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Abstract

Todo matemático conoce el resultado de Galois sobre la irresolubilidad por radicales de los polinomios
de grado quinto, redactado en 1831 y famósamente publicado en 1846 de forma póstuma. Si tenemos
en cuenta la cantidad de intentos infructuosos que hicieron falta por parte de grandes matemáticos hasta
alcanzar este resultado, sorprende la celeridad con que Hermite publicó en 1859, en un libro titutalado
"Sur la résolution de l’equation du cinquième degré", un método para resolver cualquier ecuación quín-
tica recurriendo a ciertas propiedades algebráicas de las funciones elípticas. En este trabajo se explorará
ese método, pero el texto al que nos ceñirémos principalmente no será el de Hermite, sino al de los
matemáticos Viktor Prasolov y Yuri Solovyev "Elliptic functions and elliptic integrals", publicado en
1997.
Las funciones elípticas son funciones complejas f : C→ C doblemente periódicas, i.e., funciones tales
que existen Ω1,Ω2 ∈C para los cuales f (z+Ωi) = f (z), i = 1,2, de forma que Ω1 y Ω2 son linealmente
independientes si se consideran como vectores en R2.

Puesto que el desarrollo necesario para estudiar la conexión entre funciones elípticas y ecuaciones
quínticas requiere muchos cálculos bastante onerosos, se corre el riesgo de perder de vista el objetivo fi-
nal inmersos en cuentas aparentemente innecesarias. Por ello, dejaré aquí un breve esquema del camino
a seguir.
Primero, comenzaremos definiendo las funciones theta Θi(v|τ) para i = 0,1,2,3; donde v,τ ∈ C y
Im(τ)> 0. Estas funciones se expresan mediante series de potencias de la siguiente forma:

Θ0(v|τ) =
∞

∑
m=−∞

(−1)mqm2
e2πimv,

Θ1(v|τ) = i
∞

∑
m=−∞

(−1)mq(m− 1
2)

2

eπi(2m−1)v,

Θ2(v|τ) =
∞

∑
m=−∞

q(m−
1
2 )

2
eπi(2m−1)v,

Θ3(v|τ) =
∞

∑
m=−∞

qm2
e2πimv;

donde q := q(τ) = eiπτ .
Las funciones theta no son doblemente periódicas en v, pero casi. Todas ellas se comportan de manera
bastante simple bajo los cambios de variable v 7→ v+1 y v 7→ v+ τ . Por ejemplo, para Θ3(v|τ) se tiene

Θ3(v+1 | τ) = Θ3(v | τ),Θ3(v+ τ|τ) = q−1e−2πiv
Θ3(v|τ).

Esta "casi" periodicidad nos permite considerar cocientes de funciones theta que sí serán doblemente
periódicos, y usando propiedas generales de las funciones doblemente periódicas hallaremos informa-
ción muy útil de las funciones theta.
Eventualmente llegaremos a obtener una expresión de las funciones theta como productos infinitos, lo
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iv Abstract

que motivará la definición de las siguientes funciones:

η(τ) = q
1
2

∞

∏
k=1

(1−q2k),

f (τ) = q−
1

24

∞

∏
k=1

(1+q2k−1),

f1(τ) = q−
1

24

∞

∏
k=1

(1−q2k−1),

f2(τ) =
√

2q
1

12

∞

∏
k=1

(1+q2k).

Nuestro principal interés será la función f (τ), puesto que nos permite definir las funciones

u(τ) = f (τ), vc(τ) = f
(

τ + c′

5

)
and v∞(τ) = f (5τ), c = 0,1,2,3,4.

(Aquí, c′ depende de c; luego veremos exactamente cómo.)
Deduciremos seguidamente que estas funciones satisfacen una ecuación llamada la "ecuación modular":

v6
c−u5v5

c +4uvc +u6 = 0, c = 0,1,2,3,4,∞;

Específicamente, si u = f (τ) se considera como un parámetro, entonces las seis raices del polinomio
v6−u5v5 +4uv+u6 vienen dadas por v = vc(τ).
Así habremos logrado al fin hallar una conexión clara entre raíces de polinomios y funciones elípticas
(aunque las funciones u y vc no son elípticas, la teoría de funciones elípticas es necesaria para estudiar
sus propiedades). La transformación

wz =
(v∞− vz)(vz+1− vz−1)(vz+2− vz−1)

5
√

u3 , z = 0,1,2,3,4;

donde los subíndices se entienden módulo 5, nos dan las cinco raíces del polinomio de grado cinco

w(w2 +5)2−u12 +64u−12.

Después, usando la sustitución

y(τ) =
f 8
1 (τ)− f 8

2 (τ)

f 2(τ)(w2(τ)+5)

se puede obtener la ecuación

y5 +5y =
f 8
1 − f 8

2
f 2 .

Para concluir, veremos que cualquier ecuación quíntica se puede reducir a la forma y5 + 5y− a = 0 y
que

a f 2(τ) = f 8
1 (τ)− f 8

2 (τ)

siempre se puede resolver para τ . Para eso, veremos que la solución a esta ecuación es un τ tal que

f 24−a2 f 12−64 = 0.

Esta es una ecuación cuadrática para t = f 12, con lo cual podemos hallar facilmente sus 24 raíces. Si
además podemos invertir f (τ), entonces sólo quedaría comprobar los valores de τ correspondientes a
las 24 raíces, y aquel que satisfaga a f 2(τ) = f 8

1 (τ)− f 8
2 (τ) nos permitirá hallar las raices de la ecuación

quíntica original. Así, vemos que si además de invertir potencias (radicales) podemos invertir la función
f (τ), entonces podemos resolver cualquier ecuación quíntica.



Solving quintic equations via elliptic functions - Jorge Aylón Berzosa v

Es en este punto donde surgen las dificultades computacionales. El problema de invertir f (τ) no es en
absoluto trivial, y es por esta razón que un resultado aparentemente tan bueno como un algoritmo gen-
eral para la resolución de ecuaciones quínticas es tan poco conocido: a nivel computacional no ofrece
ninguna ventaja, y cualquier método numérico ofrece mejores soluciones. De hecho, implementar este
algoritmo en un ordenador demostró ser un problema extremadamente complicado. Los primeros en
lograrlo fueron R.B.King y E.R.Canfield, y publicaron su método en un artículo titulado "An algebraic
algorithm for calculating the roots of a general quintic equation" en 1991 en el Journal of Mathemat-
ical Physics. Su trabajo se basa principalmente en el artículo de Kiepert "Auflösung der Gleichungen
Fünften Grades" (1878) y el libro de Klein "Vorlesunger über das Ikosaeder"(1888). Un buen resumen
general de sus ideas se puede encontrar en "Beyond the quartic equation" del propio R.B.King.
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Chapter 1

Theory of elliptic functions

In what follows, by function we will mean complex meromorphic function, that is, functions which are
analytic in the whole complex plane except perhaps at a set of singularities without an accumulation
point.

Definition 1.1. Given a function f , we will say that Ω is a period of f if at each regular point z

f (z) = f (z+Ω) (1.1)

For example, Ω = 2πi is a period of the complex exponential ez.
A simple consequence follows from the definition:

Corollary 1.1. Given a meromorphic function f with periods Ω1, . . . ,Ωn and integers m1, . . . ,mn, then

m1Ω1 + . . .+mnΩn

is also a period of f , i.e., the set of periods of f is an abelian group with the usual sum operation.

Now we will see that periodicity behaves well under the usual operations with analytic functions.

Proposition 1.1. Let f and g have period Ω. Then the following functions also have the same period:

f (z+ c), f (z)±g(z), f (z)g(z),
f (z)
g(z)

, f ′(z), c ∈ C a constant.

Proof. We only have to be a bit more careful with f ′(z). Given a regular point z of f , we can find δ > 0
such that f is analytic in the discs D(z,δ ) and D(z+Ω,δ ). Then, for h with |h|< δ we have

f (z+Ω+h)− f (z+Ω)

h
=

f (z+h)− f (z)
h

and we need only take the limit as h→ 0.

Proposition 1.2. Let f be a non-constant periodic function. Then there exists µ > 0 such that every
nontrivial period Ω of f satisfies |Ω| ≥ µ

Proof. Assume the contrary and let z ∈ C be a nonsingular point of f . We may find a sequence of
periods {Ωk}∞

k=0 such that
lim

k→+∞

|Ωk|= 0,

but then the fact that f is meromorphic implies that there exists some k0 ∈N such that z+Ωk is nonsin-
gular for every k > k0.
We may assume without loss of generality that k0 = 0, but then

f (z)− f (z+Ωk)

Ωk
= 0 for any k,

so it follows that

f ′(z) = lim
k→+∞

f (z)− f (z+Ωk)

Ωk
= 0

and f is constant, as this holds for every non-singular z.
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2 Chapter 1. Theory of elliptic functions

1.1 Jacobi’s theorem

Definition 1.2. Given a function f with n periods Ω1, . . . ,Ωn, we will say that they form a primitive set
of periods if any other period Ω of f can be written as

Ω = m1Ω1 + . . .+mnΩn,

where m1, . . . ,mn are integers, and this cannot be done if we eliminate any Ωk from the list.

