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1 INTRODUCCION:
CONSIDERACIONES PREVIAS Y ECUACION DE HEISENBERG

Resumen

En este trabajo se analizaran diversos sistemas fisicos y las simetrias que los rigen.
También se comprobara cémo estas simetrias pueden estar anémalamente rotas en funcién
de los dominios de definicién con que uno trabaje a la hora de emplear el formalismo de
la Mecédnica Cuantica. Asi pues, el objetivo es mostrar cémo dichos dominios tienen una

importancia capital y dan lugar a comportamientos inesperados.

1. Introduccion:

Consideraciones previas y ecuacién de Heisenberg

Segtn los postulados que establecen el formalismo de la Mecanica Cuantica [1], los esta-
dos que describen completamente el sistema a estudiar se caracterizan mediante funciones
de onda de cuadrado integrable ¥(r) en un espacio de Hilbert H complejo y separable o

bien por medio sus correspondientes kets |¥), cumpliéndose la relacién
U(r) = (r|V). (1)

Los postulados también dictan que a cada magnitud fisica observable se le asocia un
operador lineal y autoadjunto que actiia en un dominio denso del espacio de Hilbert ya
mencionado. Estos dominios de definicién son subespacios, dentro del espacio de Hilbert,
sobre los que estan definidos dichos operadores y es este hecho el que da lugar a las rupturas

de simetrias que se trataran aqui.

El estudio de los dominios de definicién resulta de gran importancia al estudiar la
evolucién del promedio de un operador cualquiera B. Esta viene dada por la ecuacién de

Heisenberg comunmente expresada como

d

L w(o)|B(t) = <\D<t>

dt ot h

‘9qu(t)> + 1<\IJ(t)| [H, B]¥(t)), (2)

donde H define al operador Hamiltoniano del sistema que, en el caso de considerar una

sola particula en nuestro sistema, puede escribirse

H—p—g—l—V(r), (3)

- 2m

expresion en la que aparecen los operadores vectoriales momento lineal p = (p1,...,pp) =
: o)
—Zh (87117

ademds un potencial V(r) que actia sobre la particula.

e %) y posicién r = (z1, ..., ¢,) siendo n la dimensién del sistema. Tenemos
n

Sin embargo, para que (2) sea aplicable debe darse la condicién de que el dominio de

definicién del Hamiltoniano H permanezca invariante bajo la actuacién del operador B,
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lo que puede expresarse matematicamente de forma
BYyeDH) VYV¥geD(H), (4)
donde D(H) representa el dominio de definicién del Hamiltoniano. En ese caso, al cumplirse

para toda funcion de ondas en el dominio, podemos simplemente escribir

dB 0B 7
E_E—Fﬁ[H’B]‘ (5)

Por otro lado, si no se cumple lo expuesto en (4), nos vemos forzados a anadir un término
adicional [2] de forma que, considerando al Hamiltoniano H como un operador autoadjun-

to, la expresion (2) queda escrita

d
S (1) BU() = <w<t>

- <\I!(t)

Se tiene asi la ecuacién de Heisenberg modificada, donde A se conoce como el término

‘wat>> 1 (Ew @ B — (w0 BHY()) =

OB i
at\ll(t)> + (U] [H, B w(1) + A. (6)

adicional o anémalo, que toma la forma
1 1
A= Ll - HBY) = ()| BY) - (OEBYD)) . ()
Puede verse que A es nulo si se cumple la condicién (4) por la que H = H (1 denota
el operador adjunto) al actuar sobre los estados BY(t) € D(H) dado que se trata de un

operador autoadjunto en su dominio. Recuperamos entonces la expresién usual (2).

En este trabajo estudiaremos sistemas en los que ciertas simetrias se encuentran anéma-
lamente rotas. Esto es debido a que los generadores de dichas simetrias no dejan invariante
el dominio de definicién del operador Hamiltoniano tras actuar sobre estados pertenecien-
tes a él. Son estos casos en los que la ecuacién de Heisenberg modificada (6) entra en juego
y verificaremos que es ésta la que se cumple tras obtener el término anémalo A.
Ademads, para terminar, haremos un breve estudio de cémo afecta la elecciéon de dominio
de definicién a la teoria supersimétrica del dtomo de hidrégeno en los estados con momento

orbital nulo { = 0.

2. Ruptura anémala de simetria conforme bidimensional

Nuestra atencién se centra ahora en un sistema en dos dimensiones formado por una
particula libre sujeta a una interaccién 62(r) en el origen, siendo el Hamiltoniano que lo

describe de forma clédsica )
P 1
H=— -
o —|—)\r<5(r), ()

con A\ como parametro de la interaccion.
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Antes de pasar al caso cudntico merece la pena ver cémo se comportan las simetrias

clasicas. Para ello introducimos los generadores de la simetria conforme

1
D:tH—G:tH—g(rp), 9)

K= —t2H +2tD + %RQ =1’H —t (rp) + %rz : (10)

que junto con el Hamiltoniano H permiten establecer ciertas relaciones usando el corche-

te de Poisson {4,B} = )", <g—(‘f_gf_ - g—;g—f) con ¢; y p; las coordenadas y momentos

generalizados. Tenemos asi, consultando el Apéndice A para un desarrollo detallado

{K,D} = -K |, (11)
{H,K}=2D, (12)
{(D,H}=-H. (13)

Las ecuaciones cldsicas del movimiento implican que para una magnitud f(p,q,t) cual-

quiera se cumple

St ={fm+ 9 (14)

donde cabe notar el parecido con la ecuacién de Heisenberg (2), cambiando corchetes de

Poisson por conmutadores de Lie. En consecuencia en nuestro problema se tiene que

dp_dp_dg_y

= 1
dt dt dt ’ (15)

indicando que son constantes del movimiento.

Veamos qué sucede al pasar al caso cuantico. Para ello cuantizamos el Hamiltoniano
anterior obteniendo

H=H(rp)=—5—

(9> 10 1 82 1
g 429y 9 Z5(r). 1
<8r2 +7"87'+r26<p2> +)\r6(r) (16)

Si consideramos la extensiéon del Hamiltoniano a todo el espacio de Hilbert H, es de-
cir, D(H) = {f e H| Hf € H, f(0) finitos} con H = L*(Ry,rdr) ® L%(S1,dy) se tiene
entonces que el Hamiltoniano propuesto es invariante de escala. Mas concretamente, in-
troduciendo una dilatacién r — ar (r, « € RT U {0})

d(ar)2 " (ar)d(ar) = (ar)2092 o2 \or2  ror 1r20¢%2) " (ar) A= 2o\
1
- H(Oé?", 90) = 7H(Ta 90) (17)

a?

Este hecho implica adema&s que el sistema tratado permanece invariante bajo la ac-
tuacién de los generadores del grupo conforme (que definen un algebra de invariancia
SO(2,1)), dados por el propio Hamiltoniano definido en (16), el operador de dilatacién D

y el generador conforme K [3]. Estos tltimos operadores se escriben ahora
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1
D:tH—G:tH—Z(rp—I—pr), (18)

t
K =—t2H +2tD + %rz = ’H — 3 (xp+ pr) + %rz. (19)

Puede verse en el Apéndice B que se cumplen las siguientes reglas de conmutacién

formales (ignorando los dominios) usando los corchetes de Lie [A, B] = AB — BA

% K, D] = K, (20)
% (H,K] = —2D, (21)
% D, H] = H, (22)

de modo que sus promedios permanecen invariantes en el tiempo de acuerdo con (2)

d d d

() = S(D) = S{K) =0 (23)

y hablamos de constantes del movimiento.
Notar ahora que las expresiones clésicas (11), (12) y (13) se relacionan con las expresiones
cuanticas (20), (21) y (22) segun

—{A,B} — %[A, Bl. (24)
Ademds vemos que, usando (2) y (14), llegamos a que los operadores son constantes del
movimiento y podemos pensar que la simetria se conserva al pasar del formalismo clésico
al cuantico. Sin embargo, la ausencia de dominios de definicién en el caso clasico implica
que al cuantizar el sistema se pueden dar casos, en funcién del dominio estudiado, en los
que la simetria se encuentre anomalamente rota al no poder implementarse cuanticamente.
Es aqui donde tenemos que hacer uso de la ecuacién de Heisenberg modificada (6) para

hallar la evolucién temporal y encontramos que (23) puede dejar de cumplirse.

Volviendo al Hamiltoniano, puede verse que si se mantienen la simetria conforme y la
invariancia de escala es imposible tener un estado ligado con energia diferente de 0. Para

probarlo supondremos que ¥(r, @) representa un autoestado del Hamiltoniano H (r, ¢)
H(r, o)¥(r,p) = EV(r,p). (25)
Resulta entonces que al implementar una dilatacién caracterizada por «
H(ar, o)V (ar,p) = EY(ar, ). (26)
Ateniéndonos a lo expuesto en (17) podemos relacionar ambos resultados de modo que

H(ar, o)V (ar,p) = %H(T, o)V (ar,p) = EVY(ar,p) =

= H(r,o)¥(ar, ) = a2E\IJ(a7‘, ©). (27)
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Asi ¥(ar, ¢) es también autoestado del Hamiltoniano H (r,¢) cuyo autovalor depende de
la dilatacién «. Se tendra por tanto un continuo de valores posibles que no tiene cabida
en la discretizacion presente para los estados ligados y concluimos asi que, en el caso de
existir estados ligados, éstos solo pueden tener energia nula (a2 -0 = 0).

Sin embargo, resulta que si que es posible encontrar autoestados del operador (16) con
energfa no nula. Concretamente, hallamos 1,(r, ¢) = Cy K,(ar) e'9?, donde 0 < |g] < 1,

Cy es una constante de normalizacién y K,4(2) es la funciéon de Bessel modificada. Se trata

2

5 a? (< 0) que pone en contradiccién lo que hemos

de un estado ligado con energia £ = —
desarrollado anteriormente y sugiere que en algtin caso la simetria conforme esta rota.
Cabe entonces preguntarse la razén por la que esto sucede y la respuesta se encuentra en

los dominios de definicién, como uno podria a estas alturas esperarse.

