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ÍNDICE ÍNDICE
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1 INTRODUCCIÓN:
CONSIDERACIONES PREVIAS Y ECUACIÓN DE HEISENBERG

Resumen

En este trabajo se analizarán diversos sistemas f́ısicos y las simetŕıas que los rigen.

También se comprobará cómo estas simetŕıas pueden estar anómalamente rotas en función

de los dominios de definición con que uno trabaje a la hora de emplear el formalismo de

la Mecánica Cuántica. Aśı pues, el objetivo es mostrar cómo dichos dominios tienen una

importancia capital y dan lugar a comportamientos inesperados.

1. Introducción:

Consideraciones previas y ecuación de Heisenberg

Según los postulados que establecen el formalismo de la Mecánica Cuántica [1], los esta-

dos que describen completamente el sistema a estudiar se caracterizan mediante funciones

de onda de cuadrado integrable Ψ(r) en un espacio de Hilbert H complejo y separable o

bien por medio sus correspondientes kets |Ψ〉, cumpliéndose la relación

Ψ(r) = 〈r|Ψ〉 . (1)

Los postulados también dictan que a cada magnitud f́ısica observable se le asocia un

operador lineal y autoadjunto que actúa en un dominio denso del espacio de Hilbert ya

mencionado. Estos dominios de definición son subespacios, dentro del espacio de Hilbert,

sobre los que están definidos dichos operadores y es este hecho el que da lugar a las rupturas

de simetŕıas que se tratarán aqúı.

El estudio de los dominios de definición resulta de gran importancia al estudiar la

evolución del promedio de un operador cualquiera B. Esta viene dada por la ecuación de

Heisenberg comúnmente expresada como

d

dt
〈Ψ(t)|BΨ(t)〉 =

〈
Ψ(t)

∣∣∣∣∣∂B∂t Ψ(t)

〉
+
i

~
〈Ψ(t)| [H,B] Ψ(t)〉 , (2)

donde H define al operador Hamiltoniano del sistema que, en el caso de considerar una

sola part́ıcula en nuestro sistema, puede escribirse

H =
p2

2m
+ V (r) , (3)

expresión en la que aparecen los operadores vectoriales momento lineal p = (p1, ..., pn) =

−i~
(

∂
∂x1

, ..., ∂
∂xn

)
y posición r = (x1, ..., xn) siendo n la dimensión del sistema. Tenemos

además un potencial V (r) que actúa sobre la part́ıcula.

Sin embargo, para que (2) sea aplicable debe darse la condición de que el dominio de

definición del Hamiltoniano H permanezca invariante bajo la actuación del operador B,
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

lo que puede expresarse matemáticamente de forma

BΨH ∈ D(H) ∀ΨH ∈ D(H) , (4)

dondeD(H) representa el dominio de definición del Hamiltoniano. En ese caso, al cumplirse

para toda función de ondas en el dominio, podemos simplemente escribir

dB

dt
=
∂B

∂t
+
i

~
[H,B] . (5)

Por otro lado, si no se cumple lo expuesto en (4), nos vemos forzados a añadir un término

adicional [2] de forma que, considerando al Hamiltoniano H como un operador autoadjun-

to, la expresión (2) queda escrita

d

dt
〈Ψ(t)|BΨ(t)〉 =

〈
Ψ(t)

∣∣∣∣∣∂B∂t Ψ(t)

〉
+
i

~

(
〈HΨ(t)|BΨ(t)〉 − 〈Ψ(t)|BHΨ(t)〉

)
=

=

〈
Ψ(t)

∣∣∣∣∣∂B∂t Ψ(t)

〉
+
i

~
〈Ψ(t)| [H,B] Ψ(t)〉+A . (6)

Se tiene aśı la ecuación de Heisenberg modificada, donde A se conoce como el término

adicional o anómalo, que toma la forma

A =
i

~
〈Ψ(t)|(H† −H)BΨ(t)〉 =

i

~

(
〈HΨ(t)|BΨ〉 − 〈Ψ(t)|HBΨ(t)〉

)
. (7)

Puede verse que A es nulo si se cumple la condición (4) por la que H† = H († denota

el operador adjunto) al actuar sobre los estados BΨ(t) ∈ D(H) dado que se trata de un

operador autoadjunto en su dominio. Recuperamos entonces la expresión usual (2).

En este trabajo estudiaremos sistemas en los que ciertas simetŕıas se encuentran anóma-

lamente rotas. Esto es debido a que los generadores de dichas simetŕıas no dejan invariante

el dominio de definición del operador Hamiltoniano tras actuar sobre estados pertenecien-

tes a él. Son estos casos en los que la ecuación de Heisenberg modificada (6) entra en juego

y verificaremos que es ésta la que se cumple tras obtener el término anómalo A.

Además, para terminar, haremos un breve estudio de cómo afecta la elección de dominio

de definición a la teoŕıa supersimétrica del átomo de hidrógeno en los estados con momento

orbital nulo l = 0.

2. Ruptura anómala de simetŕıa conforme bidimensional

Nuestra atención se centra ahora en un sistema en dos dimensiones formado por una

part́ıcula libre sujeta a una interacción δ2(r) en el origen, siendo el Hamiltoniano que lo

describe de forma clásica

H =
p2

2m
+ λ

1

r
δ(r) , (8)

con λ como parámetro de la interacción.
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

Antes de pasar al caso cuántico merece la pena ver cómo se comportan las simetŕıas

clásicas. Para ello introducimos los generadores de la simetŕıa conforme

D = tH −G = tH − 1

2
(rp) , (9)

K = −t2H + 2tD +
m

2
R2 = t2H − t (rp) +

m

2
r2 , (10)

que junto con el Hamiltoniano H permiten establecer ciertas relaciones usando el corche-

te de Poisson {A,B} =
∑

i

(
∂A
∂qi

∂B
∂pi
− ∂A

∂pi
∂B
∂qi

)
con qi y pi las coordenadas y momentos

generalizados. Tenemos aśı, consultando el Apéndice A para un desarrollo detallado

{K,D} = −K , (11)

{H,K} = 2D , (12)

{D,H} = −H . (13)

Las ecuaciones clásicas del movimiento implican que para una magnitud f(p, q, t) cual-

quiera se cumple
d

dt
f(p, q, t) = {f,H}+

∂f

∂t
, (14)

donde cabe notar el parecido con la ecuación de Heisenberg (2), cambiando corchetes de

Poisson por conmutadores de Lie. En consecuencia en nuestro problema se tiene que

d

dt
H =

d

dt
D =

d

dt
K = 0 , (15)

indicando que son constantes del movimiento.

Veamos qué sucede al pasar al caso cuántico. Para ello cuantizamos el Hamiltoniano

anterior obteniendo

H ≡ H(r, ϕ) = − ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
+ λ

1

r
δ(r) . (16)

Si consideramos la extensión del Hamiltoniano a todo el espacio de Hilbert H, es de-

cir, D(H) = {f ∈ H|Hf ∈ H , f(0) finitos} con H = L2(R+, rdr) ⊗ L2(S1, dϕ) se tiene

entonces que el Hamiltoniano propuesto es invariante de escala. Más concretamente, in-

troduciendo una dilatación r → αr (r , α ∈ R+ ∪ {0})

∂2

∂(αr)2
+

1

(αr)

∂

∂(αr)
+

1

(αr)2

∂2

∂ϕ2
=

1

α2

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
,

1

(αr)
δ(αr) =

1

α2r
δ(r) ,

=⇒ H(αr, ϕ) =
1

α2
H(r, ϕ) . (17)

Este hecho implica además que el sistema tratado permanece invariante bajo la ac-

tuación de los generadores del grupo conforme (que definen un álgebra de invariancia

SO(2, 1)), dados por el propio Hamiltoniano definido en (16), el operador de dilatación D

y el generador conforme K [3]. Estos últimos operadores se escriben ahora
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

D = tH −G = tH − 1

4
(rp + pr) , (18)

K = −t2H + 2tD +
m

2
r2 = t2H − t

2
(rp + pr) +

m

2
r2 . (19)

Puede verse en el Apéndice B que se cumplen las siguientes reglas de conmutación

formales (ignorando los dominios) usando los corchetes de Lie [A,B] = AB −BA

i

~
[K,D] = K , (20)

i

~
[H,K] = −2D , (21)

i

~
[D,H] = H , (22)

de modo que sus promedios permanecen invariantes en el tiempo de acuerdo con (2)

d

dt
〈H〉 =

d

dt
〈D〉 =

d

dt
〈K〉 = 0 (23)

y hablamos de constantes del movimiento.

Notar ahora que las expresiones clásicas (11), (12) y (13) se relacionan con las expresiones

cuánticas (20), (21) y (22) según

− {A,B} −→ i

~
[A,B] . (24)

Además vemos que, usando (2) y (14), llegamos a que los operadores son constantes del

movimiento y podemos pensar que la simetŕıa se conserva al pasar del formalismo clásico

al cuántico. Sin embargo, la ausencia de dominios de definición en el caso clásico implica

que al cuantizar el sistema se pueden dar casos, en función del dominio estudiado, en los

que la simetŕıa se encuentre anómalamente rota al no poder implementarse cuánticamente.

Es aqúı donde tenemos que hacer uso de la ecuación de Heisenberg modificada (6) para

hallar la evolución temporal y encontramos que (23) puede dejar de cumplirse.

Volviendo al Hamiltoniano, puede verse que si se mantienen la simetŕıa conforme y la

invariancia de escala es imposible tener un estado ligado con enerǵıa diferente de 0. Para

probarlo supondremos que Ψ(r, ϕ) representa un autoestado del Hamiltoniano H(r, ϕ)

H(r, ϕ)Ψ(r, ϕ) = EΨ(r, ϕ) . (25)

Resulta entonces que al implementar una dilatación caracterizada por α

H(αr, ϕ)Ψ(αr, ϕ) = EΨ(αr, ϕ) . (26)

Ateniéndonos a lo expuesto en (17) podemos relacionar ambos resultados de modo que

H(αr, ϕ)Ψ(αr, ϕ) =
1

α2
H(r, ϕ)Ψ(αr, ϕ) = EΨ(αr, ϕ) =⇒

=⇒ H(r, ϕ)Ψ(αr, ϕ) = α2EΨ(αr, ϕ) . (27)
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

Aśı Ψ(αr, ϕ) es también autoestado del Hamiltoniano H(r, ϕ) cuyo autovalor depende de

la dilatación α. Se tendrá por tanto un continuo de valores posibles que no tiene cabida

en la discretización presente para los estados ligados y concluimos aśı que, en el caso de

existir estados ligados, éstos solo pueden tener enerǵıa nula (α2 · 0 = 0).

Sin embargo, resulta que śı que es posible encontrar autoestados del operador (16) con

enerǵıa no nula. Concretamente, hallamos ψg(r, ϕ) = CgKg(αr) e
igϕ, donde 0 < |g| < 1,

Cg es una constante de normalización y Kg(z) es la función de Bessel modificada. Se trata

de un estado ligado con enerǵıa E = − ~2
2mα

2 (< 0) que pone en contradicción lo que hemos

desarrollado anteriormente y sugiere que en algún caso la simetŕıa conforme está rota.

Cabe entonces preguntarse la razón por la que esto sucede y la respuesta se encuentra en

los dominios de definición, como uno podŕıa a estas alturas esperarse.

Para estudiar esta situación de forma apropiada empezaremos por definir adecuada-

mente el dominio de definición del Hamiltoniano DH de forma que sea denso en el espacio

de Hilbert H, aśı DH = H y es autoadjunto
(
H† = H

)
actuando en DH . Para ello co-

menzamos eliminando las singularidades del origen por lo que, trabajando en R2/{0, 0} y

tomando coordenadas polares como antes

H = − ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
. (28)

Se tiene aśı el Hamiltoniano correspondiente a una part́ıcula libre* y serán las condiciones

de contorno en el dominio DH las que darán cuenta de la interacción delta en el origen.