Theorem 1.1. There does not exist a nonconstant function with a primitive set of periods containing
n≥ 3 periods. If f is a nonconstant function and Ω,Ω′ form a set of two primitive periods of f , then

Im
Ω

Ω′
6= 0

Proof. First we notice that in any bounded subset A ⊂ C we can only have a finite number of periods,
since otherwise we could find a compact subset C containing A and the periods would have an accumu-
lation point inside of C, wich in turn would yield a sequence of periods {Ωk}∞

k=0 with the property that
Ωn−Ωm→ 0 as m and n tend to infinity, so that we could obtain arbitrarily small periods of f contrary
to proposition 1.2. Now, given a period Ω, we may consider its integer multiples mΩ, all of which will
lie in a straight line L. We consider two separate cases, namely when all the periods of f lie in the line
L and when they don’t.

1. All the periods of f lie in L:
Consider the segment of L from−Ω to Ω. Since it contains finitely many periods, we may assume
that Ω is of smallest modulus possible.
Now notice that any point of L can be expresed as tΩ for t ∈ R, and that all the points mΩ with
m ∈ Z are periods. Moreover, these exhaust all the periods of f . Indeed, if we had Ω′ = tΩ some
period of f , we could write t = m+ r with m an integer and 0≤ r < 1, and since mΩ is a period
then Ω̄ = Ω′−mΩ = rΩ is also a period with modulus r|Ω|. But then the only possibility that
doesn’t contradict our assumption of Ω having the smallest possible modulus is that r = 0.

2. Not all the periods of f lie in L:
Let Ω′ be a period not lying in L and consider the triangle with vertices 0,Ω,Ω′. It can only
contain a finite number of periods, so by choosing some point in the interior or on the sides of
the triangle we arrive at a triangle containing fewer periods. Continuing this process we arrive at
a triangle wich only contains three periods lying at its vertices. Clearly we may assume that said
triangle is our original one with vertices 0,Ω,Ω′.
We now consider the parallelogram with vertices 0,Ω,Ω′,Ω+Ω′; and notice that its "left half"
corresponds to our triangle, while the "right half" contains no period except at the vertices: if it
did contain some period Ω̄1, then Ω̄2 = Ω+Ω′− Ω̄1 would be a period lying in the "left half" but
not on its vertices, contradicting our assumption.
It is now easy to prove that all the periods of f are of the form mΩ+m′Ω′ for m,m′ ∈ Z. Indeed,
given any period Ω̄ we may write it as Ω̄ = tΩ+ t ′Ω′. Letting t = m+ r and t ′ = m′+ r′ with
m,m′ ∈ Z and 0 ≤ r,r′ < 1 we find just as in the previous case that rΩ+ r′Ω′ is also a period
lying in the parellelogram, and so the only possibility is that r = r′ = 0 since it contains no other
periods than the vertices.

This prompts the following definition:

Definition 1.3. We will say that a function f is elliptic if it has a primitive set of periods containing two
periods.
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1.2 Existence of elliptic functions

We are now going to prove the existence of elliptic functions. To do so, let us advance the definition
of one of the functions that shall be of crucial importance throughout the rest the text, the third theta
function. First, let v,τ ∈ C with Im(τ) > 0 and define q := q(τ) = eiπτ . Now we consider the power
series

Θ3(v | τ) =
∞

∑
m=−∞

e(m
2τ+2mv)iπ =

∞

∑
m=−∞

qm2
e2πimv, for v,τ ∈ C, Im(τ)> 0.

Let us assume that τ is fixed and consider Θ3(v | τ) as a function of v.
To see that this series converges to an analytic function, notice that the ratio of two consecutive terms
has modulus

|q2m+1e2πiv|6 |q|2m+1e2π|v|

and since |q|< 1, limm→∞ |q|2m+1 = 0 so that Θ3(v | τ) is a series of analytic functions which converge
uniformly inside the disk |v|6 c for arbitrary c ∈ C and thefore Θ3(v | τ) is itself an analytic function.
For brevity, we will denote it by Θ3(v). Observe that the change of variable v→ v+ 1 leaves all the
terms of the series unchanged, so that Θ3(v) = Θ3(v+1), while

Θ3(v+ τ) =
∞

∑
m=−∞

qm2
e2πimvq2m = q−1e−2πiv

∞

∑
m=−∞

q(m+1)2
e2πi(m+1)v

= q−1e−2πiv
Θ3(v) = A(v)Θ3(v),

where
A(v) = q−1e−2πiv.

Notice that here we are also abusing notation a bit, since A(v) does depend indirectly on τ through q.
Taking logarithms and deriving two times we get

d2

dv2 lnΘ3(v+ τ) = d2

dv2 lnΘ3(v),
d2

dv2 lnΘ3(v+1) = d2

dv2 lnΘ3(v);

so that

φ(v) :=
d2

dv2 lnΘ3(v).

is an elliptic function. Notice that, since d
dv lnΘ3(v) =

Θ′3(v)
Θ3(v)

, d
dv lnΘ3(v) only has poles of order one

at the zeros of Θ3(v) and thus φ(v) only has poles of order one at the zeros of Θ3(v). But Θ3(v) is
a nonconstant analytic function, so its set of zeros cannot have an accumulation point, which together
with the previous observation goes on to say that φ(v) is meromorphic.

1.3 Liouville’s theorems

It is clear that given some fixed c ∈ C, any elliptic function with {Ω,Ω′} as a primitive set of periods is
completely determined by its values in the parallelogram

Πc =
{

z ∈ C : z = c+ rΩ+ r′Ω′ , where 0≤ r,r′ < 1
}

From now on we will call this Πc the fundamental parallelogram at c and we will assume furthermore
that Im Ω′

Ω
> 0, so that if we run through its vertices c,c+Ω,c+Ω′,c+Ω+Ω′ in that order it corre-

sponds to the positive orientation.

Theorem 1.2. The sum of the residues of an elliptic function with respect to any fundamental parallel-
ogram Π is equal to zero
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Proof. ∫
∂Π

f (z)dz =
∫ c+Ω

c
f (z)dz+

∫ c+Ω+Ω′

c+Ω

f (z)dz+
∫ c+Ω′

c+Ω+Ω′
f (z)dz+

∫ c

c+Ω′
f (z)dz.

The first and third integrals cancel each other with a change of variables z = ζ + Ω′ and the same
happens with the second and fourth integrals (by periodicity they are integrals of the same function in
opposite directions).

Definition 1.4. Given a ∈C, we will say that z ∈C is an a-point of f if f (z) = a, and its multiplicity as
an a-point is the least integer k such that f (k)(z) 6= 0

Corollary 1.2. The number of poles with multiplicity of a nonconstant elliptic funtion f in a funda-
mental parallelogram is equal to the number of a-points with multiplicity, for arbitrary a.

Proof. Let

ϕ(z) =
f ′(z)

f (z)−a

which is itself an elliptic function. Now if ζ is a pole of order k of f , we have in a neighborhood of ζ

f (z) =
g1(z)

(z−ζ )k

for some g1(z) analytic with g1(ζ ) 6= 0. Thus

ϕ(z) =
f ′(z)

f (z)−a
=

g′1(z)(z−ζ )− kg1(z)
g1(z)−a(z−ζ )k .

1
z−ζ

= h1(z)
1

z−ζ

with h1(ζ ) =−k and so
resz=ζ ϕ(z) =−k,

where resz=ζ ϕ(z) denotes the residue of ϕ(z) at ζ .
In a similar fashion, if ζ is an a-point of f of multiplicity k we have in a neighborhood of ζ

f (z) = a+(z−ζ )kg2(z)

with g2(z) analytic and g2(ζ ) 6= 0, so that again expanding ϕ

ϕ(z) =
g′2(z)(z−ζ )+ kg2(z)

g2(z)
.

1
z−ζ

= h2(z)
1

z−ζ

but in this case h2(ζ ) = k, and so
resz=ζ ϕ(z) = k

Since the a-points of f are all the singular points of ϕ(z), and the sum of all of its residues equals zero,
the corollary is proved.

Theorem 1.3. (Liouville’s theorem) There does not exist a nonconstant elliptic function that is regular
in a fundamental parallelogram.

Proof. In that case the number of poles would be zero, and by the previous result the number of a-points
would be zero for arbitrary a, which is absurd.

Corollary 1.3. Given an elliptic function f , the sum of the orders of its poles must be at least 2.

Proof. The case where f is constant is trivial. The only case that would contradict the assertion would
be for f to have a simple pole at a single point ζ0. But then the residue of f at ζ0 would be different
from 0, contradicting theorem 1.2.



Chapter 2

Theta functions

Recall how we proceeded to define the third theta function in section 1.2. First, we fix τ ∈ C with
Im(τ)> 0 and let q := q(τ) = eiπτ . Now the theta functions can be defined through the following power
series:

Θ0(v | τ) =
∞

∑
m=−∞

(−1)mqm2
e2πimv (2.1)

Θ1(v | τ) = i
∞

∑
m=−∞

(−1)mq(m− 1
2)

2

eπi(2m−1)v (2.2)

Θ2(v | τ) =
∞

∑
m=−∞

q(m−
1
2 )

2
eπi(2m−1)v (2.3)

Θ3(v | τ) =
∞

∑
m=−∞

qm2
e2πimv (2.4)

We will assume for convenience that τ is fixed and that the theta functions depend only on v, so for
brevity we will denote

Θi(v) := Θi(v | τ), i = 0,1,2,3.