Para estudiar esta situacion de forma apropiada empezaremos por definir adecuada-
mente el dominio de definicién del Hamiltoniano Dy de forma que sea denso en el espacio
de Hilbert H, asi Dy = H y es autoadjunto (H f=H ) actuando en Dp. Para ello co-
menzamos eliminando las singularidades del origen por lo que, trabajando en R?/{0,0} y

tomando coordenadas polares como antes

o> 10 1 9°
H—‘gqn(arz*raﬁrzagoz)' (28)

Se tiene asi el Hamiltoniano correspondiente a una particula libre* y seran las condiciones

de contorno en el dominio Dy las que dardn cuenta de la interaccién delta en el origen.

Optamos por definir primero el dominio del operador d?/dy?. Estamos interesados en
estudiar el efecto que tiene la interaccion delta en las simetrias y, como no buscamos mo-
delizar una nueva interaccién restringiendo el dominio de definicién de d?/dp?, tomaremos

condiciones de contorno cuasi/pseudo-periédicas para éste. Escribimos entonces

dr

70) = e p(2m), S 0) = 0L

¥

en(@)ee n((@)

donde t denota el operador adjunto. Asi, si buscamos que el operador sea autoadjunto en

dg = {f(go) € L*(S1,dy) (2m); 6 € [0, 1)} (29)

Y usaremaos

el dominio, deberd cumplirse, haciendo uso de la integracién por partes

N [Ty
Yag2h )= o Tag2™ = |1 ap

2

/27r dq* df
_ fng =
0 0o dedp

df 2m dq* 2m 2 d2q>k d2
_ |9 2 fdo = ( — 31
"ol d¢f0+/0 oo = (554 (31)
—0 —0

*Notar que lo dnico que cambia es la eliminacién del término con §(r).
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y esta expresién debe ser valida Vf, q. Por ello

(2m) = 72007 (0)) £ 2m) = 0 — g(0) = 2 g(2m), (32
(‘é‘i (27 — e~i2m0 dq;;0)> F2r) = 0 — i‘im) _ e_i%eii(%r) . (33)

Podemos concluir finalmente que

o((£))-2(&) -s

y el operador es autoadjunto en el dominio elegido. Sus autoestados £(y) € dy vendran

dados por 1 1
= = igp _ _ — L i(n+O)p
gnﬁ(@) - gg(‘p) (27{')1/26 (277)1/26 Y (35)
donde g =n+6 con n € Z.
Consecuentemente sus autovalores correspondientes serdn —g? = —(n+ 9)2.

A su vez el dominio del Hamiltoniano se puede escribir en funcién de las infinitas

extensiones angulares caracterizadas por n y 6

DH = 692 [Dnﬂ(RJrv Td?“) ® gn,@(@)] = @Z [Dn,G(RJr’ Td?") & (27T)_(1/2)€i(n+6)(’0 (36)
ne ne

con Dy, o(R4,rdr) tal que la parte radial del Hamiltoniano (28) sea autoadjunta

(2 1d (n+0)?
(A (RS B U
! 2m (dr2 T 2 > (37)

Para la obtencién del dominio radial seguiremos el método de indices de von Neumann [4].
Consideramos inicialmente un dominio de definicién inicial D (Hf ) = D,, ¢ con funciones
de soporte compacto® y tal que Hf sea simétrico en él. Esto permite calcular sus indices

de defecto resolviendo la ecuacién espectral

(B9 920 = ik 6:(r), (39)

donde A es un nimero real positivo que se introduce a los efectos de mantener las di-
mensiones de la ecuacién y donde ¢4 (r) € D ((Hf )T) A la dimensién de los subespacios
engendrados por ¢ y ¢_ se le denota por d y d_ respectivamente y atendiendo a su

valor se tiene que
= Sidy # d_, el operador no admite ninguna extensién autoadjunta.

= Sidy =d_ =0, el operador es esencialmente autoadjunto y su adjunto coincide con

su cierre por lo que basta tomar la extension cerrada minima de dicho operador.

$Se conocen como funciones de soporte compacto de un dominio aquellas funciones que se anulan fuera
de un conjunto compacto.
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= Sidy =d_ #0, el operador admite infinitas extensiones autoadjuntas.
Introduciendo (37) en la ecuacién espectral (38) llegamos a

R (d2 1d  (n+0)?

“m G trar )4 = ik o

Para facilitar su resolucion introducimos el siguiente cambio de variables

2o =C(=D)Y 2= (—1)¥4r, (40)
con (% = 22"”2‘/\. La expresion (39) queda asi reescrita para cada funcién como
d*¢ do
2 + + 2 2
Z4 dZ_Q,'_ + 24 der + (Z-‘r - g )¢+7 (41)
d>¢_ dop_
P ¢ + de- + (22— g%)o_ . (42)

T d? = dz_

Se trata pues de dos ecuaciones diferenciales de Bessel, una para cada variable, donde
ademds se cumple que g?> = (n + 0)2 > 0. Concretamente solo estamos interesados en
g # 0 puesto que este caso particular ya fue tratado extensamente en [5]. Por lo tanto
tendremos como solucién en cada caso una combinacién lineal de las funciones de Bessel de
primera y segunda especie, Jg(z+) y Yy(2+) respectivamente [6], puesto que son linealmente

independientes entre si para todo valor de g. Con ello

O+ = ApJg(z4) + BiYg(z4), (43)
¢p—=A_Jg(z—) + B_Y,(2—). (44)

Para extraer mas informacion y proseguir nuestro desarrollo estudiaremos los comporta-

mientos de las soluciones en los casos limite dados por los extremos del dominio:
> 0= 2+ -0

Se tiene pues

g
Jg(zi — O) ~ F(gl—|—1) (;Zi> xr?, (45)
Yy(24 = 0) ~ _Fgrg) <;zi> - xr 9. (46)

Ademsds deben tenerse en cuenta las condiciones de normalizacién, de modo que su norma
sea finita. En particular el problema surge al integrar »—! dado que el logaritmo diverge
cuando r — 0

/7"_2|9| rdr < oo <= r 29 S s g < 1. (47)

Asi —1 < g < 1 para que la ambas funciones de Bessel sean normalizables en el origen y
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distinguimos:
« g > 1y Yy(2+) no es normalizable, de modo que B4 = 0.

« g < =1y Jy(2+) no es normalizable, de modo que A+ = 0.

"= 00 = |z4] &
En esta situacién

2 1 1
Jg(|z4]| = 00) ~ acos (zi — 597~ 47r> (48)

2 1 1
Yy(Jz4| = 00) ~ 1/asin (zi—2g7r—47r) (49)

Consecuentemente, en funcién de los casos anteriores, las funciones se escriben:
e g>1y ¢p = ArJy(2+) dado (47).

Sin embargo, puesto que! zL = (a +ib) r se tiene, usando relaciones trigonométricas

cos | z4 — L +1 = cos(z+) cos L —i—l + sin(z4 ) sin L +1 (50)
+ 29” 477 = + 297T 47r + 2977 477 )

donde
iar ,Fbr —iar ,&br
cos(z4) = cos((a £ ib)r) = S +2€ ¢ % 0, (51)
iar ,Fbr _ _—iar +br
sin(z4) = sin((a £ ib)r) = S 26 c % Foo. (52)

Vemos entonces que Jy(z4+) diverge para g > 1 y no existen posibles soluciones para la

funcién de ondas.
e 9< -1y ¢r = ByYy(24) dado (47).

Ahora, con z4+ = (a £ ib)r se tiene

i “gm+ o) ) =sin(es) cos ( Sgm+ (zs)sin 2gm+ 17) . (53)
sin | 24 5 g 47r = sin(z4) cos 5 g 477 cos(z+ ) sin 5 g 47r ,
donde de nuevo

ezareq:br+e—zare:tbr oo

&) )
2
ezare:Fbr _ e—mreibr oo

sin(z4) = sin((a £ ib)r) = 5 Foo. (55)

cos(z+) = cos((a £ ib)r) =

T2 o (=1D)Y47r y 2 o< (=1)%*r y queda claro que estamos ante niimeros complejos.
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Resulta entonces que Yy(z+) diverge para ¢ < —1 y no encontramos posibles soluciones

para la funcién de ondas.

Entonces si |g| > 1 no existen posibles soluciones para ¢4 (r) de modo que los indices
de defecto serdn di = d_ = 0 y el operador es esencialmente autoadjunto actuando en el
dominio D, g.

Para |g| < 1y g # 0 tanto Jy(z+) como Yj(z+) son normalizables en el origen, de modo
que basta con encontrar una combinacién lineal de ellas que converja en el infinito. De

entre las posibles combinaciones lineales existentes cabe destacar

que cumplen:
- Hél)(zi) — 0 cuando |z4+| — 0o (1 — 00) en el sector 0 < arg{z+} < .
- Hé2) (2+) = 0 cuando |z+| — oo (r — o0) en el sector —7 < arg{z+} < 0.

- Son linealmente independientes entre si para todo valor de 2.

Cuando |z4| — oo las funciones toman la forma

zi 2grr Tl' Oceizi, (58)

~ 2 —1 Zif§gﬂ'7*ﬂ') o e—izi ) (59)
Zj:

Teniendo en cuenta quel zp = ——(1 +4)r sucede que

S

Hg(2) (z4) x e" 22 00, (60)
1 r r—00
Hé)(z_)me — 0. (61)

Con lo que finalmente las soluciones para ¢ (r) quedan expresadas como

b4 (r) = CLHD (24), (62)
¢ (r)=C_H(z), (63)

donde C+ denotan las constantes de normalizacion.
Notar ademés que este resultado podria haberse obtenido considerando que arg{z; } = /4
y arg{z_} = —n/4, de modo que segun las propiedades que cumplen ambas funciones

llegamos de nuevo a (62) y (63).

