2k ‘),

k=1
fl(T)Zq‘Z“k]_[l<1 qz"‘l),
() =V2gt I (1+4%).
k=1

Remember that ¢ = g; = €/*7, so these functions really depend on .

Together, these functions allow us to express the theta constants as

The relation ®% = @5 + ©F implies that

We have already seen that

k=1
and so
ffif=v2.
The functions f, f1, f> can be expressed in terms of 1 as follows:
e~ 247’ (‘H—l)
f(7) = EETORE
_n@).
f](T) - n(T) 4
_ AN27)
2=V

The necessary calculations are simple comprobations and will be omitted here.

(2.19)

(2.20)

2.21)



Chapter 3

The modular equation

In this chapter we are going to study the behaviour of the theta functions, Dedekind’s 1n-function and
f, f1, f> under several changes of variables of 7. This study will prompt the definition of some new
functions u(7),v.(7), c = 0,1,2,3,4,00; that will satisfy the modular equation

Vo — 1PV +4u+ub =0,

so that given some 7 and considering u(7) as a parameter for the previous equation, its six roots on v
are given by v=v.,¢=0,1,2,3,4,c0.
We begin considering transformations of the theta functions.

3.1 Transformations of theta functions induced by transformations of 7

We have already seen in the first section how the theta functions are transformed by the changes of
variable v — v+ 1 and v — v+ 7. But if we recall the definition of the theta functions, they are in fact
functions of two variables, namely v and 7; that is, ®;(v) = @;(v | T), although we assumed 7 to be fixed
throughout the previous sections. We are now going to check that the changes of variable T — 741 and
T— —% also induce simple transformations of the theta functions. For 7 — 7+ 1 it is quite easy, since
g = "™ is transformed to ¢/ = (*+1) = "%/ — _4 and so using formulas 2.1-2.4 we get:

Qv |[T+1)=05(v|1), O3(v|T+1)=0p(v]|7) 3.1
O(v|T+1)=ei0;(v|7) fori=1,2 )

For the change of variable 7 — —%, however, we have to get more creative. For the sake of clarity, let
7' = —1 and define
2 03 (‘L"v | ‘L'/)

v :eim:’v )

Using 2.6 we check that g(v+1) = g(v) and g(v+ 1) = g(v), so that g(v) is a doubly periodic function.
The zeros of the denominator are of the form (m + %)T +(n+ %) and the zeros of the numerator are
determined by t'v = (m+ )7’ + (n+ 3), and multiplying both sides by —7 # 0 we get

1 1
v=(m+3) = (n+3)7,

so that the zeros of the numerator coincide with those of the denominator, and it is clear that they have
the same multiplicity. Therefore, g(v) is an entire elliptic function and so it is a constant by virtue of
Liouville’s theorem, g(v) = A € C. We now have

O3('v | 7) = Ae TV O3 (v | 1), 3.2)

13
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and recalling how the rest of the theta functions are related to ®3(v) in 2.7, by replacing v consecutively
with v+ %,v—i— v+ % in 3.2 we get

0(T'v| T') = Ae ™ @y (v | 1), (3.3)
Oy(Tv| T') = Ae TV @y (v | 1), (3.4)
0,(tv| 7) = ide *TV O, (v| T), (3.5)

Let us calculate formula 3.3 as an example. From 2.7 we have
T (T
O (v— E) = @2(v)e’”(v_1>,
and substituting v — v+ 7

03 (V—|— g) = @, (v+ T)ein(v+%r) _ @2(V)e—zmve—inrein(wgr) _ @2(\/)67’.”(‘&%),

where we have used 2.6. Making now the substitution v — v+ % in 3.2 yields
/ T 7im"(v+l)2 1 —int? —int (v+y)
CH ‘Ev+§|r = Ae 1) @3 v+§]‘t = Ae e )@ (v),

where in the last equality we used the fact that @3 (v + %) =0(v).

Finally, using equation ©3 (v+ %) = ®2(v)e*"”(v+§) to substitute @3 (‘c’ v+ %/ | v/ ) we obtain

e_m<wl+%)®2(v’l'/ | ’L'/) :Aefim/vze—zm’(w-})@0(‘))’

and after cancelling e 17 ("13) we get 3.3.