Now let
A(v) := A(v | τ) = q−1e−2πiv. (2.5)

By straightforward substitutions we obtain the following indentities:

Θk(v+1) = Θk(v) for k = 0,3 and Θk(v+1) =−Θk(v) for k = 1,2

Θk(v+ τ) = A(v)Θk(v) for k = 2,3 and Θk(v+ τ) =−A(v)Θk(v) for k = 0,1.
(2.6)

Moreover, all of the theta functions can be easily expressed in terms of Θ3(v) as follows:

Θ0(v) = Θ3

(
v+

1
2

)
=

∞

∑
m=−∞

qm2
e2πimveπim =

∞

∑
m=−∞

(−1)mqm2
e2πimv,

Θ1(v) = ie−πi(v− τ

4)Θ3

(
v+

1− τ

2

)
= ie−πi(v− τ

4)
∞

∑
m=−∞

qm2
e2πimveπime−πimτ

= i
∞

∑
m=−∞

(−1)mq(m− 1
2)

2

eπi(2m−1)v,

Θ2(v) = e−πi(v− τ

4)Θ3

(
v− τ

2

)
= e−πi(v− τ

4)
∞

∑
m=−∞

qm2
e2πimve−πimv

=
∞

∑
m=−∞

q(m− 1
2)

2

eπi(2m−1)v.

(2.7)

5



6 Chapter 2. Theta functions

2.1 Zeros of theta functions

Let us recall the identities in (2.6) and, in particular, Θ1(−v) = −Θ1(v). Because it is analytic, we
inmediately deduce that Θ1(0) = 0. Moreover, since Θ1(v+1) =−Θ1(v) and Θ1(v+τ) =−A(v)Θ1(v),
we see that Θ1(m+ nτ) = 0 for all m,n ∈ Z. Let us prove that these are in fact all its zeros. We will
proceed using the well-known fact from complex analysis that, given a function f analytic in an open
domain U with n zeros in U counting multiplicities, one has

1
2πi

∫
∂U

f ′(z)
f (z)

= n

Recall that A(v) = q−1e−2πiv = e−iπ(τ+2v), so in particular A(v) 6= 0. Together with the equations

Θ1(v+1) = Θ1(v)

and
Θ1(v+ τ) =−A(v)Θ1(v),

we deduce that it is only necessary to study the zeros of Θ1(v) inside the parallelogram Πc of vertices
±1±τ

2 (where c = −1−τ

2 ).
Derivating the two previous equations with respect to v yields

Θ
′
1(v+1) = Θ

′
1(v)

Θ
′
1(v+ τ) =−A′(v)Θ1(v)−A(v)Θ′1(v)

so that
Θ′1(v+1)
Θ1(v+1)

=
Θ′1(v)
Θ1(v)

Θ′1(v+ τ)

Θ1(v+ τ)
=
−A′(v)Θ1(v)−A(v)Θ′1(v)

−A(v)Θ1(v)
=

A′(v)
A(v)

+
Θ′1(v)
Θ1(v)

=−2πi+
Θ′1(v)
Θ1(v)

.

(Recall that A(v) = q−1e−2πiv = e−iπ(2v+τ)).
Thus, when we integrate Θ′1

Θ1
along the boundary of the parallelogram, the integrals along the vertical

sides will cancel each other while at the horizontal lines only the term 2πi will remain, and therefore

1
2πi

∫
∂Π

Θ′1(z)
Θ1(z)

= 1.

We conclude that all the zeros of Θ1(v) are given by n+mτ , n,m ∈ Z and they are all simple zeros. If
we look at the relations in 2.7, we can see that all the zeros of the theta functions are simple and are
given by

function Θ0(v) Θ1(v) Θ2(v) Θ3(v)
its zeros m+

(
n+ 1

2

)
τ m+nτ m+ 1

2 +nτ m+ 1
2 +
(
n+ 1

2

)
τ

2.2 The relation Θ4
3 = Θ4

2 +Θ4
0

Let Θi = Θi(0) for i = 0,2,3 and Θ′1 = Θ′1(0) (this particularity for Θ1(v) will be justified in subsequent
sections). We will call these constants the theta constants. Let us now fix arbitrary a,b∈C and consider
the function

h(v) =
aΘ2

2(v)+bΘ2
3(v)

Θ2
0(v)

Using the identities in (2.7) to make the substitutions v→ v+ 1 and v→ v+ τ , we check that h is an
elliptic function. We may now choose a fundamental parallelogram Π so that only the zero τ

2 of Θ0(v)
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lies inside of it. Since τ

2 is neither a zero of Θ2(v) nor of Θ3(v) we may choose a,b 6= 0 such that
aΘ2

2(
τ

2 )+bΘ2
3(

τ

2 ) = 0. Recall that in the previous section we said that all the zeros of the theta functions
are simple so that at τ

2 , h will have a pole of order no more than one. But we have already seen in
Liouville’s theorem’s section, corollary 1.3, that it cannot have a single pole of order one, so it must be
constant by theorem 1.2. Substituting v = 0 and v = τ

2 , respectively, in the relation

Θ2(v) = e−πi(v− τ

4 )Θ3(v−
τ

2
),

we get
Θ2(

τ

2
) = e−

πiτ
4 Θ3(0), and Θ2(0) = e

πiτ
4 Θ3(−

τ

2
) = e

πiτ
4 Θ3(

τ

2
).

Hence,
aΘ

2
2(

τ

2
)+bΘ

2
3(

τ

2
) = aB2

Θ
2
3 +bB2

Θ
2
2, where B = e−

πiτ
4 .

For the particular choice of a =−Θ2
2 and b = Θ2

3, the relation aB2Θ2
3 +bB2Θ2

2 = 0 is satisfied and thus
h is constant or, in other words, there is some c ∈ C such that

−Θ
2
2(v)Θ

2
2 +Θ

2
3(v)Θ

2
3 = cΘ

2
0(v).

To compute c, set v = 1
2 . The function Θ2 vanishes at this point, yielding Θ2

3(
1
2)Θ

2
3 = cΘ2

0(
1
2). But

Θ0(v) = Θ3(v+ 1
2), and from this we easily derive Θ0 = Θ3(

1
2) and Θ0(

1
2) = Θ3(1). All of this implies

Θ
2
0Θ

2
3 = cΘ

2
3,

and so
c = Θ

2
0.

Thus
Θ

2
3(v)Θ

2
3−Θ

2
2(v)Θ

2
2 = Θ

2
0(v)Θ

2
0,

and in particular for v = 0 we obtain the desired relation

Θ
4
3 = Θ

4
2 +Θ

4
0. (2.8)

2.3 Representation of theta functions by infinite products

The numbers m+ 1
2 +(n+ 1

2)τ , m,n ∈ Z are the zeros of the function

Θ3(v) =
∞

∑
m=−∞

qm2
e2πikv.

Set s = e2πiv. The substitution v→ s sends the zeros of Θ3(v) to the points

e2πi(m+ 1
2 )e2πi(n+ 1

2 )τ =−q2n+1, where q = eπiτ .

Let us put these points into two sets:

Λ1 = {−q−1,−q−3,−q−5, . . .}
Λ2 = {−q1,−q3,−q5, . . .}

The limit point of Λ1 is ∞ while that of Λ2 is 0.
To proceed, we need to briefly recall some results on the convergence of series. Recall the definition of
uniform convergence:
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Definition 2.1. We say that a sequence of functions fn converges uniformly to a function f on a set E
if for any ε > 0 there exists some n ∈ N such that | f (x)− fm(x)|< ε for every m > n and x ∈ E.

Thus, knowing that ∑
∞
k=1 |q2k−1| converges, it is straightforward that the sequence of functions

gn(s) = ∑
n
k=1 |q2k−1s| converges uniformly to g(s) = |s|∑∞

k=1 |q2k−1|. Moreover, gn(s) is bounded on
every compact subset K ⊂ C, so we can guarantee that ∏

∞
k=1(1+q2k−1s) converges uniformly on every

compact subset K ⊂ C (see Walter Rudin’s Real and complex analysis[4]; theorem 15.4.)
Hence, on every compact subset of C,

h1(s) =
∞

∏
k=1

(1+q2k−1s)

is the uniform limit of analytic functions, so h1 is analytic in C (see Complex analysis by Joseph Bak
and Donald J.Newman [5]; theorem 7.6.). It can be seen that its set of zeros if precisely Λ1 (again
theorem 15.4 from Rudin’s Real and complex analysis).
Consider also the function

h2(s) =
∞

∏
k=1

(1+q2k−1s−1).

It is clear that h2(s) = h1(
1
s ), so it is an entire function except at s = 0, and its set of zeros is Λ2.