Optamos por definir primero el dominio del operador d2/dϕ2. Estamos interesados en

estudiar el efecto que tiene la interacción delta en las simetŕıas y, como no buscamos mo-

delizar una nueva interacción restringiendo el dominio de definición de d2/dϕ2, tomaremos

condiciones de contorno cuasi/pseudo-periódicas para éste. Escribimos entonces

dθ =

{
f(ϕ) ∈ L2(S1, dϕ)

∣∣∣∣∣f(0) = e−i2πθf(2π),
df

dϕ
(0) = e−i2πθ

df

dϕ
(2π); θ ∈ [0, 1)

}
(29)

y usaremos

f ∈ D
(
d2

dϕ2

)
≡ dθ , q ∈ D

((
d2

dϕ2

)†)
, (30)

donde † denota el operador adjunto. Aśı, si buscamos que el operador sea autoadjunto en

el dominio, deberá cumplirse, haciendo uso de la integración por partes〈
q

∣∣∣∣∣ d2

dϕ2
f

〉
=

∫ 2π

0
q∗
d2f

dϕ2
dϕ =

∣∣∣∣∣q∗ dfdϕ
∣∣∣∣∣
2π

0

−
∫ 2π

0

dq∗

dϕ

df

dϕ
dϕ =

=

∣∣∣∣∣q∗ dfdϕ
∣∣∣∣∣
2π

0︸ ︷︷ ︸
=0

−

∣∣∣∣∣dq∗dϕ f
∣∣∣∣∣
2π

0︸ ︷︷ ︸
=0

+

∫ 2π

0

d2q∗

dϕ2
fdϕ =

〈
d2

dϕ2
q

∣∣∣∣∣f
〉

(31)

*Notar que lo único que cambia es la eliminación del término con δ(r).
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

y esta expresión debe ser válida ∀f, q. Por ello(
q∗(2π)− e−i2πθq∗(0)

) df
dϕ

(2π) = 0 =⇒ q(0) = e−i2πθq(2π) , (32)(
dq∗

dϕ
(2π)− e−i2πθ dq

∗(0)

dϕ

)
f(2π) = 0 =⇒ dq

dϕ
(0) = e−i2πθ

dq

dϕ
(2π) . (33)

Podemos concluir finalmente que

D

((
d2

dϕ2

)†)
= D

(
d2

dϕ2

)
≡ dθ . (34)

y el operador es autoadjunto en el dominio elegido. Sus autoestados ξ(ϕ) ∈ dθ vendrán

dados por

ξn,θ(ϕ) ≡ ξg(ϕ) =
1

(2π)1/2
eigϕ =

1

(2π)1/2
ei(n+θ)ϕ , (35)

donde g = n+ θ con n ∈ Z.

Consecuentemente sus autovalores correspondientes serán −g2 = −(n+ θ)2.

A su vez el dominio del Hamiltoniano se puede escribir en función de las infinitas

extensiones angulares caracterizadas por n y θ

DH = ⊕
n∈Z

[Dn,θ(R+, rdr)⊗ ξn,θ(ϕ)] = ⊕
n∈Z

[
Dn,θ(R+, rdr)⊗ (2π)−(1/2)ei(n+θ)ϕ

]
(36)

con Dn,θ(R+, rdr) tal que la parte radial del Hamiltoniano (28) sea autoadjunta

Hθ
r = − ~2

2m

(
d2

dr2
+

1

r

d

dr
− (n+ θ)2

r2

)
. (37)

Para la obtención del dominio radial seguiremos el método de ı́ndices de von Neumann [4].

Consideramos inicialmente un dominio de definición inicial D
(
Hθ
r

)
≡ Dn,θ con funciones

de soporte compacto§ y tal que Hθ
r sea simétrico en él. Esto permite calcular sus ı́ndices

de defecto resolviendo la ecuación espectral(
Hθ
r

)†
φ±(r) = ±iΛφ±(r) , (38)

donde Λ es un número real positivo que se introduce a los efectos de mantener las di-

mensiones de la ecuación y donde φ±(r) ∈ D
((
Hθ
r

)†)
. A la dimensión de los subespacios

engendrados por φ+ y φ− se le denota por d+ y d− respectivamente y atendiendo a su

valor se tiene que

Si d+ 6= d−, el operador no admite ninguna extensión autoadjunta.

Si d+ = d− = 0, el operador es esencialmente autoadjunto y su adjunto coincide con

su cierre por lo que basta tomar la extensión cerrada mı́nima de dicho operador.

§Se conocen como funciones de soporte compacto de un dominio aquellas funciones que se anulan fuera
de un conjunto compacto.
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Si d+ = d− 6= 0, el operador admite infinitas extensiones autoadjuntas.

Introduciendo (37) en la ecuación espectral (38) llegamos a

− ~2

2m

(
d2

dr2
+

1

r

d

dr
− (n+ θ)2

r2

)
φ± = ±iΛφ± . (39)

Para facilitar su resolución introducimos el siguiente cambio de variables

z+ = ζ (−1)1/4r , z− = ζ (−1)3/4r , (40)

con ζ2 = 2mΛ
~2 . La expresión (39) queda aśı reescrita para cada función como

z2
+

d2φ+

dz2
+

+ z+
dφ+

dz+
+ (z2

+ − g2)φ+ , (41)

z2
−
d2φ−
dz2
−

+ z−
dφ−
dz−

+ (z2
− − g2)φ− . (42)

Se trata pues de dos ecuaciones diferenciales de Bessel, una para cada variable, donde

además se cumple que g2 = (n + θ)2 ≥ 0. Concretamente solo estamos interesados en

g 6= 0 puesto que este caso particular ya fue tratado extensamente en [5]. Por lo tanto

tendremos como solución en cada caso una combinación lineal de las funciones de Bessel de

primera y segunda especie, Jg(z±) y Yg(z±) respectivamente [6], puesto que son linealmente

independientes entre śı para todo valor de g. Con ello

φ+ = A+Jg(z+) +B+Yg(z+) , (43)

φ− = A−Jg(z−) +B−Yg(z−) . (44)

Para extraer más información y proseguir nuestro desarrollo estudiaremos los comporta-

mientos de las soluciones en los casos ĺımite dados por los extremos del dominio:

r → 0 =⇒ z± → 0

Se tiene pues

Jg(z± → 0) ∼ 1

Γ(g + 1)

(
1

2
z±

)g
∝ rg , (45)

Yg(z± → 0) ∼ −Γ(g)

π

(
1

2
z±

)−g
∝ r−g . (46)

Además deben tenerse en cuenta las condiciones de normalización, de modo que su norma

sea finita. En particular el problema surge al integrar r−1 dado que el logaritmo diverge

cuando r → 0 ∫
r−2|g| r dr <∞⇐⇒ r−2|g|+1 > r−1 ⇐⇒ |g| < 1 . (47)

Aśı −1 < g < 1 para que la ambas funciones de Bessel sean normalizables en el origen y
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distinguimos:

� g ≥ 1 y Yg(z±) no es normalizable, de modo que B± = 0.

� g ≤ −1 y Jg(z±) no es normalizable, de modo que A± = 0.

r →∞ =⇒ |z±| → ∞

En esta situación

Jg(|z±| → ∞) ∼

√
2

πz±
cos

(
z± −

1

2
gπ − 1

4
π

)
(48)

Yg(|z±| → ∞) ∼

√
2

πz±
sin

(
z± −

1

2
gπ − 1

4
π

)
(49)

Consecuentemente, en función de los casos anteriores, las funciones se escriben:

� g ≥ 1 y φ± = A±Jg(z±) dado (47).

Sin embargo, puesto que¶ z± = (a± ib) r se tiene, usando relaciones trigonométricas

cos

(
z± −

(
1

2
gπ +

1

4
π

))
= cos(z±) cos

(
1

2
gπ +

1

4
π

)
+ sin(z±) sin

(
1

2
gπ +

1

4
π

)
, (50)

donde

cos(z±) = cos((a± ib)r) =
eiare∓br + e−iare±br

2

r→∞−−−→∞ , (51)

sin(z±) = sin((a± ib)r) =
eiare∓br − e−iare±br

2

r→∞−−−→ ∓∞ . (52)

Vemos entonces que Jg(z±) diverge para g ≥ 1 y no existen posibles soluciones para la

función de ondas.

� g ≤ −1 y φ± = B±Yg(z±) dado (47).

Ahora, con z± = (a± ib)r se tiene

sin

(
z± −

(
1

2
gπ +

1

4
π

))
= sin(z±) cos

(
1

2
gπ +

1

4
π

)
− cos(z±) sin

(
1

2
gπ +

1

4
π

)
, (53)

donde de nuevo

cos(z±) = cos((a± ib)r) =
eiare∓br + e−iare±br

2

r→∞−−−→∞ , (54)

sin(z±) = sin((a± ib)r) =
eiare∓br − e−iare±br

2

r→∞−−−→ ∓∞ . (55)

¶z+ ∝ (−1)1/4 r y z− ∝ (−1)3/4 r y queda claro que estamos ante números complejos.
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Resulta entonces que Yg(z±) diverge para g ≤ −1 y no encontramos posibles soluciones

para la función de ondas.

Entonces si |g| ≥ 1 no existen posibles soluciones para φ±(r) de modo que los ı́ndices

de defecto serán d+ = d− = 0 y el operador es esencialmente autoadjunto actuando en el

dominio Dn,θ.

Para |g| < 1 y g 6= 0 tanto Jg(z±) como Yg(z±) son normalizables en el origen, de modo

que basta con encontrar una combinación lineal de ellas que converja en el infinito. De

entre las posibles combinaciones lineales existentes cabe destacar

H(1)
g (z±) = Jg(z±) + iYg(z±) , (56)

H(2)
g (z±) = Jg(z±)− iYg(z±) , (57)

que cumplen:

- H
(1)
g (z±)→ 0 cuando |z±| → ∞ (r →∞) en el sector 0 < arg{z±} < π.

- H
(2)
g (z±)→ 0 cuando |z±| → ∞ (r →∞) en el sector −π < arg{z±} < 0.

- Son linealmente independientes entre śı para todo valor de z±.

Cuando |z±| → ∞ las funciones toman la forma

H(1)
g (z±) ∼

√
2

πz±
ei(z±−

1
2
gπ− 1

4
π) ∝ eiz± , (58)

H(2)
g (z±) ∼

√
2

πz±
e−i(z±−

1
2
gπ− 1

4
π) ∝ e−iz± . (59)

Teniendo en cuenta que� z± =
ζ√
2

(1± i)r sucede que

H(2)
g (z+) ∝ er r→∞−−−→∞ , (60)

H(1)
g (z−) ∝ er r→∞−−−→∞ . (61)

Con lo que finalmente las soluciones para φ±(r) quedan expresadas como

φ+(r) = C+H
(1)
g (z+) , (62)

φ−(r) = C−H
(2)
g (z−) , (63)

donde C± denotan las constantes de normalización.

Notar además que este resultado podŕıa haberse obtenido considerando que arg{z+} = π/4

y arg{z−} = −π/4, de modo que según las propiedades que cumplen ambas funciones

llegamos de nuevo a (62) y (63).

�Si evaluamos adecuadamente (−1)1/4 y (−1)3/4.
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

De esta forma, se ha obtenido una solución para φ+ y otra para φ−. Por consiguiente

los ı́ndices de defecto cumplen d+ = d− 6= 0 y el operador Hθ
r (r) admite infinitas exten-

siones autoadjuntas.