Now, taking the product of equations 3.2-3.4 and setting v = 0, we get
0,(0]7)03(0] 7)0(0] 7') = A%@,(0| 7)®3(0 | 7)O(0 | 7), (3.6)
while taking the derivative of 3.5 at v = 0 yields
70,(0| ') =iA@®| (0] 7). (3.7

Recall that in section 2.4 we saw @’1 = 100,03, which together with equations 3.6 and 3.7 implies
A% = —it, and so

A=+V-it,
and thus
03(0]7") = £v/—i105(0 | 7). (3.8)

Now notice that if 7 is purely imaginary, ¢ = ¢** >0 and so @3(0 | ) = Yor_ ., ¢"™ > 0. Since T is
purely imaginary if and only if —]; = 7/ is purely imaginary, evaluating 3.8 at T = i, for example, we get

A=+V—it;

and in particular

s (0 | —i> — V=i705(0| 7). (3.9)
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3.2 Transformations of Dedekind’s n-function and of f, f, />
Recall the identity we saw in section 2.5
21’ (1) = ©1(0 ] 7),

where the derivative is taken with respect to v. From the relation @} (0 | 7+ 1) = e @) (0] 7) we get

3

i
1

¥

n(t+1)=enn(7). (3.10)

Substituting A = v/—i7 in 3.7 we get
1 :
o1 (01-1) = (V=) 600 )

hence

n <—i) = V=it (7). (3.11)

Now, equations 2.19-2.21 allow us to easily obtain rules of transformation for f, f1, f> by mere substi-
tution:

fr+1)=e % fi(1), 3.12)
filt+1)=e"% f(1), (3.13)
Hlt+1)=el (1), (3.14)
fi —i) = fa(7), (3.15)
f2 <—i> = f1(7). (3.16)

For f(— %), however, we cannot obtain a simple transformation law using the same method. Neverthe-

less, if we use the fact that
F(0)fi()fa(t) =V2

and make the substitution 7 — —%, using 3.15 and 3.16, we get

£(-3)aenm =2

and so |
7(-3) -1 (317
To conclude this section, we are going to prove the relation
fof (1) =va (3.18)
t+1) 7 '

First, notice that equations 2.20 and 2.21 imply f;(27)f>(t) = v/2. On the other hand, substituting by
27 — 1 in equation 3.13 we get

fil2t) =e B f2r—1);
while combining 3.15 and 3.12 yields

f(5) = Al) —e%’if<1 J).
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Therefore
paens(1-1) -2

-1 50 the previous relation can be rewritten as

and setting x =27 — 1, then 1 — % becomes {7,

f(r)f(T”) ~Va

T+1

Notice that Im(7) > 0 if and only if Im(27 — 1) > 0, so there is no problem with the domain of f.

3.3 Transformations of order 5

Definition 3.1. We will call Mobius transformation or fractional linear transformation any transforma-
tion given by
at+b
e +d’

where a,b,c,d € C are constants.

Throughout the following sections, we will asign to every matrix ( ? b > the Mobius transfor-

d
at+b

mation T — praw b

The transformations 7 +— 7+ 1 and 7 — % correspond then to the matrices 7' = ( (1) i > and S =

0 — : : . . . . . .
< 10 ), respectively. Since there will be no possible confusion with any other operation, we will
. b .
denote the transformation 7 — ‘C‘;jr’fl by T— AT, where A = “ > . This has the advantage that the
c d

composition of transformations corresponds with the transformation by the product matrix, that is:
A(B7t) = (AB)1, for any matrices A,B € C*.

This is easily checked: let

so that

a(?//;if,:) +b _ ad't+ab' +bc' T+ bd' _ (ad' +bc)t+ab' +d'b _ (AB)r
o(SLY+d  cd Tl +ddt+dd (cd +de)T+cb +dd '

A(Bt) =

We are now going to consider the group SL,(Z) = {A = “ Z > | detA = ad — bc = 1}. It is quite
easy to prove that it is in fact a group under multiplication just by using the properties of determinants
and the inversion formula (A) ! = 1radj(A).

We are now going to state a result about the group SL»(7Z) that will prove to be very useful for our
purposes:

Theorem 3.1. The group SLy(7Z) is generated by the elements T = ( (1) i ) and S = ( (l) 51 >

Proof. See Serre’s A course in arithmetic [6], chapter 7 section 1. ]
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We now observe that, under our new notation, equations (3.10) and (3.11) become

Sl§

n(Tt)=e=n(1),
n(st) = v—itn().