Now consider the function h(s) = h1(s)h2(s) and let h̃(v) = h(e2πiv). From what we have seen, the set
of zeros of h̃ is that of Θ3(v). We also remark the important fact that, since e2πiv 6= 0 for all v ∈ C, we
avoid the unique pole of h at s = 0 and thus h̃(v) is entire in C.
The transformation v→ v+ 1 leaves the value s = e2πiv unchanged, so h̃(v+ 1) = h̃(v). On the other
hand, the change of variables v→ v+ τ replaces s with e2πive2πiτ = sq2; hence,

h̃(v+ τ) =
∞

∏
k=1

(
1+q2k+1s

) ∞

∏
k=1

(
1+q2k−3s−1

)
=

1
1+qs

[
∞

∏
k=1

(
1+q2k−1s

)]
(1+q−1s−1)

[
∞

∏
k=1

(
1+q2k−1s−1

)]

=
1+q−1s−1

1+qs
h̃(v) = q−1e−2πivh̃(v)

Recall that Θ3(v+ τ) = A(v)Θ3(v) = q−1e−2πivΘ3(v), and so the function Θ3(v)
h̃(v)

is an entire elliptic
function, and therefore a constant as we have seen when proving Liouville’s theorem. Therefore,

Θ3(v) = c
∞

∏
k=1

(1+q2k−1e2πiv)(1+q2k−1e−2πiv). (2.9)

We also gather here for future use similar expressions for the rest of the theta functions:

Θ0(v) = c
∞

∏
k=1

(1−q2k−1e2πiv)(1−q2k−1e−2πiv) (2.10)

Θ1(v) = 2sin(πv)q
1
4 c

∞

∏
k=1

(1−q2ke2πiv)(1−q2ke−2πiv) (2.11)

Θ2(v) = 2cos(πv)q
1
4 c

∞

∏
k=1

(1+q2ke2πiv)(1+q2ke−2πiv) (2.12)

These expressions are easily obtained using that of Θ3(v) and substituting it in the definition of the other
theta functions, but the calculations are lengthy and not very enlightening.
Now, let us prove that

c =
∞

∏
k=1

(1−q2k). (2.13)
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Consider the sequence of functions

Fn(s) =
n

∏
k=1

(1−q2k−1s)(1−q2k−1s−1) =
n

∑
k=−n

ak(n)sk.

This sequence converges uniformly to the function
∞

∏
k=1

(1−q2k−1s)(1−q2k−1s−1) =
1
c

Θ0(v) =
1
c

∞

∑
k=−∞

(−1)kqk2
sk.

Comparing the coefficients of degree zero in s we get

1
c
= lim

n→∞
a0(n).

For every n ∈ N, observing the coefficient of sn in the product ∏
n
k=1(1− q2k−1s)(1− q2k−1s−1) we

conclude that
an(n) = (−1)nq1+3+...+(2n−1) = (−1)nqn2

.

The last equality is obtained by noticing that

1+3+ . . .+(2n−1) = (1+2+ . . .+2n)− (2+4+ . . .+2n) =
2n(2n+1)

2
−2

n(n+1)
2

= n2.

Moreover,
Fn(q2s)
Fn(s)

=
(1−q2n+1s)(1−q−1s−1)

(1−qs)(1−q2n−1s−1)
=−1−q2n+1s

qs−q2n ,

and so

(qs−q2n)
n

∑
k=−n

ak(n)q2ksk =−(1−q2n+1s)
n

∑
k=−n

ak(n)sk,

i.e.,
n

∑
k=−n

ak(n)(1−q2(n+k))sk =
n

∑
k=−n

ak(n)(q2n+1−q2k+1)sk+1.

Now, if we compare the coefficients for s in both sums we get

a0(n) =
a1(n)(1−q2(n+1))

q2n+1−q1 ;

comparing the coefficients for s2

a1(n) =
a2(n)(1−q2(n+2))

q2n+1−q3 ;

and so on. Substituting these equations recursively we eventually reach the expression

a0(n) = an(n)
∏

n
k=1(1−q2(n+k))

∏
n−1
k=0(q

2n+1−q2k+1)
= qn2 ∏

n
k=1(1−q2(n+k))

∏
n−1
k=0(q

2k+1−q2n+1)
,

where we have canceled the term (−1)n in an(n) = (−1)nqn2
by changing the sign of every factor in the

denominator.
We can rewrite this expression in a more convenient way. To do so, we need only observe that

n−1

∏
k=0

(q2k+1−q2n+1) = (q1−q2n+1)(q3−q2n+1) . . .(q2n−1−q2n+1)

= q1+3+...+(2n−1)(1−q2n)(1−q2n−2) . . .(1−q2)

= qn2
n

∏
k=1

(1−q2k),
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hence

a0(n) = qn2 ∏
n
k=1(1−q2(n+k))

∏
n−1
k=0(q

2k+1−q2n+1)
=

∏
n
k=1(1−q2(n+k))

∏
n
k=1(1−q2k)

.

To conclude, we are now going to prove that limn→∞ ∏
n
k=1(1−q2(n+k)) = 1.

First, let |q|2 = α < 1. Since |q|2(n+k) 6 |q|2n = αn, we get

1−α
n 6 |1−q2(n+k)|6 1+α

n,

and so

(1−α
n)n 6

n

∏
k=1
|1−q2(n+k)|6 (1+α

n)n.

Taking logarithms, this yields

n ln(1−α
n)6 ln

(
n

∏
k=1
|1−q2(n+k)|

)
6 n ln(1+α

n) .

Considering the well-known facts from analysis that ln(1+ x) ∼
x→0

x and limn→∞ nxn = 0 when |x| < 1,

we conclude
lim
n→∞

n ln(1±α
n) = 0;

hence

lim
n→∞

ln

(
n

∏
k=1
|1−q2(n+k)|

)
= 0,

i.e.

lim
n→∞

n

∏
k=1
|1−q2(n+k)|= 1.

We have proved converge in modulus, but we will need some further consideration to prove convergence.
Let us then consider the argument function arg : C→ [−π,π).
It can be seen that the following two inequalities hold:

−arctan

(
|q|n√

1−|q|2n

)
6 arg(1−qn)6 arctan

(
|q|n√

1−|q|2n

)
.

The idea is that the problem of maximizing arg(1−qn) restricted to |q|= 1 is equivalent to maximizing∣∣ y
x

∣∣ over a circle of radius 1 centered at (1,0), and the second problem can be easily solved with basic
analysis techniques using derivatives.
Now, since |q|< 1, ∑

∞
k=1 |q|n converges. Moreover, arctan(x)∼ x when x→ 0 and limn→∞(1−|q|2n)= 1,

so

lim
n→∞

arctan
(

|q|n√
1−|q|2n

)
|q|n

= 1

and the limit test for series guarantees the convergence of ∑
∞
k=1 arctan

(
|q|n√

1−|q|2n

)
.

Now, for every n ∈ N let αn = arg(1− qn). The previous inequality implies that the series ∑
∞
k=0 αk

converges, and so does in particular the subseries ∑
∞
k=1 α2k.

Let now βn = ∑
n
k=1 α2(n+k). It is a basic fact that the convergence of ∑

∞
k=1 α2k implies

lim
n→∞

βn = 0.

On the other hand

arg

(
n

∏
k=1

1−q2(n+k)

)
= βn +n′ (2π)
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for some appropriate n′ ∈ Z.
In other words,

n

∏
k=1

(1−q2(n+k)) =

∣∣∣∣∣ n

∏
k=1

(1−q2(n+k))

∣∣∣∣∣(cos(βn)+ isin(βn)),

and since βn tends to zero while the product converges in modulus, we have

lim
n→∞

n

∏
k=0

(
1−q2(n+k)

)
=

[
lim
n→∞

n

∏
k=0

∣∣∣1−q2(n+k)
∣∣∣](cos(0)+ isin(0)) = 1.

After this long detour, going back to c we simply have

c = lim
n→∞

1
a0(n)

=
∞

∏
k=1

(1−q2k).

2.4 The relation Θ′1 = πΘ0Θ2Θ3

Formulas 2.9-2.12 imply that

Θ0 = Θ0(0) = c
∞

∏
k=1

(1−q2k−1)2 (2.14)

Θ2 = Θ2(0) = 2q
1
4 c

∞

∏
k=1

(1+q2k)2 (2.15)

Θ3 = Θ3(0) = c
∞

∏
k=1

(1+q2k−1)2 (2.16)

Θ
′
1 = Θ

′
1(0) = 2πq

1
4 c

∞

∏
k=1

(1−q2k)2 (2.17)

The last equation needs some justification. Using formula 2.11, we get

Θ
′
1(0) = lim

v→0

Θ1(v)
v

= lim
v→0

2sin(πv)q
1
4 c∏

∞
k=1(1−q2ke2πiv)(1−q2ke−2πiv)

v

= lim
v→0

2sin(πv)
v

q
1
4 c

∞

∏
k=1

(1−q2k)2 = 2πq
1
4 c

∞

∏
k=1

(1−q2k)2

where in the last equality we have used the equivalence sinx ∼
x→0

x.

Now, since ∏
∞
k=1(1−q2k)2 = c2, we have Θ′1 = 2πq

1
4 c3. Therefore, the equation

Θ
′
1 = πΘ0Θ2Θ3

will follow from
∞

∏
k=1

(1−q2k−1)(1+q2k)(1+q2k−1) = 1. (2.18)

This is easy to prove. Indeed, notice that

m

∏
k=1

(1−q2k−1)
m

∏
k=1

(1−q2k) =
2m

∏
k=1

(1−qk),

and taking limits
∞

∏
k=1

(1−q2k−1)
∞

∏
k=1

(1−q2k) =
∞

∏
k=1

(1−qk),
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i.e.
∞

∏
k=1

(1−q2k−1) =
∞

∏
k=1

(1−qk)(
∞

∏
k=1

1−q2k)−1 =
∞

∏
k=1

(1−qk)(1−q2k)−1.