ISi evaluamos adecuadamente (—1)/* y (—1)3/4.
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De esta forma, se ha obtenido una solucién para ¢, y otra para ¢_. Por consiguiente
los indices de defecto cumplen dy = d_ # 0 y el operador H?(r) admite infinitas exten-
siones autoadjuntas.

La teoria de indices de defecto permite construir dichas extensiones definiendo las iso-
metrias entre las funciones ¢4 y ¢_ debidamente normalizadas, de modo que ¢_ = U¢4
siendo U un operador unitario cuyos pardmetros caracterizardn las posibles extensiones

autoadjuntas. Por tanto, el dominio puede tomarse

DYy = {v € L(Berdr)| ¥ = vo + C (91 + Uds) | . (64)

donde C' es una constante cualquiera y las funciones g pertenecen al dominio de definicién
inicialmente impuesto, de modo que son funciones de soporte compacto y se anulan en los

extremos del dominio

Yo(r =0) = tho(r —o0) =0, (65)
Yol - _ %ol g (66)
dr r=0 dr r—00
Ademas, puesto que nos encontramos en el caso con dy = d_ = 1 tenemos que el operador

U viene caracterizado por una fase, de modo que U¢, = e*¢_ con u € [0,27).

Con todo esto podemos finalmente escribir el dominio de definicién como

D'Z,Q = {¢ € Lz(R+,TdT) ¢ - ¢0 +C (¢+ + ei“gzb,)} . (67)

Otra forma mas conveniente de escribir el dominio consiste en caracterizar las posibles
extensiones autoadjuntas por medio de un parametro real que denotaremos por S**. Se

tiene asi tras realizar las pertinentes cuentas que pueden encontrarse en el Apéndice D
D} = {f € I2((0,00)), HIS € L2((0,00)] i ((00r) 91 f(r)) =
r—r

= 5 iy ((or) 170) = i ((or)27)) Coar) 2 ) b (o)

En el caso particular con § = 0 se tiene la extensién autoadjunta de Friedrich [7], que
ademds implica tomar A = 0 en (16). Esta extensién se corresponde con el dominio asociado
a una particula libre sin interaccién puntual delta en el origen.

El resto de casos con A # 0 se corresponden por tanto con las extensiones de 8 # 0 y la

interaccién del potencial delta se tiene en cuenta en el dominio de definicién [5][8].

Podemos establecer una relacién®® entre los dominios D, (67)y DS = Dg g = DB (68)

tomando f(r) =¢(r) y ap =( = 22‘2/\. Estudiando el comportamiento de las funciones en

el limite cuando r — 0 se llega a la conclusién de que para pertenecer al dominio Dg el

**3 es funcién del pardmetro v definido en [7], del que se puede consultar un resumen en el Apéndice C.
$9Para mayor detalle conviene consultar el Apéndice E.

10
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pardmetro caracteristico 5 debe tomar el valor

239 Wil —i)"9 — (1 4+4)79
8= i7f(g)F(g + 1)6 (1(+ i);)_’_ eiugl J_r 29 si0<g<1, (69)
1 2% ML —i) 9 —(141)Y
G=i T+ 1)6(1(+ 2.)29)4r ew& ’ z;g si—1<g<0. (70)

Notar pues que basta invertir la expresién de 8 cuando g cambia de signo.
Vemos que [ es dependiente del parametro py de ny 8 a través de g = n + 6 y ademaés

puede comprobarse que efectivamente toma valores reales. Para ello comprobamos que

(1 —i)79 — (141)79
(1+14)9 + (1 —i)9

eR (71)
y como el resto de factores que entran en juego en las expresiones (69) y (70) son reales

B=pB(g,n) =Bn,0,u) €R con —1<g<1,g#0. (72)

Con todo lo anterior podemos escribir que el comportamiento cuando r — 0 de las

funciones pertenecientes a DQB serd de la forma

B(r = 0) ~ C ((an)!9 + Blar) o) | (73)

donde C' es una constante que permite la normalizacién de la funcién.

De forma mads extensa, particularizando para los distintos valores de 3, esto implica

Y(r —0) ~ C ((ar)? + B(ar)™) si0<g<1, (74)
Y(r —0) ~ C (B(ar)? + (ar)™9) si —1<g<0. (75)

Para ver que esto es asi hacemos uso de (45) y (46) y suponemos una funcién

f(r—0)~a ((ar)\g\ n b(ar)"gl) . (76)

Si queremos que f(r) pertenezca al dominio de definicién del Hamiltoniano dado por (68)

entonces debe cumplirse

lim ((aor)‘g‘ f(r)) = lim <(a0r)_|g f(r) = lim <(a07a’)\gl f(ﬂ)) (@OT>—2|9> ,

(20)" = pa () =5 =(2)". ()

Volviendo a la expresién de f(r) inicialmente supuesta

f(r—=0)~a <a>|9 ((0407“)|g| + ba(ljgr_”) =a (a>|9| ((aor)|g| + B(aor)_|g|) :

op a2\g\ oo
(78)
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2 RUPTURA ANOMALA DE SIMETRIA CONFORME BIDIMENSIONAL

Podemos ver entonces que ¥(r) y f(r) toman la misma forma y por tanto pertenecen al
dominio de definicién Dg , como pretendiamos demostrar. El pardmetro 8 que determina

la extensién del dominio vendrd caracterizado por la expresiéon = b (ag/) 9l

Retomando el hilo del estudio de nuestro Hamiltoniano, recordamos que inicialmente
vimos que su dominio era invariante bajo la actuacién de los operadores D y K. Sin

embargo, al encontrarnos en el dominio Dy dado por

—1/2 i
Dy = [Dg ® (2m)Y/219¢ (79)
la situacion es diferente y el dominio no permanece invariante tras actuar con dichos opera-
dores. Para mostrarlo estudiamos la accion del operador GG sobre el dominio de definicién.

Recordando la expresién de este operador

G = i(rp—i—pr): é? <ﬂ+r88r> (80)
y tomando ¢(r — 0) ~ C ((ar)l9l + B(ar)~19) € Dg
G| =55 (v+r5e) | ~50% (104 8tary ) + gl ((on)o = aar) 1))

= 20 (0 +lgh e + (1~ lghstar) ) = ¢ ()l + (ar) 1T} |
(81)

con

r_ 1—g| /_EE
BB A8 = grahe. (52)

Se tiene asi que, puesto que el caso g = 0 esta descartado¥!, el dominio DgB (y por tanto
el dominio D) no permanece invariante bajo la actuaciéon de G' como puede verse dada
la diferencia de 3’ respecto a 8 una vez actia el operador. Consecuentemente, el dominio
no sera invariante bajo la actuacién de D y K y la simetria establecida anteriormente de
forma general estara rota de forma andémala en este dominio.

Notar que en el caso de la extensién de Friedrich tenemos 3 = 0 y trivialmente /' = 3 =0
de modo que el dominio permanece invariante bajo G.

Regresando al caso 8 # 0 resulta entonces que las funciones del dominio no presentaran
invariancia de escala y podran existir estados ligados normalizables con energia distin-
ta de 0. Para ver esto comprobaremos que, como ya mencionamos, es posible encontrar

autoestados ligados de energfa no nula

Hrqsg ==

2m

R 2 1d
<W+Tch—7q2>¢g:_|Eg‘¢g‘ (83)

19En dicho caso las funciones del dominio toman otra forma y por consiguiente no podemos aplicar (82).
Sin embargo, como se mostré en [5], también hay ruptura de invariancia.

12



2 RUPTURA ANOMALA DE SIMETRIA CONFORME BIDIMENSIONAL

Para resolver la ecuacién introducimos el siguiente cambio de variable

2m|FE,
o = m|E|

z=ar con S (84)
de modo que la ecuacion anterior queda reescrita
d*¢ d¢
20" Pg g 2 2N,
z dZZ +ZE_(Z +g )¢g —O (85)

Se trata de nuevo de una ecuacion de Bessel, cuya solucién que se adapta a las condiciones

del problema tratado [6] viene dada por
Pg(r) = CgKy(2), (86)

donde de nuevo Cy es una constante que permite la normalizacién de la funcién y K,(z)
es la funcién de Bessel modificada que tiene la propiedad de tender a 0 cuando |z| — oo,
es decir, cuando r — oo. Tras realizar las cuentas pertinentes para obtener el valor de C

y anadiendo la dependencia angular de ¢

() = (1) = dy{r) = = (a M;ff%gw)) I

cuyo autovalor de energia viene dado por (84)

o

By = 2m

(88)

Estos son precisamente el autoestado y autovalor que se ofrecieron como solucién al prin-
cipio de la seccion y queda probado que es posible su obtencién.

Notar ademas que, cuando 7 — 0 y en consecuencia z — 0,
Kyl 5 0) ~ 279 (297 T(g) + 20 (29T () (59

v/ 2m| Ey|
R

(84), se concluye que ¢4(r) pertenece a Dg con un valor para el pardmetro

y haciendo uso de (68), considerando f(r) = ¢4(r) y ap = a = de acuerdo con

_ 9 L(9) .