Therefore, the previous theorem allows us to write (A7) in terms of 1(7) for any A € SLy(Z). We
can do the same for f(At), but with the slight incovenience that since f(7+ 1) = e~ % f;(1) we will

also need to consider the functions f;(7) and f>(7). Let now P = f z be an integer matrix
. . . . . o _ » .
with determinant 5 and consider the relatively prime numbers ¢ = A () d= — el ()" They satisfy

cp +dr = 0 and, moreover, since they are relatively prime we may find integers a and b such that
ad —bc = 1.Thus

a b a b p g\ _ (P ¢
(c d)ESLZ(Z)’and<c d>(r s><0 s )7
with p’s’ = 5. We also note the fact that
1 n p g\ _(p gtns
0 1 0 s /) \0 s '
o z>with—;<q<§.

We can also change the sign of any matrix P since < -1 0

therefore we can reduce P to the form (

0 ! 1 € SLy(Z), so we may assume p,s > 0.
This together with the fact that 5 is prime leaves us with only two possibilities: either p =1 and s =5
orp=5ands=1.

Thus, any integer matrix P with determinant 5 can be reduced to one of the following forms:

50 10 1 +1 1 +2

The purpose of this is to consider the functions f(P.7) and study their behaviour under changes of
parameter of the form 7 — AT, A € SL,(Z). Since they correspond to the right multiplication of P, by A,
we may reduce P.A to one of the matrices P;, d =0,1,2,3,4, 00, allowing us to express f(P.T) in terms
of f(Pd T) .
To make calculations easier, however, one doesn’t exactly study the functions f(P.7). Instead, one
defines

T+

) =1 (F55) =023
() = £ (59),

where ¢’ is chosen such that ¢’ =0 (mod 48) and ¢’ = ¢ (mod 5). We will consider the three transfor-
mations T — T+2,T +— —% and T — %}

The reason why it is more convenient to study these functions as well as all the calculations can be
found in Prasolov and Soloviev’s Elliptic functions and elliptic integrals [1], sections 7.10 to 7.12; but

here we will just recollect the results in the following table:

u Voo Vo V1 V2 V3 V4
THTH2 €u €ve Evy EVy  Ev4 EVy €V 119
T —% u V0 Voo V4 1%) V3 V1 (.19)
=1 V2 V2 V2 V2 V2 V2 2
T
T+1 u Vi Vg Vo vy V3 Voo

i
where € = e 12,
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3.4 Functions invariant under certain transformations of 7

In the next section we will finally derive the modular equation, but to do so we need one more theoretical
result whose proof would unfortunately take us too long.

Let
12

2 B o _ 24 b _ —24
+f24(17) =g IH (1+q2k 1) +212qH (1+q2k 1) _ 321)
k=1 k=1

Recall the relations 3.12, 3.13, 3.17 and 3.18. Combining the first two relations one obtains f(7 +2) =
e nf(t 7) and so together With the other two relations we see that F () is invariant under the changes of
parameter T — T+2,7T — —— and T— Actually, a much stronger result holds:

F(t) = (1)

1:+1
Theorem 3.2. Let g(7) be a meromorphlcfunction defined in the upper half plane H = {T eC|Im ‘L’ >
0}, g: H — C; and such that it is invariant under the transformations T — T+2,T — —= and T— 1 +1
If under the change of parameter q = ¢'™* the resulting function §(q) = g (log( )> is meromorphlc then
g(7) = R(F (7)) where R is some rational function; R € C (X).
In fact, a bit more can be said about this.

The equation F(7) = o is solvable for any a € C. Therefore, if R(F(7)) is finite for every T with
F(7) # oo, then R is a polynomial, because otherwise it would have a non-constant denominator with a

zero at some point oo € C and solving F(7) = oo we would have R(F(7)) = c. A full discussion about
this section can be found in Elliptic functions and elliptic integrals [1], sections 7.16 to 7.20.

3.5 Deriving the modular equation

With the help of 3.19 we find that the functions uv, and u/v. are transformed by the following laws:

uy L

. v

_m iy,

T—>T+2 e 2uy es
Tl—>T—% uy -
_2 _v

T'_>’L'+l uy u

In this table we understand that, although the subscript ¢ of v does not appear explicitly, it undergoes

the same transformation as in 3.19. For example, the transformation 7 — —% sends uve. to uvy.