On the other hand, it is straightforward that
∞

∏
k=1

(1+q2k)(1+q2k−1) =
∞

∏
k=1

(1+qk),

and thus
∞

∏
k=1

(1−q2k−1)(1+q2k)(1+q2k−1) =
∞

∏
k=1

(1−qk)(1−q2k)−1(1+qk) =
∞

∏
k=1

(1−q2k)(1−q2k)−1 = 1

as we wanted.

2.5 Dedekind’s η-function and the functions f , f1, f2.

Let

η(τ) = q
1
12

∞

∏
k=1

(
1−q2k

)
.

This function is called Dedekind’s eta function. Let us also define the three following functions:

f (τ) = q−
1

24

∞

∏
k=1

(
1+q2k−1

)
,

f1(τ) = q−
1

24

∞

∏
k=1

(
1−q2k−1

)
,

f2(τ) =
√

2q
1
12

∞

∏
k=1

(
1+q2k

)
.

Remember that q = qτ = eiπτ , so these functions really depend on τ .
Together, these functions allow us to express the theta constants as

Θ
′
1 = 2πη

3(τ),

Θ3 = η(τ) f 2(τ),

Θ0 = η(τ) f 2
1 (τ),

Θ2 = η(τ) f 2
2 (τ).

The relation Θ4
3 = Θ4

2 +Θ4
0 implies that

f 8 = f 8
1 + f 8

2 .

We have already seen that
∞

∏
k=1

(1−q2k−1)(1+q2k)(1+q2k−1) = 1,

and so
f f1 f2 =

√
2.

The functions f , f1, f2 can be expressed in terms of η as follows:

f (τ) =
e−

πi
24 η
(

τ+1
2

)
η(τ)

; (2.19)

f1(τ) =
η
(

τ

2

)
η(τ)

; (2.20)

f2(τ) =
√

2
η(2τ)

η(τ)
. (2.21)

The necessary calculations are simple comprobations and will be omitted here.



Chapter 3

The modular equation

In this chapter we are going to study the behaviour of the theta functions, Dedekind’s η-function and
f , f1, f2 under several changes of variables of τ . This study will prompt the definition of some new
functions u(τ),vc(τ), c = 0,1,2,3,4,∞; that will satisfy the modular equation

v6−u5v5 +4u+u6 = 0,

so that given some τ and considering u(τ) as a parameter for the previous equation, its six roots on v
are given by v = vc,c = 0,1,2,3,4,∞.
We begin considering transformations of the theta functions.

3.1 Transformations of theta functions induced by transformations of τ

We have already seen in the first section how the theta functions are transformed by the changes of
variable v→ v+1 and v→ v+ τ . But if we recall the definition of the theta functions, they are in fact
functions of two variables, namely v and τ; that is, Θi(v) = Θi(v | τ), although we assumed τ to be fixed
throughout the previous sections. We are now going to check that the changes of variable τ→ τ +1 and
τ →− 1

τ
also induce simple transformations of the theta functions. For τ → τ +1 it is quite easy, since

q = eiπτ is transformed to q′ = eiπ(τ+1) = eiπτeiπ =−q, and so using formulas 2.1-2.4 we get:

Θ0(v | τ +1) = Θ3(v | τ), Θ3(v | τ +1) = Θ0(v | τ)
Θi(v | τ +1) = e

πi
4 Θi(v | τ) for i = 1,2

(3.1)

For the change of variable τ →− 1
τ
, however, we have to get more creative. For the sake of clarity, let

τ ′ =− 1
τ

and define

g(v) = eiπτ ′v2 Θ3(τ
′v | τ ′)

Θ3(v | τ)
.

Using 2.6 we check that g(v+1) = g(v) and g(v+τ) = g(v), so that g(v) is a doubly periodic function.
The zeros of the denominator are of the form (m+ 1

2)τ +(n+ 1
2) and the zeros of the numerator are

determined by τ ′v = (m+ 1
2)τ
′+(n+ 1

2), and multiplying both sides by −τ 6= 0 we get

v = (m+
1
2
)− (n+

1
2
)τ,

so that the zeros of the numerator coincide with those of the denominator, and it is clear that they have
the same multiplicity. Therefore, g(v) is an entire elliptic function and so it is a constant by virtue of
Liouville’s theorem, g(v) = A ∈ C. We now have

Θ3(τ
′v | τ ′) = Ae−iπτ ′v2

Θ3(v | τ), (3.2)

13
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and recalling how the rest of the theta functions are related to Θ3(v) in 2.7, by replacing v consecutively
with v+ 1

2 ,v+ τ

2 ,v+ 1+τ

2 in 3.2 we get

Θ2(τ
′v | τ ′) = Ae−iπτ ′v2

Θ0(v | τ), (3.3)

Θ0(τ
′v | τ ′) = Ae−iπτ ′v2

Θ2(v | τ), (3.4)

Θ1(τ
′v | τ ′) = iAe−iπτ ′v2

Θ1(v | τ), (3.5)

Let us calculate formula 3.3 as an example. From 2.7 we have

Θ3

(
v− τ

2

)
= Θ2(v)eiπ(v− τ

4),

and substituting v 7→ v+ τ

Θ3

(
v+

τ

2

)
= Θ2(v+ τ)eiπ(v+ 3

4 τ) = Θ2(v)e−2iπve−iπτeiπ(v+ 3
4 τ) = Θ2(v)e−iπ(v+ τ

4),

where we have used 2.6. Making now the substitution v 7→ v+ 1
2 in 3.2 yields

Θ3

(
τ
′v+

τ ′

2
| τ ′
)
= Ae−iπτ ′(v+ 1

2)
2

Θ3

(
v+

1
2
| τ
)
= Ae−iπτ ′v2

e−iπτ ′(v+ 1
4)Θ0(v),

where in the last equality we used the fact that Θ3
(
v+ 1

2

)
= Θ0(v).

Finally, using equation Θ3
(
v+ τ

2

)
= Θ2(v)e−iπ(v+ τ

4) to substitute Θ3

(
τ ′v+ τ ′

2 | τ
′
)

we obtain

e−iπ
(

vτ ′+ τ ′
4

)
Θ2(vτ

′ | τ ′) = Ae−iπτ ′v2
e−iπτ ′(v+ 1

4)Θ0(v),

and after cancelling e−iπτ ′(v+ 1
4) we get 3.3.

Now, taking the product of equations 3.2-3.4 and setting v = 0, we get

Θ2(0 | τ ′)Θ3(0 | τ ′)Θ0(0 | τ ′) = A3
Θ2(0 | τ)Θ3(0 | τ)Θ0(0 | τ), (3.6)

while taking the derivative of 3.5 at v = 0 yields

τ
′
Θ
′
1(0 | τ ′) = iAΘ

′
1(0 | τ). (3.7)

Recall that in section 2.4 we saw Θ′1 = πΘ0Θ2Θ3, which together with equations 3.6 and 3.7 implies
A2 =−iτ , and so

A =±
√
−iτ,

and thus
Θ3(0 | τ ′) =±

√
−iτΘ3(0 | τ). (3.8)

Now notice that if τ is purely imaginary, q = eiπτ > 0 and so Θ3(0 | τ) = ∑
∞
m=−∞ qm2

> 0. Since τ is
purely imaginary if and only if− 1

τ
= τ ′ is purely imaginary, evaluating 3.8 at τ = i, for example, we get

A =
√
−iτ;

and in particular

Θ3

(
0 | −1

τ

)
=
√
−iτΘ3(0 | τ). (3.9)
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3.2 Transformations of Dedekind’s η-function and of f , f1, f2

Recall the identity we saw in section 2.5

2πη
3(τ) = Θ

′
1(0 | τ),

where the derivative is taken with respect to v. From the relation Θ′1(0 | τ +1) = e
πi
4 Θ′1(0 | τ) we get

η(τ +1) = e
iπ
12 η(τ). (3.10)

Substituting A =
√
−iτ in 3.7 we get

Θ
′
1

(
0 | −1

τ

)
=
(√
−iτ
)3

Θ
′
1(0 | τ),

hence

η

(
−1

τ

)
=
√
−iτη(τ). (3.11)

Now, equations 2.19-2.21 allow us to easily obtain rules of transformation for f , f1, f2 by mere substi-
tution:

f (τ +1) = e−
iπ
24 f1(τ), (3.12)

f1(τ +1) = e−
iπ
24 f (τ), (3.13)

f2(τ +1) = e
iπ
12 f2(τ), (3.14)

f1

(
−1

τ

)
= f2(τ), (3.15)

f2

(
−1

τ

)
= f1(τ). (3.16)

For f (− 1
τ
), however, we cannot obtain a simple transformation law using the same method. Neverthe-

less, if we use the fact that
f (τ) f1(τ) f2(τ) =

√
2

and make the substitution τ →− 1
τ
, using 3.15 and 3.16, we get

f
(
−1

τ

)
f1(τ) f2(τ) =

√
2,

and so

f
(
−1

τ

)
= f (τ). (3.17)

To conclude this section, we are going to prove the relation

f (τ) f
(

τ−1
τ +1

)
=
√

2. (3.18)

First, notice that equations 2.20 and 2.21 imply f1(2τ) f2(τ) =
√

2. On the other hand, substituting by
2τ−1 in equation 3.13 we get

f1(2τ) = e−
iπ
24 f (2τ−1);

while combining 3.15 and 3.12 yields

f2(τ) = f1(−
1
τ
) = e

iπ
24 f
(

1− 1
τ

)
.
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Therefore

f (2τ−1) f
(

1− 1
τ

)
=
√

2,

and setting x = 2τ−1, then 1− 1
τ

becomes x−1
x+1 , so the previous relation can be rewritten as

f (τ) f
(

τ−1
τ +1

)
=
√

2.