B_4ka si0<g<l1, (90)

I Y ) G ')

5_49Nm =4 o) 1<g<0. (91)
['(—g)

Podemos tomar una expresién reducida de modo que

r
5:@%JEQGR si—1<g<1,g#0. (92)

I'(=lgl)

13



2 RUPTURA ANOMALA DE SIMETRIA CONFORME BIDIMENSIONAL

Esto permite escribir en el limite cuando r — 0

2sin(|g|m)

qbg(r_)O)NO[ |g|7T

(200l ((aryl+ 4 T ) o)

Una vez obtenida la expresion de dicho autoestado podemos obtener el término anémalo
de la ecuacién de Heisenberg modificada para el operador D (podria hacerse igualmente

con K), que debera ser distinto de 0 para explicar esta situacién. Se tiene asi, segin (7)

= LWyl — H)Dy) = (| (HT — )Gy, (94)

donde los operadores usados toman sus expresiones de (28) y (18)

h2 10 0 1 02
H=-5 <rar <a> ww) : (95)
1 1h 0

Retomando los caclulos pertinentes

/)

A== 2tgl(H = DG ) =~ ((w
L ELEC) Bl
[ E5CA() %) (ot
[ () (i) )], - [ime (Ti(“fi)%)f’ o

donde se ha aplicado la integracion por partes.

|H ng> <¢9‘HG¢9>) =

Q

(
4

8 \

Puesto que ¢4(r — 00) — 0 la contribucién a la integral se dara con r — 0. Introduciendo

(93) en esta expresion permite obtener finalmente, segiin las cuentas del Apéndice F

_ 7 o 72sidglm) (o ignpe o) 24l EA9D oy 2
a=-1 [ 91T (-tiviabr () a0 (o )]- 99)

Consultando [6] puede verse que para los posibles valores de g, es decir —1 < g < 1 con

g # 0, encontramos que

2sin(|917) (o419l _ o L9l
rEa R o)) 4 rrpp (2P = (99)

de forma que podemos tomar, para todo valor de g aceptable

K2 9
A=-Ta?— By, (100)

Ademas, este resultado se mantiene en el limite |g| — 0 y consecuentemente el resultado

14



2 RUPTURA ANOMALA DE SIMETRIA CONFORME BIDIMENSIONAL

ya obtenido en [5] queda aqui incluido.

El hecho de que D no mantenga invariante el dominio de definicién Dy hace que
aparezca la contribucién extra del término anémalo A de modo que es necesario emplear
la version modificada de la ecuaciéon de Heisenberg.

Veamos esto hallando la derivada temporal del promedio del operador dilatacién (D)

haciendo uso de los estados ligados hallados anteriormente con (87) y (93)

1 .
= , ) = ——e?, 101
¢(r) @Z}g(r 90) (jﬁg(’l“) me ( )
2sin(|glm) (- (141q)) | o1 Llgl) -
Gg(r = 0) ~ oy | ————= (2 IWT(—|g ar)l9l 4 4ldl Z2T0_ (o) =lel) (102
o(r = 0) e (~lgl) { (ar) Rl ) (102)
junto con (18)
1 1h 0
Escribimos entonces
(D) = t(H) = (G) = t(sog|H 1hg) — (1g|G 1g) . (104)
Para hallar el resultado hemos de recordar que v, son autoestados del Hamiltoniano, de
modo que
R
(Vg|H pg) = —|E,| = —%a . (105)

Por otro lado
® s Lh [~ d
(1hg|G thg) :/ ¥y G pgrdr = 2,/ oy | 1+ T ¢grdr =
0 v Jo r

1h o d
== <1 +/0 o <r2$f’> dr) . (106)

Es evidente que no presenta dependencia temporal, por lo que

d
56 =0 (107)
y asi
d d d R, R,
(D)= 2 (¥l Dibg) = — (—tQma ) =5’ =A, (108)

cumpliendo la ecuacién de Heisenberg modificada, que recordando (6), toma la forma

d d
D = GvdD ) = (4,

oD '
OF )+ 5 Wl DI +A= A (109)

=0

La nulidad de esa suma de términos ya se demostré en (23) usando %—? =Hy+i[D,H|=H.
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3 RUPTURA DE LA DEGENERACION ACCIDENTAL Y SUPERSIMETRIA EN
EL ATOMO DE HIDROGENO

3. Ruptura de la degeneraciéon accidental y Supersimetria

en el atomo de hidrogeno

El conocido caso del dtomo de hidrégeno no relativista puede estudiarse [9] como un
nucleo constituido por un protén alrededor del cudl orbita un electron de modo que la
interaccién se puede modelar por medio de la fuerza de Coulomb entre ambas particulas.
Considerandolo como un sistema de dos particulas podemos estudiarlo desde el sistema de
referencia centro de masas y, puesto que el nicleo es mucho mas masivo que el electrén, la
posicién del centro de masas se puede aproximar a la posicién del protéon que constituye
el nicleo. Asimismo la masa reducida p puede aproximarse a la del electrén.

El potencial causante de la interaccién puede escribirse como V(r) = —%, en unidades
del sistema cgs. Como se trata de la interaccién entre dos particulas estamos ante un
potencial central (que por tanto presenta simetria esférica) por lo que resulta cémodo
emplear coordenadas polares esféricas. Ademds, aprovechdndonos de la simetria del pro-
blema, tomaremos funciones de ondas que sean tanto autoestados del Hamiltoniano H

como autoestados de L2 y L. Concretamente se expresaran como

rm(r) = Ri(r)Y;™(0,¢), (110)

donde Y;™(0, ¢) son los arménicos esféricos y la funcién de ondas radial R;(r) satisface la

-1
siguiente ecuacion radial con pu = (mi + mi) M
e P

2 2 2
p;, ll+1)r* e
<2m + o2 Ri(r) = ERy(r), (111)

donde (> 0) es un nimero cuéntico entero que cuantifica el momento angular orbital y

1 d d d? 2d
2 2
p — 4+ == 112

Tor2dr <T dr> dr?2 = rdr (112)

Para facilitar los cdlculos realizamos la sustitucién

1
Ri(r) = —wlr), (113)
donde wu;(r) se conoce como la funcién de ondas radial reducida y satisface la ecuacién
radial reducida

HZUZ(T) = E’U,Z(T) y (114)
con el Hamiltoniano H; expresado de forma

2 2 2 1 2
L Y (S VOE (115)

=%
! 2me dr?2 = 2m. 12 T
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3 RUPTURA DE LA DEGENERACION ACCIDENTAL Y SUPERSIMETRIA EN
EL ATOMO DE HIDROGENO

Introduciendo las definiciones

\/8me|E| e? e
=y - A= — 11
0 e i\ 2B (116)

podemos reescribir (114) tomando (o) = u;(r)

u0) | (A 1o+ 1)) (o) = 0. (117)

do? o 4 0?

El método comunmente usado para resolver este tipo de ecuaciones se basa en consi-

derar el comportamiento asintético de (). Para ello estudiamos los siguientes casos:
s r >0« 0—0

Los términos predominantes permiten tomar

d>u I(1+1)
—— — ———21; =0 118

2 =
lucién -1 I+1
y se extrae como solucién u(p) ~ o™, o' 7.
Sin embargo, debemos tener en cuenta las condiciones de normalizacién de modo que hay
que ser cauteloso con o~! puesto que puede causar problemas (I > 0). Actuando como en

la seccién anterior
1
/gzldg<oo<:>g21>gl<:>l<2@l:0. (119)

Si se toma (o) = o' la condicién de normalizacién se cumple para todo valor de I
(recordando que estamos en el caso o — 0).
Aqui pretendemos realizar un estudio sobre el estado fundamental de modo que I =0y

decidimos tomar u;(g) ~ o', en el presente caso asintético.

"7 — 00 <= 09— 0

Los términos que predominan son ahora

dgal 1
— —-u; =0, 120
do? 4 ! (120)
lo que permite tomar u;(g) ~ e~2/2 como tinica solucién. Se ha tenido en cuenta que debe
ser normalizable y por tanto la exponencial positiva (que también es posible solucién)

queda descartada.

Una vez estudiados los comportamientos de la funcién w;(p), resulta conveniente definir

una funcién v;(p) tal que
(o) = 0~'e ™ ?u(0) . (121)
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3 RUPTURA DE LA DEGENERACION ACCIDENTAL Y SUPERSIMETRIA EN
EL ATOMO DE HIDROGENO

Introduciendo esta expresion para 4;(g) en (117) se tiene, tras una serie de pasos detallados

en el Apéndice G, la siguiente ecuacion

d?vi(0)
d%o

dvi(o)
do

+ (=2l — o) —(=l—=X)=0. (122)
Resulta entonces que estamos ante una ecuacién hipergeométrica confluente de pardmetros
b= -2y a= —Il— )\, cuya solucién general viene dada por una combinacién lineal de las

siguientes funciones

. (a)no? a a)20® a)no”
M(a,b, 0) = 7;) ((b;:f“ —14 ?Q + (<b;25! ¥t ((b;ni! ¥, (123)
B M(a,b, o) M1 +a—-5b,2-0,0)
Ula.b.0) = S (F(l Ya—br0) o T(a)(2 —b) ) ’ (124)

donde se ha usado (a), =a(a+1)(a+2)..(a+n—1)y (a)o = 1.

Puesto que el caso [ = 0 nos brinda b = 0 se tiene que la funcién M (a, b, o) es divergente

y deberemos tomar entonces tinicamente U (a, b, o) como posible solucién y asi
(o) = Ae”?*U(=),0,0) (125)

donde A es una constante que permite la normalizacién de la funcién de ondas.

Cabe preguntarse si la solucién que se obtiene en caso de tomar @ (0 — 0) ~ o't es
igualmente véalida y como se relaciona con la ya obtenida. Para ello seguimos los mismos

pasos anteriores y llegamos a

dvy (o)
do

d?v(p
0 1(0)

7, —(+1=X)=0. (126)

+(20+2-)p)
De nuevo en el caso [ = 0 solo podemos contar con la funcién U(1 — A, 2, 0) y tomamos

por solucién
(o) = Boe #*U(1 - X,2,0), (127)

con B una nueva constante de normalizacién.
Este resultado es perfectamente valido y ademds puede demostrarse que coincide con (125).