Let us consider the functions

B .
(l/lv(, ) (MVC ) 2
Their corresponding transformation table is given by:
A B
T—T + 2 -A -B
T——- A B

T < +1 —-A -B
where the subscript changes in the same fashion as in the previous the table. Then, the function

H(AC_BC)27 C20717273747°°

c

does not vary under any of the previous transformations of 7.
1 .
Recall that f(7) = ¢ 2 [T, (1 +¢* 1) with ¢ := g(t) = e~/"". Thus, letting

(1+¢*)

:3

p(q) =
k

I
—_
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we may write f(7) = ¢~ 2 p(q) and £(57) = q_%p(qS). This will allow us to write Aw(7) and B(T) in
a more convenient form.

Aw(T) = < f(7) >3 <f(57)>3 . f(’C)6-|-f(5’L')6 _ qu%p(q)6—|-q*%p(q5)6

sy (7 f(2)f(57)° g% p(9)* (")}
_ a2 p(q)°+q 2 p(q°)°
p(@)p(e®)®
4 C(f@rG)) -4 g (p(@)p(d®) -4

Bw(7) = (f(7)£(57))* -

(f(0)f(50)*  (f(r)f(57)) a7 (p(q)p(g®))?

_ a2 (plg)p(@))* —4q°
(pla)p(@)*

In the following discussion, we will change our point of view for convenience and consider the functions
A and B.. as functions of g or of T depending on what we are trying to prove.

We know that p(g) is analytic inside the unit disk, and it is inmediate that p(0) = 1. Hence, we may
find a neighborhood Uy of 0 in wich p(g) and p(g’) are analytic and non-zero. Using the previously
obtained expressions for A« (gq) and B..(q), we see that in said neighborhood

ap(q)® + p(q®)® (p(@)p(2))* —4q
p(@)*p(4®)? (r(9)p(g°))?

are also analytic. Evaluating at ¢ = 0 we see that both functions equal 1.
The purpose of this is to use Taylor’s theorem to write

7*Aw(q) = ,and ¢*B..(q) =

1 1
q?Ax(q) = 1401(q), 42 B=(q) = 1 + 02(q);

where 0;(¢q) and 0;(g) denote as usual little oes of ¢ when ¢ — 0. Thus we have

lim Aw(g) — Bu(g) = limg *(01(q) — 02(q)) = lim 21D =220) _ ¢
q—0 q—0 q—0 q2

i.e., Aw(q) — Bo(g) vanishes at ¢ = 0 or, equivalently, when Im(t) — oo (since ¢ = ¢*%). But this
also proves that A..(q) — B(g) doesn’t have an essential singularity at ¢ = 0, in fact it doesn’t have a
singularity at all, and moreover it is finite for all g.

This is in fact true for all A.(7) — B.(7). Indeed, ¢’ =0 (mod 48) while equations 3.12 and 3.13

combined yield f(7 4 2) = e~ 12 f(1). Therefore, the following is straightforward:
u(5t—c") = £(57) = voo(7).

Also, o
57—
ve(5T—¢) = f <TC+C>
5
and therefore
Ac(57— ) =Au(1), B.(5T—(') = Bu(7);

and because Im(7) — oo if and only if Im(57 — ¢’) — oo, it is also true that A.(g) — B(g) vanishes at
g =0 (i.e., when Im(7) — o). Therefore, [].(A. — B.)?> doesn’t have any singularities and theorem 3.2
guarantees that

H(AC —B.)> =R(F (1)), R some rational function.

c

Furthermore, because [].(A. — B.)? is finite for every 7, we may conclude that R is in fact a polynomial.
Using this fact, we can prove that [].(A. — B.)? is constant.
Indeed, we know that as Im(7) — oo, [].(A. — B.)* — 0. Let then

T(t) =ti,
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and notice that g(¢) = ") = ¢~ 22, () and therefore

@) =g () TT(1+¢* 1 (0)] =52 oo,

But then
212
t—r+-oo

PO = PG00+ gy | =

so as t — oo, F(7(t)) tends to infinity in norm while R(F(z(¢))) — 0, and it is a basic fact from
algebra that then R has to be a constant since we already know it is a polynomial. Hence, [],.(A. — B.)?
is constantly equal to zero and for some ¢ = 0,1,2,3,4,00 A.(7) — B.(7) = 0 for all 7, but then all
A.(7) — B.(7) are equal to zero because of equalities