Notice that Im(τ)> 0 if and only if Im(2τ−1)> 0, so there is no problem with the domain of f .

3.3 Transformations of order 5

Definition 3.1. We will call Möbius transformation or fractional linear transformation any transforma-
tion given by

τ → aτ +b
cτ +d

,

where a,b,c,d ∈ C are constants.

Throughout the following sections, we will asign to every matrix
(

a b
c d

)
the Möbius transfor-

mation τ 7→ aτ+b
cτ+d .

The transformations τ 7→ τ + 1 and τ 7→ 1
τ

correspond then to the matrices T =

(
1 1
0 1

)
and S =(

0 −1
1 0

)
, respectively. Since there will be no possible confusion with any other operation, we will

denote the transformation τ 7→ aτ+b
cτ+d by τ 7→ Aτ , where A =

(
a b
c d

)
. This has the advantage that the

composition of transformations corresponds with the transformation by the product matrix, that is:

A(Bτ) = (AB)τ, for any matrices A,B ∈ C4.

This is easily checked: let

A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
,

so that

A(Bτ) =
a(a′τ+b′

c′τ+d′ )+b

c(a′τ+b′
c′τ+d′ )+d

=
aa′τ +ab′+bc′τ +bd′

ca′τ + cb′+dc′τ +dd′
=

(aa′+bc′)τ +ab′+d′b
(ca′+dc′)τ + cb′+dd′

= (AB)τ.

We are now going to consider the group SL2(Z) = {A =

(
a b
c d

)
| detA = ad− bc = 1}. It is quite

easy to prove that it is in fact a group under multiplication just by using the properties of determinants
and the inversion formula (A)−1 = 1

detA adj(A).
We are now going to state a result about the group SL2(Z) that will prove to be very useful for our
purposes:

Theorem 3.1. The group SL2(Z) is generated by the elements T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Proof. See Serre’s A course in arithmetic [6], chapter 7 section 1.
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We now observe that, under our new notation, equations (3.10) and (3.11) become

η(T τ) = e
iπ
τ η(τ),

η(Sτ) =
√
−iτη(τ).

Therefore, the previous theorem allows us to write η(Aτ) in terms of η(τ) for any A ∈ SL2(Z). We
can do the same for f (Aτ), but with the slight incovenience that since f (τ + 1) = e−

iπ
24 f1(τ) we will

also need to consider the functions f1(τ) and f2(τ). Let now P =

(
p q
r s

)
be an integer matrix

with determinant 5 and consider the relatively prime numbers c = r
gcd(p,r) , d = − p

gcd(p,r) . They satisfy
cp+ dr = 0 and, moreover, since they are relatively prime we may find integers a and b such that
ad−bc = 1.Thus (

a b
c d

)
∈ SL2(Z), and

(
a b
c d

)(
p q
r s

)
=

(
p′ q′

0 s′

)
,

with p′s′ = 5. We also note the fact that(
1 n
0 1

)(
p q
0 s

)
=

(
p q+ns
0 s

)
,

therefore we can reduce P to the form
(

p q
0 s

)
with − s

2 6 q 6 s
2 .

We can also change the sign of any matrix P since
(
−1 0
0 −1

)
∈ SL2(Z), so we may assume p,s > 0.

This together with the fact that 5 is prime leaves us with only two possibilities: either p = 1 and s = 5
or p = 5 and s = 1.
Thus, any integer matrix P with determinant 5 can be reduced to one of the following forms:

P∞ =

(
5 0
0 1

)
, P0 =

(
1 0
0 5

)
, P±1 =

(
1 ±1
0 5

)
, P±2 =

(
1 ±2
0 5

)
.

The purpose of this is to consider the functions f (Pcτ) and study their behaviour under changes of
parameter of the form τ 7→ Aτ , A∈ SL2(Z). Since they correspond to the right multiplication of Pc by A,
we may reduce PcA to one of the matrices Pd , d = 0,1,2,3,4,∞, allowing us to express f (Pcτ) in terms
of f (Pdτ).
To make calculations easier, however, one doesn’t exactly study the functions f (Pcτ). Instead, one
defines

vc(τ) = f
(

τ + c′

5

)
, c = 0,1,2,3,4;

v∞(τ) = f (5τ) ,

where c′ is chosen such that c′ ≡ 0 (mod 48) and c′ ≡ c (mod 5). We will consider the three transfor-
mations τ 7→ τ +2,τ 7→ − 1

τ
and τ 7→ τ−1

τ+1 .
The reason why it is more convenient to study these functions as well as all the calculations can be
found in Prasolov and Soloviev’s Elliptic functions and elliptic integrals [1], sections 7.10 to 7.12; but
here we will just recollect the results in the following table:

u v∞ v0 v1 v2 v3 v4
τ 7→ τ +2 εu εv∞ εv2 εv3 εv4 εv0 εv1

τ 7→ − 1
τ

u v0 v∞ v4 v2 v3 v1

τ 7→ τ−1
τ+1

√
2

u −
√

2
v1
−
√

2
v4
−
√

2
v0
−
√

2
v2
−
√

2
v3
−
√

2
v∞

(3.19)

where ε = e−
πi
12 .
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3.4 Functions invariant under certain transformations of τ

In the next section we will finally derive the modular equation, but to do so we need one more theoretical
result whose proof would unfortunately take us too long.
Let

F(τ) = f 24(τ)+
212

f 24(τ)
= q−1

∞

∏
k=1

(
1+q2k−1

)24
+212q

∞

∏
k=1

(
1+q2k−1

)−24
. (3.21)

Recall the relations 3.12, 3.13, 3.17 and 3.18. Combining the first two relations one obtains f (τ +2) =
e−

iπ
12 f (τ) and so together with the other two relations we see that F(τ) is invariant under the changes of

parameter τ → τ +2,τ →− 1
τ

and τ → τ−1
τ+1 . Actually, a much stronger result holds:

Theorem 3.2. Let g(τ) be a meromorphic function defined in the upper half plane H = {τ ∈C | Im τ >
0}, g : H 7→C; and such that it is invariant under the transformations τ→ τ +2,τ→− 1

τ
and τ→ τ−1

τ+1 .

If under the change of parameter q = eiπτ the resulting function g̃(q) = g
(

log(q)
iπ

)
is meromorphic, then

g(τ) = R(F(τ)) where R is some rational function; R ∈ C(X).

In fact, a bit more can be said about this.
The equation F(τ) = α is solvable for any α ∈ C. Therefore, if R(F(τ)) is finite for every τ with
F(τ) 6= ∞, then R is a polynomial, because otherwise it would have a non-constant denominator with a
zero at some point α ∈ C and solving F(τ) = α we would have R(F(τ)) = ∞. A full discussion about
this section can be found in Elliptic functions and elliptic integrals [1], sections 7.16 to 7.20.

3.5 Deriving the modular equation

With the help of 3.19 we find that the functions uvc and u/vc are transformed by the following laws:

uv u
v

τ 7−→ τ +2 e−
πi
2 uv e

πi
3 u

v
τ 7→ τ− 1

τ
uv u

v
τ 7→ τ−1

τ+1 − 2
uv − v

u

In this table we understand that, although the subscript c of v does not appear explicitly, it undergoes
the same transformation as in 3.19. For example, the transformation τ 7→ − 1

τ
sends uv∞ to uv0.

Let us consider the functions

Ac =

(
u
vc

)3

+
(vc

u

)3
,

Bc = (uvc)
2− 4

(uvc)2 .

Their corresponding transformation table is given by:

A B
τ 7→ τ +2 −A −B
τ 7→ − 1

τ
A B

τ 7→ τ−1
τ+1 −A −B

where the subscript changes in the same fashion as in the previous the table. Then, the function

∏
c
(Ac−Bc)

2, c = 0,1,2,3,4,∞

does not vary under any of the previous transformations of τ .
Recall that f (τ) = q−

1
24 ∏

∞
k=1(1+q2k−1) with q := q(τ) = e−iπτ . Thus, letting

p(q) =
∞

∏
k=1

(1+q2k−1)
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we may write f (τ) = q−
1

24 p(q) and f (5τ) = q−
5

24 p(q5). This will allow us to write A∞(τ) and B∞(τ) in
a more convenient form.

A∞(τ) =

(
f (τ)
f (5τ)

)3

+

(
f (5τ)

f (τ)

)3

=
f (τ)6 + f (5τ)6

f (τ)3 f (5τ)3 =
q−

6
24 p(q)6 +q−

30
24 p(q5)6

q−
18
24 p(q)3 p(q5)3

=
q

1
2 p(q)6 +q−

1
2 p(q5)6

p(q)3 p(q5)3 ,

B∞(τ) = ( f (τ) f (5τ))2− 4

( f (τ) f (5τ))2 =
( f (τ) f (5τ))4−4

( f (τ) f (5τ))2 =
q−1(p(q)p(q5))4−4

q−
1
2 (p(q)p(q5))2

=
q−

1
2 (p(q)p(q5))4−4q

1
2

(p(q)p(q5))2 .