La teoŕıa de ı́ndices de defecto permite construir dichas extensiones definiendo las iso-

metŕıas entre las funciones φ+ y φ− debidamente normalizadas, de modo que φ− = Uφ+

siendo U un operador unitario cuyos parámetros caracterizarán las posibles extensiones

autoadjuntas. Por tanto, el dominio puede tomarse

DU
n,θ =

{
ψ ∈ L2(R+, rdr)

∣∣∣ψ = ψ0 + C (φ+ + Uφ+)
}
, (64)

donde C es una constante cualquiera y las funciones ψ0 pertenecen al dominio de definición

inicialmente impuesto, de modo que son funciones de soporte compacto y se anulan en los

extremos del dominio

ψ0(r = 0) = ψ0(r →∞) = 0 , (65)

ψ0

dr

∣∣∣∣
r=0

=
ψ0

dr

∣∣∣∣
r→∞

= 0 . (66)

Además, puesto que nos encontramos en el caso con d+ = d− = 1 tenemos que el operador

U viene caracterizado por una fase, de modo que Uφ+ = eiµφ− con µ ∈ [0, 2π).

Con todo esto podemos finalmente escribir el dominio de definición como

Dµ
n,θ =

{
ψ ∈ L2(R+, rdr)

∣∣∣ψ = ψ0 + C
(
φ+ + eiµφ−

)}
. (67)

Otra forma más conveniente de escribir el dominio consiste en caracterizar las posibles

extensiones autoadjuntas por medio de un parámetro real que denotaremos por β**. Se

tiene aśı tras realizar las pertinentes cuentas que pueden encontrarse en el Apéndice D

Dβ
g =

{
f ∈ L2((0,∞)) , Hθ

r f ∈ L2((0,∞))
∣∣∣ ĺım
r→0

(
(α0r)

|g|f(r)
)

=

= β ĺım
r→0

(
(α0r)

−|g|f(r)− ĺım
r′→0

(
(α0r

′)|g|f(r′)
)

(α0r)
−2|g|

)}
. (68)

En el caso particular con β = 0 se tiene la extensión autoadjunta de Friedrich [7], que

además implica tomar λ = 0 en (16). Esta extensión se corresponde con el dominio asociado

a una part́ıcula libre sin interacción puntual delta en el origen.

El resto de casos con λ 6= 0 se corresponden por tanto con las extensiones de β 6= 0 y la

interacción del potencial delta se tiene en cuenta en el dominio de definición [5][8].

Podemos establecer una relación§§ entre los dominios Dµ
n,θ (67) y Dβ

g ≡ Dβ
n,θ ≡ D

β (68)

tomando f(r) = ψ(r) y α0 = ζ = 2mΛ
~2 . Estudiando el comportamiento de las funciones en

el ĺımite cuando r → 0 se llega a la conclusión de que para pertenecer al dominio Dβ
g el

**β es función del parámetro ν definido en [7], del que se puede consultar un resumen en el Apéndice C.
§§Para mayor detalle conviene consultar el Apéndice E.
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

parámetro caracteŕıstico β debe tomar el valor

β = i
23g

π
Γ(g)Γ(g + 1)

eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
si 0 < g < 1 , (69)

1

β
= i

23g

π
Γ(g)Γ(g + 1)

eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
si − 1 < g < 0 . (70)

Notar pues que basta invertir la expresión de β cuando g cambia de signo.

Vemos que β es dependiente del parámetro µ y de n y θ a través de g = n + θ y además

puede comprobarse que efectivamente toma valores reales. Para ello comprobamos que

i
eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
∈ R (71)

y como el resto de factores que entran en juego en las expresiones (69) y (70) son reales

β ≡ β(g, µ) ≡ β(n, θ, µ) ∈ R con − 1 < g < 1 , g 6= 0 . (72)

Con todo lo anterior podemos escribir que el comportamiento cuando r → 0 de las

funciones pertenecientes a Dβ
g será de la forma

ψ(r → 0) ∼ C
(

(αr)|g| + β(αr)−|g|
)
, (73)

donde C es una constante que permite la normalización de la función.

De forma más extensa, particularizando para los distintos valores de β, esto implica

ψ(r → 0) ∼ C
(
(αr)g + β(αr)−g

)
si 0 < g < 1 , (74)

ψ(r → 0) ∼ C
(
β(αr)g + (αr)−g

)
si − 1 < g < 0 . (75)

Para ver que esto es aśı hacemos uso de (45) y (46) y suponemos una función

f(r → 0) ∼ a
(

(αr)|g| + b(αr)−|g|
)
. (76)

Si queremos que f(r) pertenezca al dominio de definición del Hamiltoniano dado por (68)

entonces debe cumplirse

ĺım
r→0

(
(α0r)

|g|f(r)
)

= β ĺım
r→0

(
(α0r)

−|g|f(r)− ĺım
r′→0

(
(α0r

′)|g|f(r′)
)

(α0r)
−2|g|

)
,

ab
(α0

α

)|g|
= βa

(
α

α0

)
⇐⇒ β = b

(α0

α

)2|g|
. (77)

Volviendo a la expresión de f(r) inicialmente supuesta

f(r → 0) ∼ a
(
α

α0

)|g|(
(α0r)

|g| + b
α
|g|
0

α2|g| r
−|g|

)
= a

(
α

α0

)|g| (
(α0r)

|g| + β(α0r)
−|g|
)
.

(78)
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2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

Podemos ver entonces que ψ(r) y f(r) toman la misma forma y por tanto pertenecen al

dominio de definición Dβ
g , como pretend́ıamos demostrar. El parámetro β que determina

la extensión del dominio vendrá caracterizado por la expresión β = b (α0/α)2|g|.

Retomando el hilo del estudio de nuestro Hamiltoniano, recordamos que inicialmente

vimos que su dominio era invariante bajo la actuación de los operadores D y K. Sin

embargo, al encontrarnos en el dominio DH dado por

DH = ⊕
g

[
Dβ
g ⊗ (2π)−1/2eigϕ

]
(79)

la situación es diferente y el dominio no permanece invariante tras actuar con dichos opera-

dores. Para mostrarlo estudiamos la acción del operador G sobre el dominio de definición.

Recordando la expresión de este operador

G =
1

4
(rp + pr) =

1

2

~
i

(
1 + r

∂

∂r

)
(80)

y tomando ψ(r → 0) ∼ C
(
(αr)|g| + β(αr)−|g|

)
∈ Dβ

g

Gψ(r)
∣∣∣
r→0

=
1

2

~
i

(
ψ + r

∂ψ

∂r

) ∣∣∣∣
r→0

∼ 1

2
C
~
i

((
(αr)|g| + β(αr)−|g|

)
+ |g|

(
(αr)|g| − β(αr)−|g|

))
=

1

2

~
i
C
(

(1 + |g|)(αr)|g| + (1− |g|)β(αr)−|g|
)

= C ′
(

(αr)|g| + β′(αr)−|g|
)
,

(81)

con

β′ = β
1− |g|
1 + |g|

6= β , C ′ =
1

2

~
i
(1 + |g|)C . (82)

Se tiene aśı que, puesto que el caso g = 0 esta descartado¶¶, el dominio Dβ
g (y por tanto

el dominio DH) no permanece invariante bajo la actuación de G como puede verse dada

la diferencia de β′ respecto a β una vez actúa el operador. Consecuentemente, el dominio

no será invariante bajo la actuación de D y K y la simetŕıa establecida anteriormente de

forma general estará rota de forma anómala en este dominio.

Notar que en el caso de la extensión de Friedrich tenemos β = 0 y trivialmente β′ = β = 0

de modo que el dominio permanece invariante bajo G.

Regresando al caso β 6= 0 resulta entonces que las funciones del dominio no presentarán

invariancia de escala y podrán existir estados ligados normalizables con enerǵıa distin-

ta de 0. Para ver esto comprobaremos que, como ya mencionamos, es posible encontrar

autoestados ligados de enerǵıa no nula

Hrφg = − ~2

2m

(
d2

dr2
+

1

r

d

dr
− g2

r2

)
φg = −|Eg|φg . (83)

¶¶En dicho caso las funciones del dominio toman otra forma y por consiguiente no podemos aplicar (82).
Sin embargo, como se mostró en [5], también hay ruptura de invariancia.

12



2 RUPTURA ANÓMALA DE SIMETRÍA CONFORME BIDIMENSIONAL

Para resolver la ecuación introducimos el siguiente cambio de variable

z = αr con α2 =
2m|Eg|

~2
, (84)

de modo que la ecuación anterior queda reescrita

z2d
2φg
dz2

+ z
dφg
dz
− (z2 + g2)φg = 0 . (85)

Se trata de nuevo de una ecuación de Bessel, cuya solución que se adapta a las condiciones

del problema tratado [6] viene dada por

φg(r) = CgKg(z) , (86)

donde de nuevo Cg es una constante que permite la normalización de la función y Kg(z)

es la función de Bessel modificada que tiene la propiedad de tender a 0 cuando |z| → ∞,

es decir, cuando r →∞. Tras realizar las cuentas pertinentes para obtener el valor de Cg

y añadiendo la dependencia angular de ϕ

ψg(r) ≡ ψg(r, ϕ) = φg(r)
1√
2π
eigϕ =

(
α

√
2 sin(gπ)

gπ
Kg(αr)

)
1√
2π
eigϕ , (87)

cuyo autovalor de enerǵıa viene dado por (84)

Eg = − ~2

2m
α2 . (88)

Estos son precisamente el autoestado y autovalor que se ofrecieron como solución al prin-

cipio de la sección y queda probado que es posible su obtención.

Notar además que, cuando r → 0 y en consecuencia z → 0,

Kg(z → 0) ∼ z−g
(
2g−1Γ(g)

)
+ zg

(
2−g−1Γ(−g)

)
(89)

y haciendo uso de (68), considerando f(r) = φg(r) y α0 = α =

√
2m|Eg |
~ de acuerdo con

(84), se concluye que φg(r) pertenece a Dβ
g con un valor para el parámetro

β = 4g
Γ(g)

Γ(−g)
si 0 < g < 1 , (90)

β =
1

4g
Γ(g)

Γ(−g)

= 4−g
Γ(−g)

Γ(g)
si − 1 < g < 0 . (91)

Podemos tomar una expresión reducida de modo que

β = 4|g|
Γ(|g|)

Γ(−|g|)
∈ R si − 1 < g < 1 , g 6= 0 . (92)
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Esto permite escribir en el ĺımite cuando r → 0

φg(r → 0) ∼ α

√
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|

)(
(αr)|g| + 4|g|

Γ(|g|)
Γ(−|g|)

(αr)−|g|
)
. (93)

Una vez obtenida la expresión de dicho autoestado podemos obtener el término anómalo

de la ecuación de Heisenberg modificada para el operador D (podŕıa hacerse igualmente

con K), que deberá ser distinto de 0 para explicar esta situación. Se tiene aśı, según (7)

A =
i

~
〈ψg|(H† −H)Dψg〉 = − i

~
〈ψg|(H† −H)Gψg〉 , (94)

donde los operadores usados toman sus expresiones de (28) y (18)

H = − ~2

2m

(
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2

)
. (95)

D = tH −G , G =
1

4
(rp + pr) =

1

2

~
i

(
1 + r

∂

∂r

)
. (96)

Retomando los cáclulos pertinentes

A =− i

~
〈ψg|(H† −H)Gψg〉 = − i

~

(
〈ψg|H†Gψg〉 − 〈ψg|HGψg〉

)
=

=

∫ ∞
0

~2

4m

(
1

r

d

dr

(
r
d

dr

)
− g2

r2

)
φ∗g

(
1 + r

d

dr

)
φg rdr−∫ ∞

0

~2

4m
φ∗g

(
1

r

d

dr

(
r
d

dr

)
− g2

r2

)(
1 + r

d

dr

)
φg rdr =

=

[
~2

4m

(
r
dφ∗g
dr

)((
1 + r

d

dr

)
φg

)]∞
0

−
[
~2

4m
φ∗g

(
r
d

dr

(
1 + r

d

dr

)
φg

)]∞
0

, (97)

donde se ha aplicado la integración por partes.