Ac(57— ) =Au(1), B.(5T—(') = Bu(7);

This result can be neatly written as follows:
u\3 vy 3 ) 4
(5)+ () = -

Vo — 2V +duv+ub = 0. (3.20)

or equivalently,

We have finally arrived to the modular equation, the keystone for solving the general quintic equation.
What’s interesting about this equation is that fixing u(7) = f(7) we may consider it as function of v, in
wich case its six roots turn out to be v =v.(7) forc =0,1,2,3,4,c0.

3.6 Solving quintic equations

In order to get our hands on the quintic, we need to transform the modular equation into something of
degree 5. To do so, let

(Voo - Vc) (VC-H — Ve—1 ) (Vc+2 - Vc—2)
V5u?

(the subscripts are understood modulo 5, except of course when it is ). Again we obtain one (last)
table:

We = , forc=0,1,2,3,4.

wo wi wo w3 N
T—T+2 —wp —W3 —W4q4 —Wy —W]
| (3.22)
T— —= wo wp w1 W4 w3
T— — —Wo —W3 —W4q4 —W) —Wp

The transformations T —+ 7+ 2 and 7 — —% are straightforward. For 7 — % we need one extra

observation.
Recall the modular equation, 3.20. We have said that for a fixed 7 and regarded as a polynomial in v,
its six roots are given by the v.(7). Therefore, since u is the independent term Vieta’s theorem implies

that
[Tve =,

With this in mind, let’s carry out the computations for w; as an example:

(Voo —v1)(v2 —vp) (V3 — v4) l(vw v1>(vz V0)<V3 V4>

u u

u u

u u

Wl: = —

(v 5) 1\653_14 u_\f o u\ (v =) (va—va) (v —veo)
BV (Vo V1> <V4 V2> (Voo V3> V5TTve

_ =) —va) (s —ver)

V5u3
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The rest are obtained in the same manner.
Consider now the following polynomial:

4
Hw wi) =W —|—a1w —i—azw —i—a3w +asw+as. (3.23)
i=0

Recalling how the coefﬁcients ofa polynomial may be expressed in terms of its roots, we easily conclude
from the table 3.22 that a1 ,an, a%, a4 and a5 are invariant under the changes T— 7+2, T+— —— and T—
= +1 Also, the way we have defined the w;’s, it is clear that the coefficients of this polyn0m1a1 are finite
whenever u # o, 0. Since these are the only possible values of u for wich u?* +2'24=2* = F(t) is infinite,
the last observation from section 3.4 allows us to conclude that the a;‘s are polynomials on F(7) :=
u? 21272 = g7 I, (1 +g?k! )24 +229T1, (1 + g2 ) 2 We have already discussed how
the infinite products that appear are analytic inside the unit disk, so that there is only one pole of order
1 given by the factor ¢! of ¢~ ' [T, (14 ¢**~!)?*. The upshot of this observation is that a polynomial
in ¢ will have degree n if and only if it has a pole of order n at g = 0.

With this in mind, one may calculate the smallest appearing power of g for each of the g;’s to find out
their degrees. To clarify what we mean exactly by "smallest appearing power of ¢", recall that

f(t)=q = ﬁ(1+q2’<fl).

k=1

The infinite product, as we have just said, is analytic inside the unit disk, which allows us to express it

as an infinite series . -
[0+ =} ong"
k=1 n=0

so that

f(f)Zq‘zl‘*H 1+¢*7) Zaq”‘ﬂ
k=1

and since oy = 1 we can say that the smallest appearing power of ¢ is q‘i. This will make our work

T+’
5

to know if they have a pole at ¢ = 0, and if so its order, just by looking at the smallest appearing powers
of g in the functions v (7).

much easier, since the coefficients a; are products of the functions v.(7) = f ( ), so we will be able

. . . . i(z+) \ 24 b
It is easy to see that for ¢ # o the first term in the expansion of v(7) is (ejr s ) = (eT) Y m,
while for ¢ = eo it is q*25*4.

Letting o = e*%, it can be easily checked that e~ = af just by using the fact that ¢/ =0 (mod 48).
Hence, the first term in the expansion of w, is

g g™ (et — =) g™ (o —a?)