Para ello nos referimos a la siguiente propiedad de la funcién U(a, b, ) [6], que expresa

U(CL, 1- n, Q) = QnU(a + n, 1 + n, Q) . (128)
Si se toma a = —\ y n = 1 queda explicita la relacién buscada
U(—)\,O,Q) = QU(l _>\a2a Q)v (129)

de modo que se demuestra asi la coincidencia de soluciones (con A = B), que es lo que

uno podia esperar dada la validez de ambas.
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3 RUPTURA DE LA DEGENERACION ACCIDENTAL Y SUPERSIMETRIA EN
EL ATOMO DE HIDROGENO

Retomando el hilo de nuestros razonamientos en la seccién anterior, todavia cabe hallar
el dominio de definicién del Hamiltoniano que, para [ = 0, engloba las funciones de onda

previamente halladas y en el cual el operador es autoadjunto. Tal dominio es

1
Dy = |Dg ® ] , 130
H |: 0 \/ET ( )
puesto que Yo o(r) = Yi=m=o(r) = Ro(r)Y (0, ¢) = ﬁuo(r) = ﬁﬂo(g) que solo
depende de la coordenada radial al ser el arménico esférico independiente de 6 y ¢ (I = 0).
El dominio correspondiente al subespacio con [ = 0 puede caracterizarse mediante un

parametro que denominaremos v y escribimos Dy = D} de acuerdo con el Apéndice H

v lim ((p)) =

r—0

Df = {f € L*((0,00)), Hif € L*((0,00))

— i (5 10) - Tin (70) (77~ Alostp) ~4/2) ) } . (13)

r—0 r’—0
v 8me|E 2 e g
En este caso tomamos p = ¢ = %r yA=X= %, /2T|nbzl coincidiendo con las

expresiones en (116). Teniendo en cuenta las autofunciones que se han obtenido en el caso
[ =0 (125) o (127) y analizando su comportamiento asintético, se encuentra que una vez
que se ha fijado la extensiéon autoadjunta (se fija el valor de v para Df), los posibles valores

de \ vienen dados por las soluciones de la ecuacién

3
V:)\<22’y¢(1)\)) , (132)
donde 7 es la constante de Euler con valor numérico v ~ 0.577216 y ¥ (1 — \) representa

la funcion digamma evaluada en 1 — .

El caso particular definido en el limite v — 0o se conoce como la extensién autoadjunta
de Friedrich [7], que se establece como el dominio de definicién que el alumno cominmente
acostumbra a estudiar y para el que las soluciones de (132) son A = n (con n = 1,2, ...

cualquier entero mayor que cero).

Resulta de gran interés analizar las simetrias e invariancias que presenta el dtomo de
hidrégeno en un caso general [9] (tomando | # 0 de forma que salimos del dominio estable-
cido D§ o tomando la extensién de Friedrich en dicho dominio). Entonces el Hamiltoniano
del dtomo de hidrégeno es invariante bajo el dlgebra de Lie SO(4) ~ (SU(2) @ SU(2))/Z,
generada por los operadores I y K

1

Me 1 Me
Y a0 S M % S

donde L y M denotan el operador vectorial momento angular orbital y el operador de
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Runge-Lenz respectivamente

2
(pxL—-Lxp)— —r. (134)
T

L=rxp, M=
2Mme

De este modo y tras operar se obtiene que [I, H] = [K,H] = 0 y el dominio de
definicién tomado para el Hamiltoniano permanece invariante bajo la actuacion de dichos
operadores. Aparece asi la degeneracién (accidental) del espectro del Hamiltoniano, que

puede entenderse reescribiendo el Hamiltoniano en funcién de estos operadores

meet 1
2 2(P+K%) +n?

H=— (135)
Dado que tanto I como K cumplen las reglas de conmutacion propias de los momentos
angulares, se comportaran como tales y esto permite que, eligiendo una base comun de

autoestados de H, I?, I, K? y K, los autovalores del Hamiltoniano queden expresados

1

1
TG D1 (136)

1
Ei)= —ime(ac)QQi(

donde a = e2?/hc denota la constante de estructura fina e i y k se corresponden con
niimeros cudnticos enteros asociados a los operadores I? y K2.
Introducimos ahora un nuevo numero cuantico entero definido como n = 27 + 1. Ademas,
dado que L-M = ML = 0 resulta que I? = K? y entonces i = k. Con estas consideraciones
la expresion para los autovalores arroja el resultado

E,=E;;= —%me(ac)Q%, (137)
que es la expresién de la energia que acostumbramos a obtener para todo valor de I.
Estos valores ponen de manifiesto la degeneracién accidental de la energia en el atomo de
hidrégeno cuyo origen es dindmico y se debe al grupo simetrias expuestas anteriormente
que dejan invariante el Hamiltoniano. Este grupo resulta mayor que el esperado grupo de
las rotaciones y por tanto hay una mayor degeneracién.
No obstante, en el sector | = 0, estos desarrollos y resultados obtenidos dejan de tener
validez cuando nos salimos de la extension de Friedrich y por lo tanto v /4 oo (por ejemplo
anadiendo una interaccién delta en el origen como ya se traté en la seccién anterior). En
este caso se rompe la degeneracién accidental y los autovalores del Hamiltoniano en el

sector [ = 0 toman toman la siguiente forma
(138)

con A, dado en funcién del pardmetro v que define la extensién segin (132).
Como se indicé anteriormente, en el caso en que v — 00, A, toma valores enteros y

recuperamos la expresién habitual, es decir (137).
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Concluimos entonces que, actuando en [ = 0 con una extensién autoadjunta distinta de
la Friedrich, la simetria establecida por los operadores K y I se encuentra anémalamente
rota al no poder ser implementada cuanticamente en este dominio de definicién. Para
demostrarlo basta tomar la funcién de ondas usando (125) perteneciente al dominio Df
y actuar sobre ella con cualquiera de los operadores tratados para ver cémo la funcién
resultante no pertenece al dominio.

La funcién de ondas en el limite cuando r — 0 queda

11

nalr = 0) = Bo(n)¥P(0.)| |~ ~Cmiryr ™,

(139)

con C' una constante de normalizaciéon y donde no aparecen las coordenadas angulares
(estamos trabajando con [ = 0).
Ambos operadores vectoriales I y K son, en el caso de [ = 0 proporcionales a M, de modo

que es suficiente con ver la actuacién de M,

_ (2% 1 1 e
rs0 ( ¢ r) Yool (C\/E)\F(—)\)) r2° (140)

La simple comparacién del resultado con (139) permite asegurar que el nuevo estado no

Mz ¢0,0 (T)

pertenece a Dj y tras proceder de igual forma con el resto de componentes del operador
obtenemos que igualmente se salen del dominio. Se tiene asi que M y por consiguiente los
operadores que generan el dlgebra de Lie I y K no dejan invariante el dominio de definicién
del Hamiltoniano tomado en el sector [ = 0. Por tanto (137) no puede aplicarse y la
degeneracién accidental del a&tomo de hidrégeno se encuentra anémalamente rota. Por otro
lado, en el caso de [ # 0 o tomando la extensién de Friedrich, la invariancia se mantiene,

asi como la degeneracion y expresién habitual de los autovalores del Hamiltoniano.

Podriamos a su vez calcular el término anémalo A y ver cémo se cumple la ecuacién
de Heisenberg modificada para cualquier componente de I o K, al igual que se hizo en
la seccién anterior. Sin embargo resulta mucho més interesante e instructivo comprobar
como la Supersimetria en el &tomo de hidrogeno con momento angular orbital nulo (I = 0)
se encuentra espontaneamente rota en el dominio de definicién que estamos tratando.
Para ello emplearemos el formalismo de la Mecédnica Cudntica Supersimétrica (SQM) [10],
del que podemos ver un mayor desarrollo en el Apéndice I. Sin embargo, para los resultados

y conclusiones que se pretenden obtener bastara con unas nociones fundamentales.

Este formalismo se basa en la existencia de un superpotencial W (x) tal que permite

definir los siguientes operadores

A:\/;%JZ+W(¢), (141)
AT:—LijLW(m). (142)
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Estos a su vez permiten obtener una pareja de Hamiltonianos

B2 hodW(z)
H =ATA=——— =W(z) — —— 14
B hodW(z)
= T = - = 2 _—
Hy, = AA o T2 + Va(x), Vo(z) = W*(x) + N T (144)

Los potenciales Vi (z) y Va(z) obtenidos a partir del superpotencial W (z) se conocen como

una pareja de potenciales supersimétricos.

Los Hamiltonianos (143) y (144) son semi-definidos positivos por lo que sus autova-
lores deben cumplir E7(11,2) > 0. Sin embargo, cabe notar que los autovalores de ambos

Hamiltonianos estan relacionados entre si. Para ello cabe ver que con H; dado por (143)
Hyyp{) = ATApH = BNy | (145)
Si ahora multiplicamos ambos lados por el operador A obtenemos:

A = AATAYY = H, (4pl) = BY (Ap(D) . (146)

son también

Lo que implica que si 1/17(11) son autoestados de H; con autovalor Eél), Awﬁll)

autoestados de Hy con idénticos autovalores Ey(ll).

El mismo razonamiento puede llevarse a cabo tomando inicialmente los autoestados
1/17(12) de Hy dado por (144) y se obtiene

AlHyp® = AtAATD = m (Aly@) = P (aTy@) . (147)

Vemos asi que la aplicacién de A o Af nos permite pasar de autoestados de H; a autoes-
tados de Hs y viceversa. Ademads el autovalor asociado se mantiene invariable.
Cabe mencionar que es costumbre trabajar con H; por defecto y asi lo haremos en el resto

del escrito.

La relacién mostrada a partir de (145) y (146) se rompe en el caso en que Aw(()l) =0, es
decir, cuando el estado fundamental de H; queda “aniquilado” por el operador A. Entonces
este autoestado estd desapareado (a diferencia del resto) y Ha preserva el espectro de
energias de H; a excepcién del autovalor asociado a este estado, el nivel fundamental.
En este tipo particular de casos se dice que la Supersimetria (SUSY) permanece sin romper
y podemos ademads establecer las principales relaciones entre autoestados y autovalores de

Hy y Hs particularizadas a la situacién

R 115
PP o Al (149)
Pl o Ay (150)
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En el caso del 4tomo de hidrégeno (interaccién de Coulomb tridimensional) los estados
a los que se refiere la teoria de la Mecanica Cudntica Supersimétrica son las funciones de
ondas radiales reducidas u;(¢) = u;(r). Si ademds tomamos dichas funciones pertenecientes
al dominio de definicién Dy para el &tomo de hidrégeno, puede observarse que la actuacién
del operador A sobre la funcién de ondas radial reducida resulta en una nueva funcién no
nula y por tanto podemos afirmar que la Supersimetria se encuentra espontaneamente rota
para ese dominio de [ = 0. Para ello debemos conocer primero la forma del superpotencial.