Puesto que φg(r →∞)→ 0 la contribución a la integral se dará con r → 0. Introduciendo

(93) en esta expresión permite obtener finalmente, según las cuentas del Apéndice F

A = − ~2

2m
α2

[
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|)

)2
4|g|

Γ(|g|)
Γ(−|g|)

(
−2|g|2

)]
. (98)

Consultando [6] puede verse que para los posibles valores de g, es decir −1 < g < 1 con

g 6= 0, encontramos que

2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|)

)2
4|g|

Γ(|g|)
Γ(−|g|)

(
−2|g|2

)
= 1 , (99)

de forma que podemos tomar, para todo valor de g aceptable

A = − ~2

2m
α2 = −|Eg| . (100)

Además, este resultado se mantiene en el ĺımite |g| → 0 y consecuentemente el resultado
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ya obtenido en [5] queda aqúı incluido.

El hecho de que D no mantenga invariante el dominio de definición DH hace que

aparezca la contribución extra del término anómalo A de modo que es necesario emplear

la versión modificada de la ecuación de Heisenberg.

Veamos esto hallando la derivada temporal del promedio del operador dilatación 〈D〉
haciendo uso de los estados ligados hallados anteriormente con (87) y (93)

ψ(r) ≡ ψg(r, ϕ) = φg(r)
1√
2π
eigϕ , (101)

φg(r → 0) ∼ α

√
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|

)(
(αr)|g| + 4|g|

Γ(|g|)
Γ(−|g|)

(αr)−|g|
)
, (102)

junto con (18)

D = tH −G , G =
1

4
(rp + pr) =

1

2

~
i

(
1 + r

∂

∂r

)
. (103)

Escribimos entonces

〈D〉 = t〈H〉 − 〈G〉 = t〈ψg|H ψg〉 − 〈ψg|Gψg〉 . (104)

Para hallar el resultado hemos de recordar que ψg son autoestados del Hamiltoniano, de

modo que

〈ψg|H ψg〉 = −|Eg| = −
~2

2m
α2 . (105)

Por otro lado

〈ψg|Gψg〉 =

∫ ∞
0

φ∗g Gφgrdr =
1

2

~
i

∫ ∞
0

φ∗g

(
1 + r

d

dr

)
φgrdr =

=
1

2

~
i

(
1 +

∫ ∞
0

φ∗g

(
r2dφg
dr

)
dr

)
. (106)

Es evidente que no presenta dependencia temporal, por lo que

d

dt
〈G〉 = 0 (107)

y aśı
d

dt
〈D〉 =

d

dt
〈ψg|Dψg〉 =

d

dt

(
−t ~

2

2m
α2

)
= − ~2

2m
α2 = A , (108)

cumpliendo la ecuación de Heisenberg modificada, que recordando (6), toma la forma

d

dt
〈D〉 =

d

dt
〈ψg|Dψg〉 =

〈
ψg

∣∣∣∣∂D∂t ψg
〉

+
i

~
〈ψg|[H,D]ψg〉︸ ︷︷ ︸

=0

+A = A . (109)

La nulidad de esa suma de términos ya se demostró en (23) usando ∂D
∂t = H y i

~ [D,H] = H.
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3 RUPTURA DE LA DEGENERACIÓN ACCIDENTAL Y SUPERSIMETRÍA EN
EL ÁTOMO DE HIDRÓGENO

3. Ruptura de la degeneración accidental y Supersimetŕıa

en el átomo de hidrógeno

El conocido caso del átomo de hidrógeno no relativista puede estudiarse [9] como un

núcleo constituido por un protón alrededor del cuál orbita un electrón de modo que la

interacción se puede modelar por medio de la fuerza de Coulomb entre ambas part́ıculas.

Considerándolo como un sistema de dos part́ıculas podemos estudiarlo desde el sistema de

referencia centro de masas y, puesto que el núcleo es mucho más masivo que el electrón, la

posición del centro de masas se puede aproximar a la posición del protón que constituye

el núcleo. Asimismo la masa reducida µ puede aproximarse a la del electrón.

El potencial causante de la interacción puede escribirse como V (r) = − e2

r , en unidades

del sistema cgs. Como se trata de la interacción entre dos part́ıculas estamos ante un

potencial central (que por tanto presenta simetŕıa esférica) por lo que resulta cómodo

emplear coordenadas polares esféricas. Además, aprovechándonos de la simetŕıa del pro-

blema, tomaremos funciones de ondas que sean tanto autoestados del Hamiltoniano H

como autoestados de L2 y Lz. Concretamente se expresarán como

ψl,m(r) = Rl(r)Y
m
l (θ, ϕ) , (110)

donde Y m
l (θ, ϕ) son los armónicos esféricos y la función de ondas radial Rl(r) satisface la

siguiente ecuación radial con µ =
(

1
me

+ 1
mp

)−1
≈ me

(
p2
r

2me
+
l(l + 1)~2

2mer2
− e2

r

)
Rl(r) = ERl(r) , (111)

donde l(≥ 0) es un número cuántico entero que cuantifica el momento angular orbital y

p2
r =

1

r2

d

dr

(
r2 d

dr

)
=

d2

dr2
+

2

r

d

dr
. (112)

Para facilitar los cálculos realizamos la sustitución

Rl(r) ≡
1

r
ul(r) , (113)

donde ul(r) se conoce como la función de ondas radial reducida y satisface la ecuación

radial reducida

Hlul(r) = Eul(r) , (114)

con el Hamiltoniano Hl expresado de forma

Hl = − ~2

2me

d2

dr2
+

~2

2me

l(l + 1)

r2
− e2

r
. (115)

16
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Introduciendo las definiciones

% =

√
8me|E|
~

r , λ =
e2

~

√
me

2|E|
, (116)

podemos reescribir (114) tomando ūl(%) ≡ ul(r)

d2ū(%)

d%2
+

(
λ

%
− 1

4
− l(l + 1)

%2

)
ūl(%) = 0 . (117)

El método comúnmente usado para resolver este tipo de ecuaciones se basa en consi-

derar el comportamiento asintótico de ūl(%). Para ello estudiamos los siguientes casos:

r → 0⇐⇒ %→ 0

Los términos predominantes permiten tomar

d2ūl
d%2
− l(l + 1)

%2
ūl = 0 (118)

y se extrae como solución ū(%) ∼ %−l , %l+1.

Sin embargo, debemos tener en cuenta las condiciones de normalización de modo que hay

que ser cauteloso con %−l puesto que puede causar problemas (l ≥ 0). Actuando como en

la sección anterior ∫
%−2ld% <∞⇐⇒ %−2l > %−1 ⇐⇒ l <

1

2
=⇒ l = 0 . (119)

Si se toma ūl(%) = %l+1 la condición de normalización se cumple para todo valor de l

(recordando que estamos en el caso %→ 0).

Aqúı pretendemos realizar un estudio sobre el estado fundamental de modo que l = 0 y

decidimos tomar ūl(%) ∼ %−l, en el presente caso asintótico.

r →∞⇐⇒ %→∞

Los términos que predominan son ahora

d2ūl
d%2
− 1

4
ūl = 0 , (120)

lo que permite tomar ūl(%) ∼ e−%/2 como única solución. Se ha tenido en cuenta que debe

ser normalizable y por tanto la exponencial positiva (que también es posible solución)

queda descartada.

Una vez estudiados los comportamientos de la función ūl(%), resulta conveniente definir

una función vl(%) tal que

ūl(%) = %−le−%/2vl(%) . (121)
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Introduciendo esta expresión para ūl(%) en (117) se tiene, tras una serie de pasos detallados

en el Apéndice G, la siguiente ecuación

%
d2vl(%)

d2%
+ (−2l − %)

dvl(%)

d%
− (−l − λ) = 0 . (122)

Resulta entonces que estamos ante una ecuación hipergeométrica confluente de parámetros

b = −2l y a = −l− λ, cuya solución general viene dada por una combinación lineal de las

siguientes funciones

M(a, b, %) =
∞∑
n=0

(a)n%
2

(b)nn!
= 1 +

a%

b
+

(a)2%
2

(b)22!
+ ...+

(a)n%
n

(b)nn!
+ ... , (123)

U(a, b, %) =
π

sin(πb)

(
M(a, b, %)

Γ(1 + a− b)Γ(b)
− %1−bM(1 + a− b, 2− b, %)

Γ(a)Γ(2− b)

)
, (124)

donde se ha usado (a)n = a(a+ 1)(a+ 2)...(a+ n− 1) y (a)0 = 1.

Puesto que el caso l = 0 nos brinda b = 0 se tiene que la función M(a, b, %) es divergente

y deberemos tomar entonces únicamente U(a, b, %) como posible solución y aśı

ūl(%) = Ae−%/2U(−λ, 0, %) (125)

donde A es una constante que permite la normalización de la función de ondas.

Cabe preguntarse si la solución que se obtiene en caso de tomar ūl(% → 0) ∼ %l+1 es

igualmente válida y como se relaciona con la ya obtenida. Para ello seguimos los mismos

pasos anteriores y llegamos a

%
d2vl(%)

d2%
+ (2l + 2− %)

dvl(%)

d%
− (l + 1− λ) = 0 . (126)

De nuevo en el caso l = 0 solo podemos contar con la función U(1 − λ, 2, %) y tomamos

por solución

ūl(%) = B%e−%/2U(1− λ, 2, %) , (127)

con B una nueva constante de normalización.

Este resultado es perfectamente válido y además puede demostrarse que coincide con (125).

Para ello nos referimos a la siguiente propiedad de la función U(a, b, %) [6], que expresa

U(a, 1− n, %) = %nU(a+ n, 1 + n, %) . (128)

Si se toma a = −λ y n = 1 queda expĺıcita la relación buscada

U(−λ, 0, %) = %U(1− λ, 2, %) , (129)

de modo que se demuestra aśı la coincidencia de soluciones (con A = B), que es lo que

uno pod́ıa esperar dada la validez de ambas.
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Retomando el hilo de nuestros razonamientos en la sección anterior, todav́ıa cabe hallar

el dominio de definición del Hamiltoniano que, para l = 0, engloba las funciones de onda

previamente halladas y en el cual el operador es autoadjunto. Tal dominio es

DH =

[
Dν

0 ⊗
1√
4π r

]
, (130)

puesto que ψ0,0(r) ≡ ψl=m=0(r) = R0(r)Y 0
0 (θ, ϕ) = 1√

4π r
u0(r) = 1√

4π r
ū0(%) que solo

depende de la coordenada radial al ser el armónico esférico independiente de θ y ϕ (l = 0).

El dominio correspondiente al subespacio con l = 0 puede caracterizarse mediante un

parámetro que denominaremos ν y escribimos Dν
0 ≡ Dν

l=0 de acuerdo con el Apéndice H

Dν
0 =

{
f ∈ L2((0,∞)) , Hlf ∈ L2((0,∞))

∣∣∣∣∣ ν ĺım
r→0

(f(ρ)) =

= ĺım
r→0

(
ρ−1f(ρ)− ĺım

r′→0

(
f(ρ′)

) (
ρ−1 − Λ log(ρ)− Λ/2

))}
. (131)

En este caso tomamos ρ = % =

√
8me|E|
~ r y Λ = λ = e2

~

√
me
2|E| coincidiendo con las

expresiones en (116). Teniendo en cuenta las autofunciones que se han obtenido en el caso

l = 0 (125) o (127) y analizando su comportamiento asintótico, se encuentra que una vez

que se ha fijado la extensión autoadjunta (se fija el valor de ν para Dν
0), los posibles valores

de λ vienen dados por las soluciones de la ecuación

ν = λ

(
3

2
− 2γ − ψ(1− λ)

)
, (132)

donde γ es la constante de Euler con valor numérico γ ≈ 0.577216 y ψ(1 − λ) representa

la función digamma evaluada en 1− λ.

El caso particular definido en el ĺımite ν →∞ se conoce como la extensión autoadjunta

de Friedrich [7], que se establece como el dominio de definición que el alumno comúnmente

acostumbra a estudiar y para el que las soluciones de (132) son λ = n (con n = 1, 2, ...

cualquier entero mayor que cero).