In the following discussion, we will change our point of view for convenience and consider the functions
A∞ and B∞ as functions of q or of τ depending on what we are trying to prove.
We know that p(q) is analytic inside the unit disk, and it is inmediate that p(0) = 1. Hence, we may
find a neighborhood U0 of 0 in wich p(q) and p(q5) are analytic and non-zero. Using the previously
obtained expressions for A∞(q) and B∞(q), we see that in said neighborhood

q
1
2 A∞(q) =

qp(q)6 + p(q5)6

p(q)3 p(q5)3 , and q
1
2 B∞(q) =

(p(q)p(q5))4−4q
(p(q)p(q5))2

are also analytic. Evaluating at q = 0 we see that both functions equal 1.
The purpose of this is to use Taylor’s theorem to write

q
1
2 A∞(q) = 1+o1(q), q

1
2 B∞(q) = 1+o2(q);

where o1(q) and o2(q) denote as usual little oes of q when q→ 0. Thus we have

lim
q→0

A∞(q)−B∞(q) = lim
q→0

q−
1
2 (o1(q)−o2(q)) = lim

q→0

(o1(q)−o2(q))

q
1
2

= 0,

i.e., A∞(q)− B∞(q) vanishes at q = 0 or, equivalently, when Im(τ)→ ∞ (since q = eiπτ ). But this
also proves that A∞(q)−B∞(q) doesn’t have an essential singularity at q = 0, in fact it doesn’t have a
singularity at all, and moreover it is finite for all q.
This is in fact true for all Ac(τ)− Bc(τ). Indeed, c′ ≡ 0 (mod 48) while equations 3.12 and 3.13
combined yield f (τ +2) = e−

iπ
12 f (τ). Therefore, the following is straightforward:

u(5τ− c′) = f (5τ) = v∞(τ).

Also,

vc(5τ− c′) = f
(

5τ− c′+ c′

5

)
= f (τ) = u(τ)

and therefore
Ac(5τ− c′) = A∞(τ), Bc(5τ− c′) = B∞(τ);

and because Im(τ)→ ∞ if and only if Im(5τ − c′)→ ∞, it is also true that A∞(q)−B∞(q) vanishes at
q = 0 (i.e., when Im(τ)→ ∞). Therefore, ∏c(Ac−Bc)

2 doesn’t have any singularities and theorem 3.2
guarantees that

∏
c
(Ac−Bc)

2 = R(F(τ)), R some rational function.

Furthermore, because ∏c(Ac−Bc)
2 is finite for every τ , we may conclude that R is in fact a polynomial.

Using this fact, we can prove that ∏c(Ac−Bc)
2 is constant.

Indeed, we know that as Im(τ)→ ∞, ∏c(Ac−Bc)
2→ 0. Let then

τ(t) = ti,
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and notice that q(t) = eiπτ(t) = e−πt t→+∞−−−→ 0, and therefore

| f (τ(t))|= |q−
1

24 (t)
∞

∏
k=1

(1+q2k−1(t))| t→+∞−−−→+∞.

But then

|F(τ(t))|=
∣∣∣∣ f 24(τ(t))+

212

f 24(τ(t))

∣∣∣∣ t→+∞−−−→ ∞,

so as t → +∞, F(τ(t)) tends to infinity in norm while R(F(τ(t)))→ 0, and it is a basic fact from
algebra that then R has to be a constant since we already know it is a polynomial. Hence, ∏c(Ac−Bc)

2

is constantly equal to zero and for some c = 0,1,2,3,4,∞ Ac(τ)− Bc(τ) = 0 for all τ , but then all
Ac(τ)−Bc(τ) are equal to zero because of equalities

Ac(5τ− c′) = A∞(τ), Bc(5τ− c′) = B∞(τ);

This result can be neatly written as follows:(u
v

)3
+
( v

u

)3
= (uv)2− 4

(uv)2

or equivalently,
v6−u5v5 +4uv+u6 = 0. (3.20)

We have finally arrived to the modular equation, the keystone for solving the general quintic equation.
What’s interesting about this equation is that fixing u(τ) = f (τ) we may consider it as function of v, in
wich case its six roots turn out to be v = vc(τ) for c = 0,1,2,3,4,∞.

3.6 Solving quintic equations

In order to get our hands on the quintic, we need to transform the modular equation into something of
degree 5. To do so, let

wc =
(v∞− vc)(vc+1− vc−1)(vc+2− vc−2)√

5u3
, for c = 0,1,2,3,4.

(the subscripts are understood modulo 5, except of course when it is ∞). Again we obtain one (last)
table:

w0 w1 w2 w3 w4
τ 7→ τ +2 −w2 −w3 −w4 −w0 −w1

τ 7→ − 1
τ

w0 w2 w1 w4 w3

τ 7→ τ−1
τ+1 −w0 −w3 −w4 −w2 −w1

(3.22)

The transformations τ → τ + 2 and τ → − 1
τ

are straightforward. For τ → τ−1
τ+1 we need one extra

observation.
Recall the modular equation, 3.20. We have said that for a fixed τ and regarded as a polynomial in v,
its six roots are given by the vc(τ). Therefore, since u6 is the independent term Vieta’s theorem implies
that

∏vc = u6.

With this in mind, let’s carry out the computations for w1 as an example:

w1 =
(v∞− v1)(v2− v0)(v3− v4)√

5u3
=

1√
5

(v∞

u
− v1

u

)(v2

u
− v0

u

)(v3

u
− v4

u

)
(τ→ τ−1

τ+1)−−−−−→ 1√
5

(
u
v0
− u

v1

)(
u
v4 −

u
v2

)(
u

v∞

− u
v3

)
=

u3(v1− v0)(v2− v4)(v3− v∞)√
5∏vc

=
(v1− v0)(v2− v4)(v3− v∞)√

5u3
=−w3
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The rest are obtained in the same manner.
Consider now the following polynomial:

4

∏
i=0

(w−wi) = w5 +a1w4 +a2w4 +a3w2 +a4w+a5. (3.23)

Recalling how the coefficients of a polynomial may be expressed in terms of its roots, we easily conclude
from the table 3.22 that a2

1,a2,a2
3,a4 and a2

5 are invariant under the changes τ 7→ τ +2, τ 7→ − 1
τ

and τ→
τ−1
τ+1 . Also, the way we have defined the wi’s, it is clear that the coefficients of this polynomial are finite
whenever u 6=∞,0. Since these are the only possible values of u for wich u24+212u−24 =F(τ) is infinite,
the last observation from section 3.4 allows us to conclude that the ai‘s are polynomials on F(τ) :=
u24 + 212u−24 = q−1

∏
∞
k=1
(
1+q2k−1

)24
+ 212q∏

∞
k=1
(
1+q2k−1

)−24. We have already discussed how
the infinite products that appear are analytic inside the unit disk, so that there is only one pole of order
1 given by the factor q−1 of q−1

∏
∞
k=1(1+q2k−1)24. The upshot of this observation is that a polynomial

in ζ will have degree n if and only if it has a pole of order n at q = 0.
With this in mind, one may calculate the smallest appearing power of q for each of the ai’s to find out
their degrees. To clarify what we mean exactly by "smallest appearing power of q", recall that

f (τ) = q−
1
24

∞

∏
k=1

(1+q2k−1).

The infinite product, as we have just said, is analytic inside the unit disk, which allows us to express it
as an infinite series

∞

∏
k=1

(1+q2k−1) =
∞

∑
n=0

αnqn;

so that

f (τ) = q−
1
24

∞

∏
k=1

(1+q2k−1) =
∞

∑
n=0

αnqn− 1
24 ,

and since α0 = 1 we can say that the smallest appearing power of q is q−
1
24 . This will make our work

much easier, since the coefficients ai are products of the functions vc(τ) = f
(

τ+c′
5

)
, so we will be able

to know if they have a pole at q = 0, and if so its order, just by looking at the smallest appearing powers
of q in the functions vc(τ).

It is easy to see that for c 6=∞ the first term in the expansion of vc(τ) is
(

e
πi(τ+c′)

5

)− 1
24
=
(

e
πic′

5

)− 1
24

q−
1

120 ,

while for c = ∞ it is q−
5
24 .

Letting α = e−
4πi
5 , it can be easily checked that e−

πic′
120 = αc′ just by using the fact that c′ ≡ 0 (mod 48).

Hence, the first term in the expansion of wz is

q−
5
24 q−

1
120
(
αz+1−αz−1

)
q−

1
120
(
αz+2−αz−2

)
√

5q−
1
8

= λq−
1

10 ,

where λ = α2z(α3−α−α−1+α3)√
5

= α2z, since

a3−α−α
−1 +α

−3 = 2(cos
12π

5
+ cos

4π

5
) = 2(cos

2π

5
+ cos

4π

5
) =
√

5.