Tomando unidades tales que i = 2m = 1 escribimos

e? I +1 1= €2
W) = it lizoe

1
(l+1) 2 (151)

Haciendo uso ahora de (141) con x = r y h = 2m = 1 obtenemos el operador buscado

d ez 1
A(l:0)25+g_;. (152)

Simplemente resta ver su actuacién sobre uy(r) que, por comodidad, evaluaremos en limite

(85D (b)) () o9

donde C permite la normalizacién.

cuando r — 0

A(l = 0)up(r)

Obviamente la funcién resultante es distinta de 0 y, por tanto, podemos afirmar que la
Supersimetria esta anomalamente rota cuando estudiamos este dominio del Hamiltoniano.
Si se toma [ # 0 o la extensién de Friedrich con [ = 0, la actuacién del operador A da

como resultado un valor nulo y la Supersimetria permanece sin romper.

4. Conclusiones

A lo largo de todo el trabajo se han proporcionado ejemplos de cémo simetrias que
cldsicamente eran perfectamente aplicables llegan a encontrarse andémalamente rotas al
tratarlas de forma cudntica. Esto se debe, como ya ha sido mencionado en ciertas oca-
siones, a que la apariciéon de dominios asociados a los observables una vez cuantizamos el
sistema puede impedir la implementacion del algebra de invariancia correspondiente.
Mas especificamente, la ruptura de simetria se produce cuando los operadores que generan
dicha simetria no dejan invariante el dominio de definicién del Hamiltoniano y consecuen-
temente llega a aparecer un término anémalo cuya implementacién requiere de la ecuacién
de Heisenberg modificada. La validez de esta ecuacion ha sido comprobada en el caso bidi-
mensional de la particula libre sometida a una interaccién delta en el origen demostrando

asf la ruptura de simetria conforme para el dominio tomado con g # 0.

Respecto a los dominios de definicién, es notable mencionar cémo en el caso bidimen-

sional la contribucién angular del momento lineal produce infinitas extensiones angulares
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en el dominio. Todas ellas dependen de g = n + 6 € R y se solapan con el dominio radial
que hemos visto depende de un pardmetro (5 en nuestro caso). Esto no es asi en el caso
del atomo de hidrégeno tridimensional donde la contribucién angular queda cuantificada
en funcién del ntimero cudntico | € Z* U {0} proporcional a I(I + 1)/72. Luego, particula-
rizando como hicimos al caso [ = 0, solo existe una tnica extensién angular.

Es maés, en este caso, dado que repetir la obtenciéon del término A no aportaba mucho,
nos centramos en ver como la Supersimetria se encontraba espontdneamente rota ya que
el operador A era incapaz de “aniquilar” el estado fundamental, con | = 0, perteneciente

a un dominio con valores de v finitos.

Finalmente anadir que este trabajo ha sido escrito intentando enfocar y enfatizar la
relevancia que tienen los dominios de los operadores a la hora de afrontar el estudio de
muy diferentes sistemas. Aunque en un primer contacto con el formalismo mecanocudntico
no se tengan en cuenta para facilitar el aprendizaje del alumno, su utilidad es digna de
mencién y aqui se intenta ofrecer un estudio mas profundo y complementar lo aprendido

en el Grado. Prueba de ello son los numerosos apéndices que a continuacion se disponen.
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A INVARIANCIA CONFORME (CASO CLASICO)

A. Invariancia conforme (caso clasico)

En el caso de una particula libre en un sistema bidimensional, el Lagrangiano L y el

Hamiltoniano H se escriben en coordenadas polares
1 2 242
Eszim(r —i—r@), (154)

donde el punto sobre las variables indica la derivada respecto al tiempo.
Puesto que el origen es un punto singular, hemos prescindido de él asi como de la interaccién
delta. Sin embargo un tratamiento mas completo (y que escapa de los objetivos buscados)

puede consultarse el trabajo de Jackiw [11].

Con estas consideraciones podemos determinar las coordenadas generalizadas ¢; y los

momentos generalizados p;

q =T, Q2:9> (155)

oL oL 24
== =mr, = — =mr0. 156
b1 ddy D2 D4 ( )

Esto permite reescribir el Hamiltoniano anterior como

1 2
H=_— (p% + Sg) . (157)

T 2m {

En el formalismo clasico los generadores del dlgebra de invariancia SO(2,1) son, junto

con el Hamiltoniano

1
D:tH—G:tH—i(rp), (158)

K = —2H +2tD + %RQ = 12H — t (rp) + %72 . (159)

Ahora, haciendo uso corchete de Poisson {A, B} definido como

N oraf ag  af dg
{f.9}=>_ <5q¢5pi - 3pi3qi) ; (160)

i=1

obtenemos las siguientes expresiones teniendo en cuenta que rp = q1p1:

2
0GOH 0GO0OH

D,H = — G’H = — _ — —
{ J { ) ; (3% Op;  Op; 5%‘)

__(r 1 1 15\
= 2p1mp1 2(11 mq% =

1 2
) -n o
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A INVARIANCIA CONFORME (CASO CLASICO)

(H,K} =2{H,D} + %{H, 2},

2
OH 8>  OH 02 1
2 2 1 1
H —(H — E _ — 9 —
{H,r°} = {H, i} — <3qi Op;  Op; 8qi> Do P

2
— {H, K} =2tH — %aqlpl — 2%tH — qipy = 2D.

(K, D} = —*{H, D} + %{H,D} — {H,D} + % (t{r2, H} — {r2,G})
{7“27 D} = t{rz, H} — {7"2, G},

2
0¢? 0G  0q¢? 0G 1
2 2 1 _ 9% Yt = o
00y = (a6 = 3 (G g - iy ) = 2ugm =t

m 2 m
= {K,D} = —t’H + 5 (t <mq1p1> - q%) = —t2H +t(q1p1) — Eq% - K.

(162)

(163)

(164)

(165)
(166)

(167)

(168)
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B. Invariancia conforme (caso cuantico)

El Hamiltoniano de una particula libre en un sistema bidimensional con interaccién

52(r) se escribe, sin tener en cuenta los dominios

H= p—2+A —o(r), (169)

2m

donde

p’y = —h? (8% 1o 1 8%) . (170)

or2 " ror | 120y
Tenemos los operadores que, junto con el Hamiltoniano H, definen el algebra de inva-
riancia SO(2,1)

1
D:tH—G:tH—z(rp—Fpr), (171)
t
K=—t*H+2tD+ 57 2—¢’H - 2(rp+pr)+%r2. (172)

Previamente estudiamos la actuacion de los siguientes operadores

h 0
rpp = 77“6;7{ (173)
pri = ?V(rzp) = 7; YV -r+r1- Vi) = b (w +r ?f) ; (174)

de modo que ahora podemos comprobar las relaciones de conmutacién usando ahora los

corchetes de Lie definidos segin
[A,B] = AB— BA. (175)

Procedemos entonces a la obtencién de las relaciones de conmutacion buscadas:

[D,H]=—-[G,H| = —% (21n [rp + pr, p2] + A [rp + pr, ié(r)]) , (176)
[rp,p*] = —2E.p2, [pr,p*] = 2h 2 (177)
[rp, 7115(7")} _ 4%5(@, [pr, 7115(7")} _ —2%5( ), (178)

— LD.H) =~ (1 (—4hp ) +)\< 47335( ))) - 2"; FALO(r) = H . (179)
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[H, K] = 2t [H, D) + 5 [H.x?] | (180)
[H, r2] = % [pQ,rQ] = %; (rp + pr) , (181)

— % [H, K] = % (275 (—?H) + % <;L}Z“ (rp +pr)>> -
= —2tH + % (rp+pr)=-2D. (182)

[K,D] = —2[H, D] + % [v2, D] = —2[H, D] + % (t[x% H] - [%G]), (183)

1
[r?, G?] = 1 [r?,rp + pr] , (184)
[r2,rp} = —221‘2, [r2,pr} = —221‘2, (185)
i i
i 1 9 h m [ 1 h 9
f S (e . mr (ot (4 -
= tont=g (e () 5 (g (2 even) =3 (+47))
t
=t°H — 5 (rp+pr) + %rz =K (186)
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INTRODUCCION TEORICA

C. Dominios de definiciéon y sus parametros:

Introduccion teorica

En L?((0,00)) consideramos el operador de Schrédinger minimal [7][12]

. 2 .
h = —% FAMA=Dr 2y arT W, D(h) = C§5°((0,00)), (187)

donde se cumplen las condiciones

W e L*((0,00)) evaluado real , a,veR, 0<a<?2, 1/2< A< 3/2. (188)

Entonces h, la clausura de h, tiene indices de defecto (1,1) y todas sus extensiones auto-

adjuntas h, se pueden caracterizar por

d? _ _ —a
h,,:—ﬁ—l—)\()\—l)TZ—i—'yrl—i—ozr + W, (189)
con su respectivo dominio
D () = {g € L2((0,50)), hg € L*((0,50))|[vgor = 911} (190)

donde —oo < v < 0o y ademds go ) ¥ g1,) son los valores de frontera definidos como

go = lim g(r) /G (r), (191)
g2 = lim [9(r) = 0GR (r)] /B (7). (192)

Se ha usado para ello

—rl/2] iA=1/2,
FOw =, Oy = "=l (193)
2 — 1)~ si1/2<r <3/2.