Resulta de gran interés analizar las simetŕıas e invariancias que presenta el átomo de

hidrógeno en un caso general [9] (tomando l 6= 0 de forma que salimos del dominio estable-

cido Dν
0 o tomando la extensión de Friedrich en dicho dominio). Entonces el Hamiltoniano

del átomo de hidrógeno es invariante bajo el álgebra de Lie SO(4) ≈ (SU(2)⊗SU(2))/Z2

generada por los operadores I y K

K =
1

2

[
L +

√
−me

2H
M

]
, I =

1

2

[
L−

√
−me

2H
M

]
, (133)

donde L y M denotan el operador vectorial momento angular orbital y el operador de
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Runge-Lenz respectivamente

L = r× p , M =
1

2me
(p× L− L× p)− e2

r
r . (134)

De este modo y tras operar se obtiene que [I, H] = [K, H] = 0 y el dominio de

definición tomado para el Hamiltoniano permanece invariante bajo la actuación de dichos

operadores. Aparece aśı la degeneración (accidental) del espectro del Hamiltoniano, que

puede entenderse reescribiendo el Hamiltoniano en función de estos operadores

H = −mee
4

2

1

2
(
I2 + K2

)
+ ~2

. (135)

Dado que tanto I como K cumplen las reglas de conmutación propias de los momentos

angulares, se comportarán como tales y esto permite que, eligiendo una base común de

autoestados de H, I2, Iz, K2 y Kz, los autovalores del Hamiltoniano queden expresados

Ei,k = −1

2
me(αc)

2 1

2i(i+ 1) + 2k(k + 1) + 1
, (136)

donde α = e2/~c denota la constante de estructura fina e i y k se corresponden con

números cuánticos enteros asociados a los operadores I2 y K2.

Introducimos ahora un nuevo numero cuántico entero definido como n = 2i+ 1. Además,

dado que L·M = M·L = 0 resulta que I2 = K2 y entonces i = k. Con estas consideraciones

la expresión para los autovalores arroja el resultado

En ≡ Ei,k = −1

2
me(αc)

2 1

n2
, (137)

que es la expresión de la enerǵıa que acostumbramos a obtener para todo valor de l.

Estos valores ponen de manifiesto la degeneración accidental de la enerǵıa en el átomo de

hidrógeno cuyo origen es dinámico y se debe al grupo simetŕıas expuestas anteriormente

que dejan invariante el Hamiltoniano. Este grupo resulta mayor que el esperado grupo de

las rotaciones y por tanto hay una mayor degeneración.

No obstante, en el sector l = 0, estos desarrollos y resultados obtenidos dejan de tener

validez cuando nos salimos de la extensión de Friedrich y por lo tanto ν 6→ ∞ (por ejemplo

añadiendo una interacción delta en el origen como ya se trató en la sección anterior). En

este caso se rompe la degeneración accidental y los autovalores del Hamiltoniano en el

sector l = 0 toman toman la siguiente forma

En = −1

2
me(αc)

2 1

λ2
n

, (138)

con λn dado en función del parámetro ν que define la extensión según (132).

Como se indicó anteriormente, en el caso en que ν → ∞, λn toma valores enteros y

recuperamos la expresión habitual, es decir (137).
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Concluimos entonces que, actuando en l = 0 con una extensión autoadjunta distinta de

la Friedrich, la simetŕıa establecida por los operadores K y I se encuentra anómalamente

rota al no poder ser implementada cuánticamente en este dominio de definición. Para

demostrarlo basta tomar la función de ondas usando (125) perteneciente al dominio Dν
0

y actuar sobre ella con cualquiera de los operadores tratados para ver cómo la función

resultante no pertenece al dominio.

La función de ondas en el ĺımite cuando r → 0 queda

ψ0,0(r → 0) = R0(r)Y 0
0 (θ, ϕ)

∣∣∣
r→0
∼ −C 1√

4π

1

λΓ(−λ)
r−1 , (139)

con C una constante de normalización y donde no aparecen las coordenadas angulares

(estamos trabajando con l = 0).

Ambos operadores vectoriales I y K son, en el caso de l = 0 proporcionales a M, de modo

que es suficiente con ver la actuación de Mz

Mz ψ0,0(r)
∣∣∣
r→0

=
(
−e2 z

r

)
ψ0,0

∣∣∣
r→0
∼
(
C

1√
4π

1

λΓ(−λ)

)
e2

r2
z . (140)

La simple comparación del resultado con (139) permite asegurar que el nuevo estado no

pertenece a Dν
0 y tras proceder de igual forma con el resto de componentes del operador

obtenemos que igualmente se salen del dominio. Se tiene aśı que M y por consiguiente los

operadores que generan el álgebra de Lie I y K no dejan invariante el dominio de definición

del Hamiltoniano tomado en el sector l = 0. Por tanto (137) no puede aplicarse y la

degeneración accidental del átomo de hidrógeno se encuentra anómalamente rota. Por otro

lado, en el caso de l 6= 0 o tomando la extensión de Friedrich, la invariancia se mantiene,

aśı como la degeneración y expresión habitual de los autovalores del Hamiltoniano.

Podŕıamos a su vez calcular el término anómalo A y ver cómo se cumple la ecuación

de Heisenberg modificada para cualquier componente de I o K, al igual que se hizo en

la sección anterior. Sin embargo resulta mucho más interesante e instructivo comprobar

como la Supersimetŕıa en el átomo de hidrogeno con momento angular orbital nulo (l = 0)

se encuentra espontáneamente rota en el dominio de definición que estamos tratando.

Para ello emplearemos el formalismo de la Mecánica Cuántica Supersimétrica (SQM) [10],

del que podemos ver un mayor desarrollo en el Apéndice I. Sin embargo, para los resultados

y conclusiones que se pretenden obtener bastará con unas nociones fundamentales.

Este formalismo se basa en la existencia de un superpotencial W (x) tal que permite

definir los siguientes operadores

A =
~√
2m

d

dx
+W (x) , (141)

A† = − ~√
2m

d

dx
+W (x) . (142)
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Estos a su vez permiten obtener una pareja de Hamiltonianos

H1 = A†A = − ~2

2m

d2

dx2
+ V1(x) , V1(x) = W 2(x)− ~√

2m

dW (x)

dx
, (143)

H2 = AA† = − ~2

2m

d2

dx2
+ V2(x) , V2(x) = W 2(x) +

~√
2m

dW (x)

dx
. (144)

Los potenciales V1(x) y V2(x) obtenidos a partir del superpotencial W (x) se conocen como

una pareja de potenciales supersimétricos.

Los Hamiltonianos (143) y (144) son semi-definidos positivos por lo que sus autova-

lores deben cumplir E
(1,2)
n ≥ 0. Sin embargo, cabe notar que los autovalores de ambos

Hamiltonianos están relacionados entre śı. Para ello cabe ver que con H1 dado por (143)

H1ψ
(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n . (145)

Si ahora multiplicamos ambos lados por el operador A obtenemos:

AH1ψ
(1)
n = AA†Aψ(1)

n = H2

(
Aψ(1)

n

)
= E(1)

n

(
Aψ(1)

n

)
. (146)

Lo que implica que si ψ
(1)
n son autoestados de H1 con autovalor E

(1)
n , Aψ

(1)
n son también

autoestados de H2 con idénticos autovalores E
(1)
n .

El mismo razonamiento puede llevarse a cabo tomando inicialmente los autoestados

ψ
(2)
n de H2 dado por (144) y se obtiene

A†H2ψ
(2)
n = A†AA†ψ(2)

n = H1

(
A†ψ(2)

n

)
= E(2)

n

(
A†ψ(2)

n

)
. (147)

Vemos aśı que la aplicación de A o A† nos permite pasar de autoestados de H1 a autoes-

tados de H2 y viceversa. Además el autovalor asociado se mantiene invariable.

Cabe mencionar que es costumbre trabajar con H1 por defecto y aśı lo haremos en el resto

del escrito.

La relación mostrada a partir de (145) y (146) se rompe en el caso en que Aψ
(1)
0 = 0, es

decir, cuando el estado fundamental de H1 queda “aniquilado” por el operador A. Entonces

este autoestado está desapareado (a diferencia del resto) y H2 preserva el espectro de

enerǵıas de H1 a excepción del autovalor asociado a este estado, el nivel fundamental.

En este tipo particular de casos se dice que la Supersimetŕıa (SUSY) permanece sin romper

y podemos además establecer las principales relaciones entre autoestados y autovalores de

H1 y H2 particularizadas a la situación

E(2)
n = E

(1)
n+1, E

(1)
0 = 0 , (148)

ψ(2)
n ∝ Aψ

(1)
n+1 , (149)

ψ
(1)
n+1 ∝ A

†ψ(2)
n . (150)
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En el caso del átomo de hidrógeno (interacción de Coulomb tridimensional) los estados

a los que se refiere la teoŕıa de la Mecánica Cuántica Supersimétrica son las funciones de

ondas radiales reducidas ūl(%) ≡ ul(r). Si además tomamos dichas funciones pertenecientes

al dominio de definición Dν
0 para el átomo de hidrógeno, puede observarse que la actuación

del operador A sobre la función de ondas radial reducida resulta en una nueva función no

nula y por tanto podemos afirmar que la Supersimetŕıa se encuentra espontáneamente rota

para ese dominio de l = 0. Para ello debemos conocer primero la forma del superpotencial.

Tomando unidades tales que ~ = 2m = 1 escribimos

W (r) =
e2

2(l + 1)
− l + 1

r

l=0
=

e2

2
− 1

r
. (151)

Haciendo uso ahora de (141) con x ≡ r y ~ = 2m = 1 obtenemos el operador buscado

A(l = 0) =
d

dr
+
e2

2
− 1

r
. (152)

Simplemente resta ver su actuación sobre u0(r) que, por comodidad, evaluaremos en ĺımite

cuando r → 0

A(l = 0)u0(r)
∣∣∣
r→0
∼
(
d

dr
+
e2

2
− 1

r

)(
− C

λΓ(−λ)

)
=

(
e2

2
− 1

r

)(
− C

λΓ(−λ)

)
, (153)

donde C permite la normalización.

Obviamente la función resultante es distinta de 0 y, por tanto, podemos afirmar que la

Supersimetŕıa esta anómalamente rota cuando estudiamos este dominio del Hamiltoniano.

Si se toma l 6= 0 o la extensión de Friedrich con l = 0, la actuación del operador A da

como resultado un valor nulo y la Supersimetŕıa permanece sin romper.

4. Conclusiones

A lo largo de todo el trabajo se han proporcionado ejemplos de cómo simetŕıas que

clásicamente eran perfectamente aplicables llegan a encontrarse anómalamente rotas al

tratarlas de forma cuántica. Esto se debe, como ya ha sido mencionado en ciertas oca-

siones, a que la aparición de dominios asociados a los observables una vez cuantizamos el

sistema puede impedir la implementación del álgebra de invariancia correspondiente.

Más espećıficamente, la ruptura de simetŕıa se produce cuando los operadores que generan

dicha simetŕıa no dejan invariante el dominio de definición del Hamiltoniano y consecuen-

temente llega a aparecer un término anómalo cuya implementación requiere de la ecuación

de Heisenberg modificada. La validez de esta ecuación ha sido comprobada en el caso bidi-

mensional de la part́ıcula libre sometida a una interacción delta en el origen demostrando

aśı la ruptura de simetŕıa conforme para el dominio tomado con g 6= 0.

Respecto a los dominios de definición, es notable mencionar cómo en el caso bidimen-

sional la contribución angular del momento lineal produce infinitas extensiones angulares
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en el dominio. Todas ellas dependen de g = n+ θ ∈ R y se solapan con el dominio radial

que hemos visto depende de un parámetro (β en nuestro caso). Esto no es aśı en el caso

del átomo de hidrógeno tridimensional donde la contribución angular queda cuantificada

en función del número cuántico l ∈ Z+ ∪ {0} proporcional a l(l+ 1)/r2. Luego, particula-

rizando como hicimos al caso l = 0, solo existe una única extensión angular.