Because in the expression of as in terms of the wi’s there appears sums of products of s different roots wi,
the expansion of as begins with the term q−

s
10 . Thus, the functions a2

1,a2,a2
3,a4 are constant while a2

5 is a
linear polynomial of u24 +212u−24 = q−1 + . . . , because its expansion begins with (α2α4α6α8)2q−1 =
q−1. In both expressions q−1 appears with coefficient 1, so

A2
5 = u24 +

212

u24 +C.
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We are now going to calculate the value of the constants C,a1,a2,a3,a4, and for this we need only
calculate the value of the vc’s for one τ .
For convenience, let τ = i. Since −1

i = i, by 3.15 we have

f1(i) = f2(i).

Moreover, recalling their expressions as infinite products of q we have that for a purely imaginary τ ,
f , f1, and f2 are real and positive. Therefore, relations f 8 = f 8

1 + f 8
2 and f f1 f2 =

√
2 together with

f1(i) = f2(i) imply that f = 4
√

2.
Now, since (2− i)(2+ i) = 5, i−2

5 =− 1
2+i and so

v3(i) = f
(

i+48
5

)
= f

(
i−2

5
+10

)
= e−

10πi
24 f

(
i−2

5

)
= e−

10πi
24 f (i+2) = e−

πi
2 f (i) =−i 4

√
2.

Similarly, v2(i) = i 4
√

2.
But these are two roots of the modular equation when τ = i, which takes the form

v6−a5v5 +a9v+a6 = 0,

where a = 4
√

2. Dividing by (v− v2)(v− v3) = v2−a2 yields

v4−a5v3 +a2v2 +a7v+a4

This equation turns out to have two double roots. Indeed, assume that for some α,β ∈ C we have

v4−a5v3 +a2v2 +a7v+a4 = (v−α)2(v−β )2.

Comparing coefficients, this will happen if and only if

α +β = a,

αβ =−a2.

But these are too the equations for the roots of v2−av−a2, which we can easily solve to obtain

α =
a(1+

√
5)

2
,

β =
a(1−

√
5)

2
.

So, the rest of the vi’s must assume either the value α or β . Knowing this, we can skip a lot of compu-
tations: observe that

v∞(i) = f (5i) = f (− 1
5i
) = f (

i
5
) = v0(i).

We have also mentioned that for purely imaginary values of τ , f (τ) assumes real and positive values,
so that necessarily

v∞(i) = v0(i) = α

since β < 0 < α . The remaining values are necessarily the other two roots of the modular equation, i.e.,

v1(i) = v4(i) = β .

With this at hand, it is easy to calculate the corresponding wi’s for τ = i. They are

w0 = 0,w1 = w2 = i
√

5,w3 = w4 =−i
√

5,

and thus the corresponding fifth degree polynomial is

w(w− i
√

5)2(w+ i
√

5)2 = w(w2 +5)2.
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This implies that
a2

5(i) = 0,

and so

C =−
(

u24(i)+
212

u24(i)

)
=−26−26 =−27.

Hence

a2
5(i) = u24 +

212

u24 −27 =

(
u12− 26

u12

)2

,

and therefore

a5 =±
(

u12 +
212

u12

)
.

Recalling that A5 = w0w1w2w3w4 and u(τ) = q−
1

24 ∏
∞
k=1(1+q2k−1) it is easily seen that

lim
q→0

q
1
2 a5 =− lim

q→0
q

1
2 u = 1,

so that

a5 =−u12 +
26

u12 .

Thus, equation 3.23 takes the form

w(w2 +5)2 = u12−64u−12.

Using relations f 8 = f 8
1 + f 8

2 and f f1 f2 =
√

2 one can check that

u12− 26

u12 =
f 24−64

f 12 =

(
f 8
1 − f 8

2
f 2

)2

.

Thus, √
w(τ) =±

f 8
1 (τ)− f 8

2 (τ)

f 2(w2(τ)+5)
.

Now, setting

y(τ) =
f 8
1 (τ)− f 8

2 (τ)

f 2(τ)(w2(τ)+5)
,

we have

y5 +5y = y(y4 +5) = y(w2 +5) =
f 8
1 − f 8

2
f 2 .

Now, given a quintic equation of the form y5 +5y = a, a ∈ C; if we can find some τ such that

f 8
1 (τ)− f 8

2 (τ)

f 2(τ)
= a, (3.24)

then we can easily find the roots of y5+5y = a by first calculting all the vc(τ), then the wz(τ) and finally
the yz(τ), which will be the roots of y5 +5y = a.
In fact, we can simplify 3.24 a bit. Squaring it, we get

f 16
1 (τ)+ f 16

2 (τ)−2 f 8
1 (τ) f 8

2 (τ) = a2 f 4(τ).

Squaring the relation f 8 = f 8
1 + f 8

2 one gets f 16 = f 16
1 + f 16

2 + 2 f 8
1 f 8

2 . This together with f f1 f2 =
√

2
yields f 16(τ)− 64

f 8(τ)
= a2 f 4(τ), and multiplying by f 8(τ) gives

f 24(τ)−a2 f 12(τ)−64 = 0,

which is a quadratic equation for t = f 12(τ). For a full discussion on the solvability of equation 3.24,
see Elliptic functions and elliptic integrals by Prasolov and Soloviev [1],sections 7.16 to 7.18.





Chapter 4

The Bring-Jerrard form of a quintic
equation

For completeness, we are going to briefly discuss how the general quintic

x5 + px4 +qx3 + rx2 + sx+ t = 0 (*)

can be reduced to the Bring-Jerrard form

x5 + x+u = 0.

This is basically done in two steps. First, for a suitable quadratic transformation

y = x2 +ax+b,

the corresponding values of y for each root of (*) satisfy a quintic equation of the form

y5 +A1y2 +A2y+A3 = 0.

This is called the principal quintic form.

The principal quintic can in turn be simplified to the form

z5 +B1z+B2 = 0

by a quartic transformation
z = y4 +ay3 +by2 + cy+d.

Finally, the scaling ζ = 1
4√B1

z transforms the previous equation into

ζ
5 +ζ +u = 0.

To begin, we first need one definition:

Definition 4.1. Given two polynomials p(x) = a0 + a1x+ . . .+ anxn and q(x) = b0 + b1x+ . . .+ bmxm

over a commutative ring R, we will call the resultant of p and q, and denote it by Res(p(x),q(x)), the
following determinant:

Res(p(x),q(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 b0 0 · · · 0
a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

...
. . . a0

...
...

. . . b0

an an−1 · · ·
... bm bm−1 · · ·

...

0 an
. . .

... 0 bm
. . .

...
...

...
. . . an−1

...
...

. . . bm−1
0 0 · · · an 0 0 · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
25
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In the previous matrix it was assumed for simplicity that n = m, but the way to construct it for any
n,m is straightforward considering that the resulting matrix needs to be (n+m)× (n+m).

The importance of the resultant for our purposes is that, given two bivariate polynomials p(x,y),q(x,y)∈
C[X ,Y ], if one considers them as polynomials p̄(x), q̄(x) in X over the ring C[Y ], the resultant Res(p̄(x), q̄(x))
is a polynomial in Y whose roots are precisely the y-coordinates of the common roots of p(x,y) and
q(x,y). For simplicity, one usually denotes the resultant in the variable X as

Resx(p(x,y),q(x,y)) := Res(p̄(x), q̄(x))

Knowing this, let us proceed with the first transformation. Let

p(x,y) = p(x) = x5 + px4 +qx3 + rx2 + sx+ t = 0

and
q(x,y) = x2 +ax+b− y.

Notice that solving p(x) and then calculating y from the Tschirnhausen transformation y = x2 +ax+b
is the same as finding the y-coordinates of the common roots of p(x,y) and q(x,y).
Hence, we consider

Resx(p(x,y),q(x,y)) = y5 + c1y4 + c2y3 + c3y2 + c4y+ c5,

where

c1 =−p2 +2q+ pa−5b,

c2 = q2−2pr+2s− pqa+3ra+qa2 +4p2b−8qb−4pab+10b2.

(The calculations for this are quite tedious to do by hand. In wolframalpha.com, one can use the com-
mand "Collect[Resultant[x5+ px4+qx3+rx2+sx+t, y−(x2+ax+b), x],y]" and check the coefficients
for y4 and y3).
One then solves for b in c1 = 0 in terms of a and substitutes in c2 to solve c2 = 0 as a quadratic polyno-
mial in a.

For the final step, consider the quintic equation

y5 +uy2 + vy+w = 0

together with the quartic Tschirnhausen transformation

z = y4 + py3 +qy2 + ry+ s.

Using resultants as before yields a quintic equation for z:

z5 +d1z4 +d2z3 +d3z2 +d4z+d5 = 0,

where

d1 =−5s+3pu+4v,

d2 = 10s2−12psu+3p2u2−3qu2 +2q2v−16sv+5puv+6v2 +5pqw+ r(3qu+4pv+5w),

d3 = e3r3 + e2 + e1r+ e0,

with e3,e2,e1 some polynomials in p,q,s.
The expressions we have chosen for d2 and d3 reveal that r is going to have a special role. Indeed, one
first solves

3qu+4pv+5w = 0

and obtains q = −5w−4pv
3u (where u 6= 0, for otherwise the quintic would already be in Bring-Jerrard

form). Then, one finds p from d1 = 0 and substitutes the obtained values for p and q in d2, so that
d2 = 0 can be solved as a quadratic in s. Finally, one then solves d3 = 0 as a cubic equation in r.
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