Ademais ,
) = F0) = [ gD v R, (194)
0
con
V(r)=~yrt4ar 4+ W(r), (195)
g,y = SV FO () - GO FO (). (196)

A partir de estas expresiones podemos obtener
0
Gy(r) = F,\(r)/ dr’ [F)\(r')]_z : 1/2<X<3/2, r<r. (197)

Asf, GB(r) denota la expansién asintética de G\ (r) cuando r — 0 hasta orden rt, t < 2A—1.
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INTRODUCCION TEORICA

Cabe ademéds mencionar que el caso particular con gy, = 0 (de modo que v — 00)
representa la conocida como extensién de Friedrich. Esta extension juega un papel impor-

tante y se discutird en cada caso particular tratado.
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D. Dominios de definicién y sus parametros:

Interaccion Delta

En el caso que nos atane tenemos el Hamiltoniano dado por (37)

h2 2 1d g
0 _ L
HY = ( e 7«2) . (198)

Sin embargo buscamos expresarlo de forma que podamos compararlo con (187). Esto se
consigue mediante el empleo del operador unitario U : L?(R*, rdr) — L?(R*, dr) [8]. Asi
las funciones f(r) del dominio de HY se transforman como q(r) = (Uf)(r) = r'/2f(r) y

esto permite tomar las siguientes expresiones

la )P = [ (2800) (125 0) dr = [ eirdr = f0IE, (199)

2 2 2
2! = e () = S~ )
1ty = 51012y =~ [ (e L= LY =
h? 1 &2 11 g°
= “om ( 1724 *> <r1/2d7“2q+4r5/2q_r5/2q> rdr =
g [ (g (5-97) 0 = il (202)
O lo que es lo mismo
(HE) = (fIHD) = ((U™) |HE (U0 ) = {o|UHIUq) . (203)
De modo que podemos considerar, actuando sobre ¢(r)
7 or-1_ A 2 1)1
h=UHU :—dp2+<g _4>,02’ (204)
donde se ha definido una constante genérica oy de forma que
p=aor. (205)
Se tiene por consiguiente, por comparacién con (187)
a=~y=W=0, A:1i22\g\' (206)
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1+ 2|g]

, dado

que en el dominio |g| < 1, se cumple perfectamente la relacién siendo A = 1/2 en el caso

Notar que debe cumplirse 1/2 < A < 3/2 y por ello debemos tomar A =

g = 0 ya estudiado en [5].

Siguiendo con el desarrollo para cualquier g en su posible rango de valores llegamos

facilmente en este caso a

Fy(p) = F\ (p) = p* = p(1+260/2, (207)

1 _
G(p) = (20— 1)1 p! N = o0 = GR ). (208)

Podemos entonces caracterizar el dominio (190) por un parametro real v de modo que

para funciones f(r) = f(p) del dominio

v | PP 0) | [ 2P | AR | L ptReh
p—0 ip(1,2|g|)/2 p—0 p(1+2|g|)/2 p'—0 Lp/(I*ZIQ\)/Q 2|g] p(1+2|g|)/2 ’
2|g| 2/g]
1
lgl it —lgl _ 1 Nal £,V p—2l9l
tin (071(0)) = 5 iy (07 160) = 1 (5 7) o720 ) . (209)

Por conveniencia redefinimos el parametro que caracteriza las posibles extensiones auto-

adjuntas introduciendo 3, también real

11

5= 341w (210)
Escribimos asf
= {fer¥(0,50)), Hf € L2((0,oo))‘ tim ((00r) £ (1) =
= 68 lim <(‘W)gf(7”) - lim ((aor)‘g'f( (aor) 29)} (211)

En este caso la extensién de Friedrich (v — oo0) viene dada por 5 = 0.
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E. Relacion entre las diferentes formalizaciones de dominios
para el caso con interaccién delta

Podemos establecer una relacién entre los dominios en (67) y (68), de modo que Dg =

Dgﬁ = DB, tomando f(r) =9¥(r) y ag = = 27{;/\. Estudiando el comportamiento de las

funciones en el limite cuando r — 0

Jg(zi) ~ F(gl—l—l) <;Zi> , (212)
Yy(2e) ~ _1“29) <;Z:t> h , (213)

¢4 (r) = HD (z24) = Jy(21) + i¥y(24) ~

“ren (o (0057) - G ) e

Jg(z=) —iYy(2=) ~

by () R () o

De acuerdo con (67) la funcién de ondas se puede escribir
1 (1 (a 1+¢T>)g_ir( ) (1 (a 1+ir)>g+
T+ \2\"" 2 r \2\"" 2

(g (b (7)) 2 (G (5) )]

‘®~
—
=
SN—
I

s
—~
B
S~—
I

b ~C

=C r(29+g1) ((1+4)7 + e™(1 —4)7) (aor)?+
iirigF(g) (=(1+4)79 +e*™(1—1d)9) (aor)g] : (216)

Para pertenecer al dominio en (68) el pardmetro caracteristico 8 toma el valor

239 Wl —3)"9 — (14+4)79
B =i—T(g)(g+ 1)6’(1(+ i)2)+ ew§1 J_F 29 si0<g<l, (217)
1 2% W1 —i)"9 = (1414i)79
G=i T+ 1)6(1(+ i)@g)+ ewg1 ’ 39 si—1<g<0. (218)

Notar pues que basta invertir la expresién de § cuando g cambia de signo.

Vemos también que 5 es dependiente del parametro u y de ny 0 a través de g =n + 6.
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Ademads puede comprobarse que efectivamente 5 toma valores reales

ie’“(l —)9—(1+1i)9
(14+4)9 + (1 —14)9

(=)0 — (L) (L= )7+ e (Lt )9

A+ el —0)9 (1 —d)9 fein(l14+4)9

e )

29 + e (1 +0)%9 + e (1 —1)%9 + 29

_izsinp (3)' - ()’
T L R{em(1+ i)}

1 2sinp 41 23{(1)7}
=120t { R{en(20)9)

e R,

de modo que

B=pB(g,n) =Bn,0,u) ER para —1<g<1,g#0.
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F. Calculo del término anomalo

Dicho término toma la forma

= (I — H)Dy) = — (| (HT — H)Gy),

donde los operadores usados toman sus expresiones de (28) y (18)

o (10 (0), 12
B ror r(?r r20p? )

1 lh 0
D=tH -G, sz(rp—i-pr) 37 <]1+ (97“)

Asi pues

A= Lyl — H)G ) = —7 (Wl HGg) — (gl HGwg)) = — 5 (|G vy

© K2 /1d d 2 d
[ G ) - >¢’g<1” ;) oo
©p2 (1d [ d g> d
[t i (i) ) (1) e =
%o K2 d do; d
= [ G (7)) (v ) e
% K2 d d
f s G (i (1) ) )=

(219)

(220)

(221)

+ %(wg‘HG%J =

LD LECZ( 2
(3 (ord)o)] [ (53 () o)
[EC ()] T bE el

(222)

Puesto que ¢4 (r — 00) — 0 la contribucién a la integral se dard con 7 — 0, que recordando

(93) escribimos

(ng(r - 0) ~a 2Sin(|g’77) (2 (1+|g\ ( |g|> <( )\g\ +4g1_‘1;(‘g‘))(047°)|g> _

lg|m —lgl

=a ((ar)'gl + 5(047")_'9') ,

con

0 = o [ 250091 (o-atighp rRA()
g (2 rC) =4

de acuerdo con (92).

(223)

(224)
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Finalmente

2
A= a?lg| ()9~ Blar) 1) ((1+ lgl)(ar)e! + 51 ~ Jgl)(ar) 1) +

4m
2
f—mﬂ ((ar)lgl + ,B(QT)*\QI) ((1 + ‘g|)‘g‘(ar)lgl — B(1 - ’g’)|g|(ar)*lg\> _
2
=~ 1" (2601~ laDlol 2601+ lglo) =
B o [25m91m) (o-righp o) ol D090
%z{ rEat r-lgh) Q(Hﬁzmﬁ- (225)
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G. Calculos con el atomo de hidrégeno

Dada la ecuacién

21
ddQ(QQ) n <)\ 1 l(l-i;l)> (o) =0 (226)

consideramos soluciones de la forma

() = 0 e *uo) . (227)
Realizando las siguientes operaciones matematicas

B B 1, . 0dy
(1+1),, 9/2ul(g)—§g e u(0) + o7 le 9/2(;(99), (228)

l d
=I(l +1)o~ 2 e=2/2y (o) + 59_(”1)@_9/%1(9) _ ZQ—(I+1)6—9/2M+

d?p do
I _ _ 1 ., - 1, ndvulo)
b=+ —0/2 2 —l,—0/2 _ L —l,—p200IN0)
50 e v (o) + 10 ¢ v (o) 50 ¢ a0

- _opdui(0) 1y pdulo) |y _,nd?uo)
Jo—UHD) —0/2200E) = I —0/2 l,—o0/2 _
¢ ° do 2? ¢ do toe d2o

=u;(0)e?/? <l(l +1)o" W oD igl> +

dvi(0) —0/2 —(1+1) —1 dQUl(Q) —0/2 ( 1
do e <—2lQ -0 )—}—7(12‘9 e <Q ), (229)

(A - i B 1(1+21)> a(o) = <A B i B l(l+21)> (Q_ze_g/%l(g)> _

1% 1%

1
= v(g)e %/ (AQ(’“) - g -+ 1)@(’”)) , (230)
podemos sustituir en (226) para finalmente obtener

d*vi(o)
d%o

29 iy —0, (231)
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H. Dominios de definicion y sus parametros:

Atomo de hidrégeno

En este caso el Hamiltoniano que actia sobre la funciéon de ondas radial reducida queda

n? d?  e?
H=—-——-— 232
! 2medr?2  r’ (232)
actuando sobre u;(r).
Buscamos comparar esta expresion con (187) escribiendo
2 A
hy=———5——, 233
2 (233)
con la introduccién de una constante genérica g tal que
2m, €2
p=or, A= 2 o (234)
Se tiene entonces
a=W =0, v =—A, A=1. (235)
Resulta asi que
0
F(p) = p* =, (236)
0 11
V() =@r-1)"p A =1 (237)
GX(p)=1+al2-a)3—a) ™ [L+20—a)""] p** +plog(p) + 2p =
A
=1-Aplog(p) = 5p. (238)
Queda entonces el dominio caracterizado por un pardmetro real v segtin (190)
Dy = {f € L2((0,00)), Hif € L*((0,00))| v lim (f(p)) =
— tin (510 - i () (7 - Alowp) - A2 ) . (239
r—0 r’—0

La extension de Friedrich vendra dada en este caso por v — oc.
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I. Introduccién tedrica a Supersimetria

El formalismo bésico de la Mecdnica Cuantica Supersimétrica (SQM) [10] se basa en

la existencia de un superpotencial W (x) tal que permite definir los operadores

h d
. h d

W(). (241)

"~ VZmdr

Estos a su vez permiten obtener una pareja de Hamiltonianos

h2 (2 ho dW(x)
H =AlA= - — " = W2(z) - — 242
1 omde? Vi(), Vi(z) (v) 5 dr (242)
R2 2 Ko dW(x)
= T = —— — f— 2 -
Hy = AA S + Vo(z), Va(x) = W2(z) + T dn (243)

Los potenciales Vi (x) y Va(x) obtenidos a partir del superpotencial W (x) se conocen como

una pareja de potenciales supersimétricos.