Es más, en este caso, dado que repetir la obtención del término A no aportaba mucho,

nos centramos en ver cómo la Supersimetŕıa se encontraba espontáneamente rota ya que

el operador A era incapaz de “aniquilar” el estado fundamental, con l = 0, perteneciente

a un dominio con valores de ν finitos.

Finalmente añadir que este trabajo ha sido escrito intentando enfocar y enfatizar la

relevancia que tienen los dominios de los operadores a la hora de afrontar el estudio de

muy diferentes sistemas. Aunque en un primer contacto con el formalismo mecanocuántico

no se tengan en cuenta para facilitar el aprendizaje del alumno, su utilidad es digna de

mención y aqúı se intenta ofrecer un estudio más profundo y complementar lo aprendido

en el Grado. Prueba de ello son los numerosos apéndices que a continuación se disponen.
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A INVARIANCIA CONFORME (CASO CLÁSICO)

A. Invariancia conforme (caso clásico)

En el caso de una part́ıcula libre en un sistema bidimensional, el Lagrangiano L y el

Hamiltoniano H se escriben en coordenadas polares

L = H =
1

2
m
(
ṙ2 + r2θ̇2

)
, (154)

donde el punto sobre las variables indica la derivada respecto al tiempo.

Puesto que el origen es un punto singular, hemos prescindido de él aśı como de la interacción

delta. Sin embargo un tratamiento más completo (y que escapa de los objetivos buscados)

puede consultarse el trabajo de Jackiw [11].

Con estas consideraciones podemos determinar las coordenadas generalizadas qi y los

momentos generalizados pi

q1 = r , q2 = θ , (155)

p1 =
∂L
∂q̇1

= mṙ , p2 =
∂L
∂q̇2

= mr2θ̇ . (156)

Esto permite reescribir el Hamiltoniano anterior como

H =
1

2m

(
p2

1 +
p2

2

q2
1

)
. (157)

En el formalismo clásico los generadores del álgebra de invariancia SO(2,1) son, junto

con el Hamiltoniano

D = tH −G = tH − 1

2
(rp) , (158)

K = −t2H + 2tD +
m

2
R2 = t2H − t (rp) +

m

2
r2 . (159)

Ahora, haciendo uso corchete de Poisson {A,B} definido como

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (160)

obtenemos las siguientes expresiones teniendo en cuenta que rp = q1p1:

{D,H} = −{G,H} = −
2∑
i=1

(
∂G

∂qi

∂H

∂pi
− ∂G

∂pi

∂H

∂qi

)
=

= −
(

1

2
p1

1

m
p1 −

1

2
q1

(
− 1

m

p2
2

q3
1

))
=

= − 1

2m

(
p2

1 +
p2

2

q2
1

)
= −H . (161)
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{H,K} = 2t{H,D}+
m

2
{H, r2} , (162)

{H, r2} = {H, q2
1} =

2∑
i=1

(
∂H

∂qi

∂q2
1

∂pi
− ∂H

∂pi

∂q2
1

∂qi

)
= −2q1

1

m
p1 , (163)

=⇒ {H,K} = 2tH − m

2

2

m
q1p1 = 2tH − q1p1 = 2D . (164)

{K,D} = −t2{H,D}+
m

2
{r2, D} = −t2{H,D}+

m

2

(
t{r2, H} − {r2, G}

)
, (165)

{r2, D} = t{r2, H} − {r2, G} , (166)

{r2, G} = {q2
1, G} =

2∑
i=1

(
∂q2

1

∂qi

∂G

∂pi
− ∂q2

1

∂pi

∂G

∂qi

)
= 2q1

1

2
q1 = q2

1 , (167)

=⇒ {K,D} = −t2H +
m

2

(
t

(
2

m
q1p1

)
− q2

1

)
= −t2H + t (q1p1)− m

2
q2

1 = −K . (168)
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B. Invariancia conforme (caso cuántico)

El Hamiltoniano de una part́ıcula libre en un sistema bidimensional con interacción

δ2(r) se escribe, sin tener en cuenta los dominios

H =
p2

2m
+ λ

1

r
δ(r) , (169)

donde

p2ψ = −~2

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

1

r2

∂2ψ

∂ϕ2

)
. (170)

Tenemos los operadores que, junto con el Hamiltoniano H, definen el álgebra de inva-

riancia SO(2,1)

D = tH −G = tH − 1

4
(rp + pr) , (171)

K = −t2H + 2tD +
m

2
r2 = t2H − t

2
(rp + pr) +

m

2
r2 . (172)

Previamente estudiamos la actuación de los siguientes operadores

rpψ =
~
i
r
∂ψ

∂r
, (173)

prψ =
~
i
∇(rψ) =

~
i

(ψ∇ · r + r ·∇ψ) =
~
i

(
2ψ + r

∂ψ

∂r

)
, (174)

de modo que ahora podemos comprobar las relaciones de conmutación usando ahora los

corchetes de Lie definidos según

[A,B] = AB −BA . (175)

Procedemos entonces a la obtención de las relaciones de conmutación buscadas:

[D,H] = − [G,H] = −1

4

(
1

2m

[
rp + pr,p2

]
+ λ

[
rp + pr,

1

r
δ(r)

])
, (176)

[
rp,p2

]
= −2

~
i
p2 ,

[
pr,p2

]
= −2

~
i
p2 , (177)[

rp,
1

r
δ(r)

]
= −2

~
i

1

r
δ(r) ,

[
pr,

1

r
δ(r)

]
= −2

~
i

1

r
δ(r) , (178)

=⇒ i

~
[D,H] = − i

~
1

4

(
1

2m

(
−4

~
i
p2

)
+ λ

(
−4

~
i

1

r
δ(r)

))
=

p2

2m
+ λ

1

r
δ(r) = H . (179)
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[H,K] = 2t [H,D] +
m

2

[
H, r2

]
, (180)[

H, r2
]

=
1

2m

[
p2, r2

]
=

1

m

~
i

(rp + pr) , (181)

=⇒ i

~
[H,K] =

i

~

(
2t

(
−~
i
H

)
+
m

2

(
1

m

~
i

(rp + pr)

))
=

= −2tH +
1

2
(rp + pr) = −2D . (182)

[K,D] = −t2 [H,D] +
m

2

[
r2, D

]
= −t2 [H,D] +

m

2

(
t
[
r2, H

]
−
[
r2, G

])
, (183)[

r2, G2
]

=
1

4

[
r2, rp + pr

]
, (184)[

r2, rp
]

= −2
~
i
r2 ,

[
r2,pr

]
= −2

~
i
r2, (185)

=⇒ i

~
[K,D] =

i

~

(
−t2

(
−~
i
H

)
+
m

2

(
t

2m

(
−2

~
i

(rp + pr)

)
− 1

4

(
−4

~
i
r2

)))
=

= t2H − t

2
(rp + pr) +

m

2
r2 = K . (186)
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C. Dominios de definición y sus parámetros:

Introducción teórica

En L2((0,∞)) consideramos el operador de Schrödinger minimal [7][12]

ḣ = − d2

dr2
+ λ(λ− 1)r−2 + γr−1 + αr−a +W , D(ḣ) = C∞0 ((0,∞)) , (187)

donde se cumplen las condiciones

W ∈ L2((0,∞)) evaluado real , α, γ ∈ R , 0 < a < 2 , 1/2 ≤ λ < 3/2 . (188)

Entonces h, la clausura de ḣ, tiene ı́ndices de defecto (1,1) y todas sus extensiones auto-

adjuntas hν se pueden caracterizar por

hν = − d2

dr2
+ λ(λ− 1)r−2 + γr−1 + αr−a +W , (189)

con su respectivo dominio

D (hν) =
{
g ∈ L2((0,∞)), hg ∈ L2((0,∞))

∣∣∣νg0,λ = g1,λ

}
, (190)

donde −∞ < ν ≤ ∞ y además g0,λ y g1,λ son los valores de frontera definidos como

g0,λ = ĺım
r→0

g(r)/G
(0)
λ (r) , (191)

g1,λ = ĺım
r→0

[
g(r)− g0,λG

B
λ (r)

]
/F

(0)
λ (r) . (192)

Se ha usado para ello

F
(0)
λ (r) = rλ , G

(0)
λ (r) =

−r1/2 log(r) si λ = 1/2 ,

(2λ− 1)−1r1−λ si 1/2 < r < 3/2 .
(193)

Además

Fλ(r) = F
(0)
λ (r)−

∫ r

0
dr′g

(0)
λ (r, r′)V (r′)Fλ(r′) , (194)

con

V (r) = γr−1 + αr−a +W (r) , (195)

g
(0)
λ (r, r′) = G

(0)
λ (r)F

(0)
λ (r′)−G(0)

λ (r′)F
(0)
λ (r) . (196)

A partir de estas expresiones podemos obtener

Gλ(r) = Fλ(r)

∫ r0

r
dr′
[
Fλ(r′)

]−2
, 1/2 ≤ λ < 3/2 , r ≤ r0 . (197)

Aśı,GBλ (r) denota la expansión asintótica deGλ(r) cuando r → 0 hasta orden rt, t ≤ 2λ−1.
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Cabe además mencionar que el caso particular con g0,λ = 0 (de modo que ν → ∞)

representa la conocida como extensión de Friedrich. Esta extensión juega un papel impor-

tante y se discutirá en cada caso particular tratado.
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D. Dominios de definición y sus parámetros:

Interacción Delta

En el caso que nos atañe tenemos el Hamiltoniano dado por (37)

Hθ
r = − ~2

2m

(
d2

dr2
+

1

r

d

dr
− g2

r2

)
. (198)

Sin embargo buscamos expresarlo de forma que podamos compararlo con (187). Esto se

consigue mediante el empleo del operador unitario U : L2(R+, rdr)→ L2(R+, dr) [8]. Aśı

las funciones f(r) del dominio de Hθ
r se transforman como q(r) = (Uf)(r) = r1/2f(r) y

esto permite tomar las siguientes expresiones

||q(r)||2 =

∫ (
r1/2f∗(r)

)(
r1/2f(r)

)
dr =

∫
f∗(r)f(r)rdr = ||f(r)||2 , (199)

d

dr
f =

d

dr

(
1

r1/2
q

)
= −1

2

1

r3/2
q +

1

r1/2

d

dr
q , (200)

d2

dr2
f =

d2

dr2

(
1

r1/2
q

)
=

3

4

1

r5/2
− 1

r3/2

d

dr
q +

1

r1/2

d2

dr2
q , (201)

〈Hθ
r 〉 = 〈f |Hθ

r f〉 = − ~2

2m

∫
f∗
(
d2

dr2
f +

1

r

d

dr
f − g2

r2
f

)
rdr =

= − ~2

2m

∫ (
1

r1/2
q∗
)(

1

r1/2

d2

dr2
q +

1

4

1

r5/2
q − g2

r5/2
q

)
rdr =

= − ~2

2m

∫
q∗
(
d2

dr2
q +

(
1

4
− g2

)
1

r2
q

)
dr = 〈q|Hθ

r q〉 . (202)

O lo que es lo mismo

〈Hθ
r 〉 = 〈f |Hθ

r f〉 =
〈(
U−1q

) ∣∣∣Hθ
r

(
U−1q

)〉
=
〈
q
∣∣∣UHθ

rU
−1q
〉
. (203)

De modo que podemos considerar, actuando sobre q(r)

h̃ = UHθ
rU
−1 ≡ − d2

dρ2
+

(
g2 − 1

4

)
1

ρ2
, (204)

donde se ha definido una constante genérica α0 de forma que

ρ = α0r . (205)

Se tiene por consiguiente, por comparación con (187)

α = γ = W = 0 , λ =
1± 2|g|

2
. (206)
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Notar que debe cumplirse 1/2 ≤ λ < 3/2 y por ello debemos tomar λ =
1 + 2|g|

2
, dado

que en el dominio |g| < 1, se cumple perfectamente la relación siendo λ = 1/2 en el caso

g = 0 ya estudiado en [5].