\6 *é :z’qi%a
q

22 ( y3 -1 3
o= —o—a o :
where 4 = % 7 +o) o, since

127 47 2r 4w
@ —o—a '+ a3 =2(cos —= 4 cos — ) = 2(cos — +cos — ) = /5.
5 5 5 5
Because in the expression of a; in terms of the w;’s there appears sums of products of s different roots w;,
the expansion of a, begins with the term q*%. Thus, the functions a%, ay, a%, ay4 are constant while a% isa
linear polynomial of u?* +2'2u=2% = g=! 4+ ... because its expansion begins with (a>a*a’a®)?q~! =

g~ '. In both expressions g~ appears with coefficient 1, so

2 24 212
As = +—+C.
s=u 24
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We are now going to calculate the value of the constants C,a;,a;,a3,a4, and for this we need only
calculate the value of the v.’s for one 7.

For convenience, let T = i. Since —% =1, by 3.15 we have

(@) = f2(9).

Moreover, recalling their expressions as infinite products of ¢ we have that for a purely imaginary 7,
f.f1, and f> are real and positive. Therefore, relations f8 = fl8 + fz8 and ff1f» = /2 together with
fii) = fa(i) imply that f = V/2.

Now, since (2—i)(2+i) =5, &2 = —ziﬂ. and so
|+ 4 j—2 i | —2 i T g

Similarly, v;(i) = iv/2.
But these are two roots of the modular equation when 7 = i, which takes the form

V-V +adPv4ab = 0,

where a = v/2. Dividing by (v —v,)(v —v3) = v* — a? yields

W—a? + a*? + av + at

This equation turns out to have two double roots. Indeed, assume that for some @, 8 € C we have

v4—a5v3+a2v2—|—a7v+a4 — (V—(X)z(v—ﬁ)z.

Comparing coefficients, this will happen if and only if

atB=a
ap = —d’.

But these are too the equations for the roots of v> — av — a?, which we can easily solve to obtain

~a(l+ \6)

==
B a(l—+/5)

i —
So, the rest of the v;’s must assume either the value ¢ or 3. Knowing this, we can skip a lot of compu-
tations: observe that | )

. . l .
veo(i) = f(50) = f(=5;) = f(5) = voli).
We have also mentioned that for purely imaginary values of 7, f(7) assumes real and positive values,
so that necessarily
Veo(i) = vo(i) =

since B < 0 < a. The remaining values are necessarily the other two roots of the modular equation, i.e.,
vi(i) = wa(i) = B.
With this at hand, it is easy to calculate the corresponding w;’s for T = i. They are
wo=0,wi =wr =iV5, w3 =wy= —i\fS,
and thus the corresponding fifth degree polynomial is

wlw —iV5) (w4 iV5)2 = w(w? +5)2.
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This implies that

a3(i) =0,
and so 5 512
C= <u (z)+u24(l,)> =-20-20=_20"
Hence

212 26 2
2(: 24 7 12
as(i)=u +ﬁ_2 :<u —u12> ,

212
“5=i< +u>

Recalling that As = wowiwowswy and u(7) = q*ﬂ [T, (1+ ¢**1) it is easily seen that

and therefore

.1 .1
limgZas = —limq2u =1,
q—0 q—0
so that .
2
12
as=—u "+ —.
ul2

Thus, equation 3.23 takes the form
w(w? 4+5)% = u!? — 64u~12,
Using relations f8 = fl8 —|—f28 and ffi f» = /2 one can check that

o2 ?_ﬂ=M_U%ﬁf
12 - f2 '

ul2 - f

Thus, . .
_ AEO-5H(0
VO = +5)
Now, setting

A Ak
)= Fwe) +3)

we have

=5
7
Now, given a quintic equation of the form y* + 5y = a, a € C; if we can find some 7 such that
A -£)
f ()
then we can easily find the roots of y° + 5y = a by first calculting all the v.(7), then the w,(7) and finally

the y,(7), which will be the roots of y° + 5y = a.
In fact, we can simplify 3.24 a bit. Squaring it, we get

1°(0)+£°(0) =2 (1) 3 () = &’ £(7)
Squaring the relation 8 = 3+ £3 one gets £1° = f16 + £l —|—2f18f28. This together with ffif> = V2

yields f'°(1) — f86(41) = a?f*(1), and multiplying by f8(7) gives

Y 45y =y(y*+5) =y(w*+5) =

=a, (3.24)

) —a’ (1)~ 64 =0,

which is a quadratic equation for r = f'?(7). For a full discussion on the solvability of equation 3.24,
see Elliptic functions and elliptic integrals by Prasolov and Soloviev [1],sections 7.16 to 7.18.