Los Hamiltonianos (242) y (243) son semi-definidos positivos

< Hy > = (Y|H) = (Y|ATAY) = (Ap|Ay) = [|AY[|* > 0, (244)
< Hy > = (Y|Hyp) = (Y| AAT)) = (ATyp|ATy) = [|ATy|> > 0, (245)

por lo que sus autovalores deben cumplir E,(Lm) > 0.
Sin embargo, cabe notar que los autovalores de ambos Hamiltonianos estan relacionados

entre si. Para H; dado por(242) tenemos
Hyy) = ATAY(D = EDy(D. (246)
Si ahora multiplicamos ambos lados por el operador A obtenemos:
AH1pV = AA A = Hy(AyD) = ED (ApD). (247)

Lo que implica que si w,(}) son autoestados de H; con autovalor E,(ll), Aw,@}) son también

(1)

autoestados de Hy con idénticos autovalores E, 7.
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El mismo proceso puede llevarse a cabo tomando inicialmente los autoestados 1/)7(12) de
H, dado por (243) y se obtiene

ATHyp@) = ATAATY?) = Hy(AlyP) = ED (ATp?) . (248)

Vemos asi que la aplicacién de A o AT nos permite pasar de autoestados de H; a autoes-
tados de Hy y viceversa. Ademas el autovalor asociado se mantiene invariable.

Cabe mencionar que es costumbre trabajar con H; por defecto y asi lo haremos a lo largo
de todo el escrito.

La relacién mostrada a partir de (246) y (247) se rompe en el caso en que Awél) =0,es
decir, cuando el estado fundamental de Hy queda “aniquilado” por el operador A de modo
que este autoestado estd desapareado (a diferencia del resto) y Ho preserva el espectro de
energias de H; a excepciéon del autovalor asociado a este estado, el nivel fundamental.
Nosotros estamos interesados en este tipo particular de casos, en los que se dice que la
supersimetria (SUSY) permanece sin romper. Podemos ademds establecer las principales

relaciones entre autoestados y autovalores de Hy y Hs particularizadas a la situacién

EP =El),. B =0, (249)
PP o Al (250)
Uiy o ATy (251)

Una imagen ayuda a visualizarlo

1] r _1'
E, E
LS S
A
11
E, E
B E

Ell

Figura 1: Representacién grafica de la relacién entre los espectros de Hy y Hy [10].

Los operadores A y Al indican el cambio de autoestados como se muestra en (250) y (251).
Notar que todos los niveles tienen una pareja supersimétrica mientras que el fundamental
estd desapareado y por consiguiente no puede obtenerse a partir de autovalores de Hs.
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La condicién Awél) = 0 puede emplearse, si el superpotencial W (z) es conocido y

usando (240), para determinar el estado fundamental como

¢(()1> = Nexp (—\/fjm /x W(y)dy) , (252)

con N una constante que permite la normalizacién de la funciéon de ondas.
Por otro lado, si lo que conocemos es el estado fundamental wél) la condicién Aw,(ll)
nos proporciona la forma del superpotencial
d 1
gy (@)

W(z) = RO (253)

En resumidas cuentas, cuando SUSY permanece sin romper, tomando un potencial
perfectamente resoluble V(x) con n autoestados y siendo Ej la energia del nivel funda-
mental, podemos tomar Vi (z) = V(z) — Ey cuyo nivel fundamental es de energfa nula por
construccion. Se obtiene asi Hy con sus respectivos n autoestados y, de acuerdo con lo de-
sarrollado arriba, podemos hallar asimismo el Hamiltoniano Hy con sus n — 1 autoestados.
Posteriormente, a partir de Ho podemos obtener otro Hamiltoniano Hs con n — 2 autoes-
tados y, actuando sucesivamente, podemos construir una jerarquia de n+ 1 Hamiltonianos

H,y, Ho,..., Hyy1 con n, n —1,...,; 0 autoestados respectivamente.

Con todo esto en mente procedemos a introducir el concepto de invariancia de de forma
(Shape Invariance), lo que nos permitird generalizar el método de operadores empleado
para la resolucion del oscilador armonico (operadores “aniquilacién” y “destrucciéon”) a
toda clase de potenciales de forma invariante (SIPs).

Cuando la pareja de potenciales supersimétricos Vi(z) y Va(z) definidos en (242) y
(243) presentan una forma similar y difieren unicamente en los pardmetros que en ellos
aparecen se dice que son de forma invariante. De forma maés precisa, se debe cumplir la
condicién

Va(z;ar) = Vi(x;a2) + R(aq), (254)

donde a; es un set de pardmetros, as = f(a1) y R(ay) es independiente de x.
Entonces podemos decir que Vi (z;a1) y Va(z;a1) son de forma invariante.
Usando la condicién (254) y la jerarquia de Hamiltonianos ya tratada se pueden obtener

los niveles de energia y los autoestados de todo SIP cuando la supersimetria no esté rota.
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Comenzaremos la discusiéon partiendo de los Hamiltonianos Hi o cuyos autoestados y

autovalores estan relacionados por supersimtria y, puesto que SUSY permanece sin romper

B (a1) =0, (255)
%Wmm:Nm«4€mewmmﬁ, (256)

usando resultados anteriores.

Con (254) y anadiendo a ambos lados el operador de energia cinética —%% llegamos a:
Hs(xz;a1) = Hi(x;a2) + R(aq) . (257)

Puesto que los Hamiltonianos difieren en una constante resulta evidente que sus respectivos
autovalores diferirdn entre si por la misma constante y ademads sus autoestados seran

proporcionales entre si:

EM =0

EP(a1) = EY(a2) + R(as) R(a), (258)

7

P (@5 a1) oc Y (5 a2) & exp (—\/?Tm /gc W (y; az)dy> : (259)

En virtud de (249) podemos obtener el autovalor del primer nivel excitado
B (@) = By (a1) = Ra) (260)
y usando (251) se obtiene el autoestado correspondiente

D (25a1) o Atz a) @ (@ ar) & Atz an) oy (@; az) (261)

Pueden generalizarse los pasos seguidos y obtener asi el espectro ligado completo de H;
junto con sus autoestados. Para ello construimos una serie de Hamiltonianos Hg con s =
1,2, 3... notando que si H; presenta n estados ligados se podran construir n Hamiltonianos
Hs, Hs,..., H, 1 tales que el p—ésimo Hamiltoniano H,, poseera el mismo espectro que Hy
a excepcién de los primeros p — 1 niveles, que estardn ausentes.

Con el sucesivo empleo de (254) llegamos a

R d?
e | + Vi(z;01) =
h2 d2 s—1
= —%W—i—%(w’;as)—i-ZR(ak), (262)
k=1

donde as = f*~!(a1) donde el superindice en f indica que la funcién se aplica s — 1 veces

sobre a;: as = f(as—1) = f(f(as—2)) = ...
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Si ahora comparamos Hg con Hg 1, el cual en virtud de (254) y (262) se expresa como

h? d?

H8+1 2 d 2

+ Vi(z;as41) —i—ZR (ar)
k=1
h2 d2 s—1

= —%@‘FVZ(K%)"‘ZR(C%) (263)
k=1

y esto implica que Hg y Hgy1 forman una pareja supersimétrica y por lo tanto presentan
el mismo espectro de energias ligadas con la excepcion del estado fundamental de Hg cuya

energia es, usando que EMD =0

s—1

ESY) =S R(ay). (264)

k=1

Si ahora procedemos a la inversa y vamos obteniendo Hs_; a partir de Hg y asi su-
cesivamente, finalmente alcanzaremos los Hamiltonianos Ho y Hj. Nuestra atencién se

centra en este ultimo, cuya energia del nivel fundamental es nula y la energia del resto de

(1)

niveles, véase la energia del n-ésimo nivel Ey’, coincide con la del nivel fundamental del
Hamiltoniano H,, .

Esto implica que el espectro completo de autovalores de H; viene dado por
EM (ay) ZR az) EM =0. (265)

En lo que respecta a los autoestados correspondientes es facil ver que dado el estado
fundamental ¢ (n+1) ( ;ap) o< 17[)(()1)(1‘; an+1) de Hy41 definido como en (256)

P (@5 ans1) o exp ( v2m / W (y; an+1>dy) (266)

mediante el empleo del operador Af(x;a,) permite la obtencién, segiin (261), de
9)(:10; an) o< Af(; an)lb[()l)(x; Anpt1) - (267)

Actuando ahora con Af(z;a,_;) sucesivamente desde & = 1 hasta llegar a k = n — 1

permite obtener finalmente el autoestado del nivel n-ésimo de H;

S (@5 an 1) o Al (@ an )00 (@500) < Al (a0 1) AT (23 00)00) (@3 anp1),  (268)

v (1) o Al(wsar) - oo - Al (w;.a0) 08 (@5 0041) (269)

n operadores

donde faltaria normalizar las funciones de onda para obtener la expresiéon final busca-

da. Puede verse finalmente como el resultado obtenido resulta ser una generalizacién del
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método de construccién seguido en el caso del oscilador armoénico unidimensional.
Asi mediante (265) y (269) hemos sido capaces de ofrecer expresiones explicitas que
permiten obtener la totalidad del espectro de energias ligadas del Hamiltoniano H; junto

con sus autoestados.
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