Siguiendo con el desarrollo para cualquier g en su posible rango de valores llegamos

fácilmente en este caso a

Fλ(ρ) = F
(0)
λ (ρ) = ρλ = ρ(1+2|g|)/2 , (207)

G
(0)
λ (ρ) = (2λ− 1)−1ρ1−λ =

1

2|g|
ρ(1−2|g|)/2 = GBλ (ρ) . (208)

Podemos entonces caracterizar el dominio (190) por un parámetro real ν de modo que

para funciones f(r) ≡ f(ρ) del dominio

ν ĺım
ρ→0

 ρ1/2f(ρ)
1

2|g|
ρ(1−2|g|)/2

 = ĺım
ρ→0

 ρ1/2f(ρ)

ρ(1+2|g|)/2 − ĺım
ρ′→0

 ρ′1/2f(ρ′)
1

2|g|
ρ′(1−2|g|)/2

 1

2|g|
ρ(1−2|g|)/2

ρ(1+2|g|)/2

 ,

ĺım
ρ→0

(
ρ|g|f(ρ)

)
=

1

2|g|
1

ν
ĺım
ρ→0

(
ρ−|g|f(ρ)− ĺım

ρ′→0

(
ρ′|g|f(ρ′)

)
ρ−2|g|

)
. (209)

Por conveniencia redefinimos el parámetro que caracteriza las posibles extensiones auto-

adjuntas introduciendo β, también real

β =
1

2|g|
1

ν
. (210)

Escribimos aśı

Dβ
g =

{
f ∈ L2((0,∞)) , Hθ

r f ∈ L2((0,∞))
∣∣∣ ĺım
r→0

(
(α0r)

|g|f(r)
)

=

= β ĺım
r→0

(
(α0r)

−|g|f(r)− ĺım
r′→0

(
(α0r

′)|g|f(r′)
)

(α0r)
−2|g|

)}
. (211)

En este caso la extensión de Friedrich (ν →∞) viene dada por β = 0.
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E. Relación entre las diferentes formalizaciones de dominios

para el caso con interacción delta

Podemos establecer una relación entre los dominios en (67) y (68), de modo que Dβ
g ≡

Dβ
n,θ ≡ Dβ, tomando f(r) = ψ(r) y α0 = ζ = 2mΛ

~2 . Estudiando el comportamiento de las

funciones en el ĺımite cuando r → 0

Jg(z±) ∼ 1

Γ(g + 1)

(
1

2
z±

)g
, (212)

Yg(z±) ∼ −Γ(g)

π

(
1

2
z±

)−g
, (213)

φ+(r) = H(1)
g (z+) = Jg(z+) + iYg(z+) ∼

∼ 1

Γ(g + 1)

(
1

2

(
α0

1 + i√
2
r

))g
− iΓ(g)

π

(
1

2

(
α0

1 + i√
2
r

))−g
, (214)

φ−(r) = H(2)
g (z−) = Jg(z−)− iYg(z−) ∼

∼ 1

Γ(g + 1)

(
1

2

(
α0

1− i√
2
r

))g
+ i

Γ(g)

π

(
1

2

(
α0

1− i√
2
r

))−g
. (215)

De acuerdo con (67) la función de ondas se puede escribir

ψ ∼C

[
1

Γ(g + 1)

(
1

2

(
α0

1 + i√
2
r

))g
− iΓ(g)

π

(
1

2

(
α0

1 + i√
2
r

))−g
+

eiµ

(
1

Γ(g + 1)

(
1

2

(
α0

1− i√
2
r

))g
+ i

Γ(g)

π

(
1

2

(
α0

1− i√
2
r

))−g)]
=

=C

[
2−

3
2
g

Γ(g + 1)

(
(1 + i)g + eiµ(1− i)g

)
(α0r)

g+

i
2

3
2
g

π
Γ(g)

(
−(1 + i)−g + eiµ(1− i)−g

)
(α0r)

−g

]
. (216)

Para pertenecer al dominio en (68) el parámetro caracteŕıstico β toma el valor

β = i
23g

π
Γ(g)Γ(g + 1)

eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
si 0 < g < 1 , (217)

1

β
= i

23g

π
Γ(g)Γ(g + 1)

eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
si − 1 < g < 0 . (218)

Notar pues que basta invertir la expresión de β cuando g cambia de signo.

Vemos también que β es dependiente del parámetro µ y de n y θ a través de g = n+ θ.
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Además puede comprobarse que efectivamente β toma valores reales

i
eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
=

= i
eiµ(1− i)−g − (1 + i)−g

(1 + i)g + eiµ(1− i)g
(1− i)g + e−iµ(1 + i)g

(1− i)g + e−iµ(1 + i)g
=

= i
eiµ +

(
1+i
1−i

)g
−
(

1−i
1+i

)g
− e−iµ

2g + e−iµ(1 + i)2g + eiµ(1− i)2g + 2g
=

= i
i 2 sinµ+

(
2i
2

)g − (−2i
2

)g
2g+1 + <{e−iµ(1 + i)2g}

=

= i
i 2 sinµ+ i 2={(i)g}
2g+1 + <{e−iµ(2i)g}

∈ R ,

de modo que

β ≡ β(g, µ) ≡ β(n, θ, µ) ∈ R para − 1 < g < 1 , g 6= 0 .
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F. Cálculo del término anómalo

Dicho término toma la forma

A =
i

~
〈ψg|(H† −H)Dψg〉 = − i

~
〈ψg|(H† −H)Gψg〉 , (219)

donde los operadores usados toman sus expresiones de (28) y (18)

H = − ~2

2m

(
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂ϕ2

)
. (220)

D = tH −G , G =
1

4
(rp + pr) =

1

2

~
i

(
1 + r

∂

∂r

)
. (221)

Aśı pues

A =− i

~
〈ψg|(H† −H)Gψg〉 = − i

~

(
〈ψg|H†Gψg〉 − 〈ψg|HGψg〉

)
= − i

~
〈Hψg|Gψg〉+

i

~
〈ψg|HGψg〉 =

=

∫ ∞
0

~2

4m

(
1

r

d

dr

(
r
d

dr

)
− g2

r2

)
φ∗g

(
1 + r

d

dr

)
φgrdr−∫ ∞

0

~2

4m
φ∗g

(
1

r

d

dr

(
r
d

dr

)
− g2

r2

)(
1 + r

d

dr

)
φgrdr =

=

∫ ∞
0

~2

4m

(
d

dr

(
r
dφ∗g
dr

))(
1 + r

d

dr

)
φgdr−∫ ∞

0

~2

4m
φ∗g

(
d

dr

(
r
d

dr

(
1 + r

d

dr

)
φg

))
dr =

=

[
~2

4m

(
r
dφ∗g
dr

)((
1 + r

d

dr

)
φg

)]∞
0

−
∫ ∞

0

~2

4m

(
r
dφ∗g
dr

)
d

dr

((
1 + r

d

dr

)
φg

)
dr−[

~2

4m
φ∗g

(
r
d

dr

(
1 + r

d

dr

)
φg

)]∞
0

+

∫ ∞
0

~2

4m

(
dφ∗g
dr

)
r
d

dr

((
1 + r

d

dr

)
φg

)
dr =

=

[
~2

4m

(
r
dφ∗g
dr

)((
1 + r

d

dr

)
φg

)]∞
0

−
[
~2

4m
φ∗g

(
r
d

dr

(
1 + r

d

dr

)
φg

)]∞
0

.

(222)

Puesto que φg(r →∞)→ 0 la contribución a la integral se dará con r → 0, que recordando

(93) escribimos

φg(r → 0) ∼ α

√
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|

)(
(αr)|g| + 4|g|

Γ(|g|)
Γ(−|g|)

(αr)−|g|
)

=

= a
(

(αr)|g| + β(αr)−|g|
)
, (223)

con

a = α

√
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|

)
, β = 4|g|

Γ(|g|)
Γ(−|g|)

, (224)

de acuerdo con (92).
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Finalmente

A =− ~2

4m
a2|g|

(
(αr)|g| − β(αr)−|g|

)(
(1 + |g|)(αr)|g| + β(1− |g|)(αr)−|g|

)
+

~2

4m
a2
(

(αr)|g| + β(αr)−|g|
)(

(1 + |g|)|g|(αr)|g| − β(1− |g|)|g|(αr)−|g|
)

=

=− ~2

4m
a2 (2β(1− |g|)|g| − 2β(1 + |g|)|g|) =

=− ~2

2m
α2

[
2 sin(|g|π)

|g|π

(
2−(1+|g|)Γ(−|g|)

)2
4|g|

Γ(|g|)
Γ(−|g|)

(
−2|g|2

)]
. (225)
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G. Cálculos con el átomo de hidrógeno

Dada la ecuación

d2ū(%)

d%2
+

(
λ

%
− 1

4
− l(l + 1)

%2

)
ūl(%) = 0 (226)

consideramos soluciones de la forma

ūl(%) = %−le−%/2vl(%) . (227)

Realizando las siguientes operaciones matemáticas

dūl(%)

d%
=− l%−(l+1)e−%/2vl(%)− 1

2
%−le−%/2vl(%) + %−le−%/2

dvl(%)

d%
, (228)

d2ul(%)

d2%
=l(l + 1)%−(l+2)e−%/2vl(%) +

l

2
%−(l+1)e−%/2vl(%)− l%−(l+1)e−%/2

dvl(%)

d%
+

l

2
%−(l+1)e−%/2vl(%) +

1

4
%−le−%/2vl(%)− 1

2
%−le−%/2

dvl(%)

d%
−

l%−(l+1)e−%/2
dvl(%)

d%
− 1

2
%−le−%/2

dvl(%)

d%
+ %−le−%/2

d2vl(%)

d2%
=

=vl(%)e−%/2
(
l(l + 1)%−(l+2) + l%−(l+1) +

1

4
%−l
)

+

dvl(%)

d%
e−%/2

(
−2l%−(l+1) − %−l

)
+
d2vl(%)

d2%
e−%/2

(
%−l
)
, (229)

(
λ

%
− 1

4
− l(l + 1)

%2

)
ūl(%) =

(
λ

%
− 1

4
− l(l + 1)

%2

)(
%−le−%/2vl(%)

)
=

= vl(%)e−%/2
(
λ%−(l+1) − 1

4
%−l − l(l + 1)%−(l+2)

)
, (230)

podemos sustituir en (226) para finalmente obtener

%
d2vl(%)

d2%
+ (−2l − %)

dvl(%)

d%
− (−l − λ) = 0 . (231)
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H. Dominios de definición y sus parámetros:

Átomo de hidrógeno

En este caso el Hamiltoniano que actúa sobre la función de ondas radial reducida queda

Hl = − ~2

2me

d2

dr2
− e2

r
, (232)

actuando sobre ul(r).