Chapter 4

The Bring-Jerrard form of a quintic
equation

For completeness, we are going to briefly discuss how the general quintic
x5+px4+qx3+rx2+sx+t20 *)

can be reduced to the Bring-Jerrard form

X 4x+u=0.
This is basically done in two steps. First, for a suitable quadratic transformation

y=x*>+ax+b,
the corresponding values of y for each root of (*) satisfy a quintic equation of the form

YA +Ayy+As =0.

This is called the principal quintic form.

The principal quintic can in turn be simplified to the form
2+Biz+B,=0
by a quartic transformation
b4 :y4+ay3 +by2+cy+d.

L_7 transforms the previous equation into

Finally, the scaling { = 5
&C+¢+u=0.
To begin, we first need one definition:

Definition 4.1. Given two polynomials p(x) = ag+ajx+...+ax" and g(x) = bo+bix+ ...+ bx"
over a commutative ring R, we will call the resultant of p and ¢, and denote it by Res(p(x),g(x)), the
following determinant:

ap O 0 by O 0

ap ap 0 by by 0

a ap 0 by b 0

ao : : b()

Res(p(x),q(x)) = ) )

anp ap—1 - bm b

0 a, R 0 by,

Do ant 1 o b

25
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In the previous matrix it was assumed for simplicity that n = m, but the way to construct it for any
n,m is straightforward considering that the resulting matrix needs to be (n+m) x (n+m).

The importance of the resultant for our purposes is that, given two bivariate polynomials p(x,y),g(x,y) €
C[X,Y], if one considers them as polynomials p(x),g(x) in X over the ring C[Y], the resultant Res(p(x),g(x))
is a polynomial in ¥ whose roots are precisely the y-coordinates of the common roots of p(x,y) and
q(x,y). For simplicity, one usually denotes the resultant in the variable X as

Resy(p(x,y),4(x,y)) :=Res(p(x),q(x))

Knowing this, let us proceed with the first transformation. Let
px,y) = p(x) =x +px* + x> + 1 +sx+1 =0
and
q(x,y) =x*+ax+b—y.
Notice that solving p(x) and then calculating y from the Tschirnhausen transformation y = x> +ax + b
is the same as finding the y-coordinates of the common roots of p(x,y) and g(x,y).
Hence, we consider
Res,(p(x,)),4(x,y)) =¥ +c1y* + 2y’ + e3> +cay + cs,

where

1= —p2+2q—|—pa—5b,

¢y = q* —2pr+2s — pga+3ra+ qa® +4p°b — 8qb — 4pab + 10b*,
(The calculations for this are quite tedious to do by hand. In wolframalpha.com, one can use the com-
mand "Collect[Resultant[x’ + px* + gx® +rx? +sx+1, y — (x> + ax+b), x],y]" and check the coefficients
for y* and y?).

One then solves for b in ¢; = 0 in terms of a and substitutes in ¢, to solve ¢; = 0 as a quadratic polyno-
mial in a.

For the final step, consider the quintic equation
y5+uy2+vy+w: 0
together with the quartic Tschirnhausen transformation
2=y +py+ g +ry+s.
Using resultants as before yields a quintic equation for z:
O+ dit + o+ s+ diz+ds =0,

where

di = —5s+3pu+4v,

dy = 105* — 12psu+ 3p*u® — 3qu® +2¢°v — 165v + 5puv + 6> + 5pgw + r(3qu+ 4pv + 5w),

d3 = e3r’ +ex+e1r + e,

with e3, ey, e; some polynomials in p, g, s.
The expressions we have chosen for d, and d3 reveal that r is going to have a special role. Indeed, one
first solves

3qu+4pv+5w=0

and obtains g = w (where u # 0, for otherwise the quintic would already be in Bring-Jerrard

form). Then, one finds p from d; = 0 and substitutes the obtained values for p and ¢ in d;, so that
d, = 0 can be solved as a quadratic in s. Finally, one then solves dz = 0 as a cubic equation in r.
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