Buscamos comparar esta expresión con (187) escribiendo

hν = − d2

dρ2
− Λ

ρ
, (233)

con la introducción de una constante genérica α0 tal que

ρ = α0r , Λ =
2me

~2

e2

α0
. (234)

Se tiene entonces

α = W = 0 , γ = −Λ , λ = 1 . (235)

Resulta aśı que

F
(0)
λ (ρ) = ρλ = ρ , (236)

G
(0)
λ (ρ) = (2λ− 1)−1ρ1−λ = 1 (237)

GBλ (ρ) = 1 + α [(2− a)(3− a)]−1 [1 + 2(1− a)−1
]
ρ2−a + γρ log(ρ) +

γ

2
ρ =

= 1− Λρ log(ρ)− Λ

2
ρ . (238)

Queda entonces el dominio caracterizado por un parámetro real ν según (190)

Dν
0 =

{
f ∈ L2((0,∞)) , Hlf ∈ L2((0,∞))

∣∣∣∣∣ ν ĺım
r→0

(f(ρ)) =

= ĺım
r→0

(
ρ−1f(ρ)− ĺım

r′→0

(
f(ρ′)

) (
ρ−1 − Λ log(ρ)− Λ/2

))}
. (239)

La extensión de Friedrich vendrá dada en este caso por ν →∞.
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I. Introducción teórica a Supersimetŕıa

El formalismo básico de la Mecánica Cuántica Supersimétrica (SQM) [10] se basa en

la existencia de un superpotencial W (x) tal que permite definir los operadores

A =
~√
2m

d

dx
+W (x) , (240)

A† = − ~√
2m

d

dx
+W (x) . (241)

Estos a su vez permiten obtener una pareja de Hamiltonianos

H1 = A†A = − ~2

2m

d2

dx2
+ V1(x) , V1(x) = W 2(x)− ~√

2m

dW (x)

dx
, (242)

H2 = AA† = − ~2

2m

d2

dx2
+ V2(x) , V2(x) = W 2(x) +

~√
2m

dW (x)

dx
. (243)

Los potenciales V1(x) y V2(x) obtenidos a partir del superpotencial W (x) se conocen como

una pareja de potenciales supersimétricos.

Los Hamiltonianos (242) y (243) son semi-definidos positivos

< H1 > = 〈ψ|H1ψ〉 = 〈ψ|A†Aψ〉 = 〈Aψ|Aψ〉 = ||Aψ||2 ≥ 0 , (244)

< H2 > = 〈ψ|H2ψ〉 = 〈ψ|AA†ψ〉 = 〈A†ψ|A†ψ〉 = ||A†ψ||2 ≥ 0 , (245)

por lo que sus autovalores deben cumplir E
(1,2)
n ≥ 0.

Sin embargo, cabe notar que los autovalores de ambos Hamiltonianos están relacionados

entre śı. Para H1 dado por(242) tenemos

H1ψ
(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n . (246)

Si ahora multiplicamos ambos lados por el operador A obtenemos:

AH1ψ
(1)
n = AA†Aψ(1)

n = H2(Aψ(1)
n ) = E(1)

n (Aψ(1)
n ) . (247)

Lo que implica que si ψ
(1)
n son autoestados de H1 con autovalor E

(1)
n , Aψ

(1)
n son también

autoestados de H2 con idénticos autovalores E
(1)
n .
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El mismo proceso puede llevarse a cabo tomando inicialmente los autoestados ψ
(2)
n de

H2 dado por (243) y se obtiene

A†H2ψ
(2)
n = A†AA†ψ(2)

n = H1(A†ψ(2)
n ) = E(2)

n (A†ψ(2)
n ) . (248)

Vemos aśı que la aplicación de A o A† nos permite pasar de autoestados de H1 a autoes-

tados de H2 y viceversa. Además el autovalor asociado se mantiene invariable.

Cabe mencionar que es costumbre trabajar con H1 por defecto y aśı lo haremos a lo largo

de todo el escrito.

La relación mostrada a partir de (246) y (247) se rompe en el caso en que Aψ
(1)
0 = 0, es

decir, cuando el estado fundamental de H1 queda “aniquilado” por el operador A de modo

que este autoestado está desapareado (a diferencia del resto) y H2 preserva el espectro de

enerǵıas de H1 a excepción del autovalor asociado a este estado, el nivel fundamental.

Nosotros estamos interesados en este tipo particular de casos, en los que se dice que la

supersimetŕıa (SUSY) permanece sin romper. Podemos además establecer las principales

relaciones entre autoestados y autovalores de H1 y H2 particularizadas a la situación

E(2)
n = E

(1)
n+1 , E

(1)
0 = 0 , (249)

ψ(2)
n ∝ Aψ

(1)
n+1 , (250)

ψ
(1)
n+1 ∝ A

†ψ(2)
n . (251)

Una imagen ayuda a visualizarlo

Figura 1: Representación gráfica de la relación entre los espectros de H1 y H2 [10].
Los operadores A y A† indican el cambio de autoestados como se muestra en (250) y (251).
Notar que todos los niveles tienen una pareja supersimétrica mientras que el fundamental
está desapareado y por consiguiente no puede obtenerse a partir de autovalores de H2.
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La condición Aψ
(1)
0 = 0 puede emplearse, si el superpotencial W (x) es conocido y

usando (240), para determinar el estado fundamental como

ψ
(1)
0 = N exp

(
−
√

2m

~

∫ x

W (y)dy

)
, (252)

con N una constante que permite la normalización de la función de ondas.

Por otro lado, si lo que conocemos es el estado fundamental ψ
(1)
0 la condición Aψ

(1)
n

nos proporciona la forma del superpotencial

W (x) = − ~√
2m

d
dxψ

(1)
0 (x)

ψ
(1)
0 (x)

. (253)

En resumidas cuentas, cuando SUSY permanece sin romper, tomando un potencial

perfectamente resoluble V (x) con n autoestados y siendo E0 la enerǵıa del nivel funda-

mental, podemos tomar V1(x) = V (x)−E0 cuyo nivel fundamental es de enerǵıa nula por

construcción. Se obtiene aśı H1 con sus respectivos n autoestados y, de acuerdo con lo de-

sarrollado arriba, podemos hallar asimismo el Hamiltoniano H2 con sus n−1 autoestados.

Posteriormente, a partir de H2 podemos obtener otro Hamiltoniano H3 con n− 2 autoes-

tados y, actuando sucesivamente, podemos construir una jerarqúıa de n+1 Hamiltonianos

H1, H2,..., Hn+1 con n, n− 1,..., 0 autoestados respectivamente.

Con todo esto en mente procedemos a introducir el concepto de invariancia de de forma

(Shape Invariance), lo que nos permitirá generalizar el método de operadores empleado

para la resolución del oscilador armónico (operadores “aniquilación” y “destrucción”) a

toda clase de potenciales de forma invariante (SIPs).

Cuando la pareja de potenciales supersimétricos V1(x) y V2(x) definidos en (242) y

(243) presentan una forma similar y difieren únicamente en los parámetros que en ellos

aparecen se dice que son de forma invariante. De forma más precisa, se debe cumplir la

condición

V2(x; a1) = V1(x; a2) +R(a1) , (254)

donde a1 es un set de parámetros, a2 = f(a1) y R(a1) es independiente de x.

Entonces podemos decir que V1(x; a1) y V2(x; a1) son de forma invariante.

Usando la condición (254) y la jerarqúıa de Hamiltonianos ya tratada se pueden obtener

los niveles de enerǵıa y los autoestados de todo SIP cuando la supersimetŕıa no está rota.
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Comenzaremos la discusión partiendo de los Hamiltonianos H1,2 cuyos autoestados y

autovalores están relacionados por supersimtŕıa y, puesto que SUSY permanece sin romper

E
(1)
0 (a1) = 0 , (255)

ψ
(1)
0 (x; a1) = N exp

(
−
√

2m

~

∫ x

W (y; a1)dy

)
, (256)

usando resultados anteriores.

Con (254) y añadiendo a ambos lados el operador de enerǵıa cinética − ~2
2m

d2

dx2
llegamos a:

H2(x; a1) = H1(x; a2) +R(a1) . (257)

Puesto que los Hamiltonianos difieren en una constante resulta evidente que sus respectivos

autovalores diferirán entre śı por la misma constante y además sus autoestados serán

proporcionales entre si:

E
(2)
0 (a1) = E

(1)
0 (a2) +R(a1)

E(1)=0
= R(a1) , (258)

ψ
(2)
0 (x; a1) ∝ ψ(1)

0 (x; a2)
(??)
∝ exp

(
−
√

2m

~

∫ x

W (y; a2)dy

)
. (259)

En virtud de (249) podemos obtener el autovalor del primer nivel excitado

E
(1)
1 (a1) = E

(2)
0 (a1) = R(a1) (260)

y usando (251) se obtiene el autoestado correspondiente

ψ
(1)
1 (x; a1) ∝ A†(x; a1)ψ

(2)
0 (x; a1)

(??)
∝ A†(x; a1)ψ

(1)
0 (x; a2) . (261)

Pueden generalizarse los pasos seguidos y obtener aśı el espectro ligado completo de H1

junto con sus autoestados. Para ello construimos una serie de Hamiltonianos Hs con s =

1, 2, 3... notando que si H1 presenta n estados ligados se podrán construir n Hamiltonianos

H2, H3,..., Hn+1 tales que el p−ésimo Hamiltoniano Hp poseerá el mismo espectro que H1

a excepción de los primeros p− 1 niveles, que estarán ausentes.

Con el sucesivo empleo de (254) llegamos a

Hs = − ~2

2m

d2

dx2
+ Vs(x; a1) =

= − ~2

2m

d2

dx2
+ V1(x; as) +

s−1∑
k=1

R(ak) , (262)

donde as = fs−1(a1) donde el supeŕındice en f indica que la función se aplica s− 1 veces

sobre a1: as = f(as−1) = f(f(as−2)) = ...
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Si ahora comparamos Hs con Hs+1, el cual en virtud de (254) y (262) se expresa como

Hs+1 = − ~2

2m

d2

dx2
+ V1(x; as+1) +

s∑
k=1

R(ak) =

= − ~2

2m

d2

dx2
+ V2(x; as) +

s−1∑
k=1

R(ak) (263)

y esto implica que Hs y Hs+1 forman una pareja supersimétrica y por lo tanto presentan

el mismo espectro de enerǵıas ligadas con la excepción del estado fundamental de Hs cuya

enerǵıa es, usando que E(1) = 0

E
(s)
0 =

s−1∑
k=1

R(ak) . (264)

Si ahora procedemos a la inversa y vamos obteniendo Hs−1 a partir de Hs y aśı su-

cesivamente, finalmente alcanzaremos los Hamiltonianos H2 y H1. Nuestra atención se

centra en este último, cuya enerǵıa del nivel fundamental es nula y la enerǵıa del resto de

niveles, véase la enerǵıa del n-ésimo nivel E
(1)
n , coincide con la del nivel fundamental del

Hamiltoniano Hn+1.

Esto implica que el espectro completo de autovalores de H1 viene dado por

E(1)
n (a1) =

n∑
k=1

R(ak) ; E
(1)
0 = 0 . (265)

En lo que respecta a los autoestados correspondientes es fácil ver que dado el estado

fundamental ψ
(n+1)
0 (x; a1) ∝ ψ(1)

0 (x; an+1) de Hn+1 definido como en (256)

ψ
(1)
0 (x; an+1) ∝ exp

(
−
√

2m

~

∫ x

W (y; an+1)dy

)
, (266)

mediante el empleo del operador A†(x; an) permite la obtención, según (261), de

ψ
(1)
1 (x; an) ∝ A†(x; an)ψ

(1)
0 (x; an+1) . (267)

Actuando ahora con A†(x; an−k) sucesivamente desde k = 1 hasta llegar a k = n − 1

permite obtener finalmente el autoestado del nivel n-ésimo de H1

ψ
(1)
2 (x; an−1) ∝ A†(x; an−1)ψ

(1)
1 (x; an) ∝ A†(x; an−1)A†(x; an)ψ

(1)
0 (x; an+1) , (268)

...

ψ(1)
n (x; a1) ∝ A†(x; a1) · ... ·A†(x; an)︸ ︷︷ ︸

n operadores

ψ
(1)
0 (x; an+1) , (269)

donde faltaŕıa normalizar las funciones de onda para obtener la expresión final busca-

da. Puede verse finalmente como el resultado obtenido resulta ser una generalización del

45
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método de construcción seguido en el caso del oscilador armónico unidimensional.

Aśı mediante (265) y (269) hemos sido capaces de ofrecer expresiones explicitas que

permiten obtener la totalidad del espectro de enerǵıas ligadas del Hamiltoniano H1 junto

con sus autoestados.
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