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Resumen

Las redes de comunicacién se han convertido en una pieza fundamental de los sistemas modernos de
informacién. Sin embargo, esto ha hecho que los elementos de estas redes se conviertan en un objetivo
de ataque. Para protegerlos, en una primera clasificacion, podemos distinguir entre modelos de defensa
pasivos, reactivos o activos. En estos tdltimos, tanto el atacante como el defensor pueden aprovechar
las propiedades topoldgicas de la red para realizar su misién. En este contexto, se ha propuesto crear
aplicaciones que utilicen las mismas técnicas que los gusanos emplean para propagarse a través de los
dispositivos pero, en lugar de atacar el dispositivo, estos programas reforzarian la seguridad del sistema.

Cada gusano (el del atacante y el del defensor) puede utilizar vulnerabilidades distintas de los disposi-
tivos y, por tanto, es posible que cada uno tenga caracteristicas de propagacion diferentes. Se propone
explorar la dindmica de difusién de ambos gusanos y su interaccion.
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1. Introduccion

Las epidemias llevan siendo un tema de estudio durante ya mucho tiempo debido a la importancia que
pueden tener en las vidas de las personas. Al principio, debido a la limitacién de los medios técnicos
de los que se disponian para investigar, solo se estudiaban mediante modelos de ecuaciones que se
intentaban resolver de forma analitica, para ver como influian los distintos pardmetros en el desarrollo
de los virus.

Conforme fueron avanzando los medios, se buscaron nuevas formas de abordar estos temas. Uno de los
avances mas importantes que se hicieron fue el uso de redes complejas a la hora de hacer simulaciones.
Como rdpidamente se vio, el uso de redes conformaba un punto de inflexién en este campo ya que per-
mitia afiadir muchos mds grados de libertad a los modelos que hacian que los resultados que se obtenian
cambiasen radicalmente con respecto a los obtenidos mediante los modelos anteriores. El inconveniente
de estos avances era la necesidad de tener una ingente cantidad de datos reales para poder parametri-
zar los modelos. Pero los estudios no tardaron en realizarse debido al potencial que tenian estas nuevas
formas de trabajar.

A la vez que se desarrollaban estas técnicas, habia otro campo que empezaba a crecer a gran velocidad.
Este era internet, el cual comenzaba a conectar mas y mds ordenadores de todo el mundo mediante una
red. Esto propicid la aparicion de elementos malignos que viviesen en la red y se dedicasen a atacar
los ordenadores que estaban conectados. Estos elementos son, obviamente, los virus informéticos, los
cuales son programas informaticos que pueden “infectar” otros programas, modificandolos para incluir
una copia suya.

El hecho de que los virus informadticos “viviesen” en la red de ordenadores, infectando algunos de ellos
y propagandose por ella si habia conexiones entre los programas, hizo que se viese una clara analogia
con los modelos epidemiolégicos que ya estaban muy estudiados. Por esta razén, se comenzaron a
usar las herramientas que se habian desarrollado, tomando como datos reales las redes de ordenadores
conectados que habia. Los resultados que obtuvieron fueron bastante sorprendentes, al encontrar com-
portamientos extrafios de los virus, que en una red aleatoria como la que consideraban seria muy extrafio
que ocurriesen. Como se acab6 descubriendo posteriormente, esto era debido a que la topologia de las
redes que estudiaban no era como se imaginaban, si no que se trataban de redes libres de escala [1].

Como se vio rdpidamente, los virus informéticos presentaban una clara amenaza, por lo que desde el
primer momento se empezaron a desarrollar herramientas para contrarrestarlos. Las primeras que apa-
recieron fueron de tipo reactivas, es decir, una vez que se detectaba que uno de los ordenadores de la
red habia sido infectado, se aplicaban técnicas para eliminar al virus y dejar protegido al ordenador. Sin
embargo, conforme la red de ordenadores conectados ha ido creciendo, este tipo de herramientas se han
quedado algo obsoletas, en el sentido de que no aprovechan la conectividad de la red, a diferencia de
los virus, los cuales van infectando ordenadores propagéndose por ella. Esta es la razén por la cual el
campo de la ciberdefensa activa estd ganando importancia. Esta se encarga de desarrollar técnicas que
sean capaces de proteger los ordenadores de amenazas aprovechdndose de la conectividad de la red. De
esta forma, no habria una asimetria entre los atacantes y los defensores [2].

Una de las técnicas con las que se ha comenzado a experimentar es la inclusion en la red de white worms.
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Estos, al igual que los virus, se comportan como gusanos informaticos que viven en la red y se propagan
de la misma forma que ellos. Sin embargo, su fin dltimo es muy distinto, ya que se encargan de eliminar
cualquier infeccién que pueda haber e intentan evitar cualquier otra posterior. Estos white worms estdn
aun en las fases tempranas de desarrollo y quedan muchos problemas por resolver, sobre todo de caracter
ético y legal. No obstante, se cree que pueden llegar a ser muy importantes para proteger en especial redes
de aparatos IoT, las cuales cada vez crecen mds y suponen una amenaza importante de ciberseguridad.
Esto es debido a que este tipo de aparatos, por lo general, no tienen ni un hardware ni un software lo
suficientemente potentes como para protegerse de ataques informadticos, por lo que resulta muy fAcil
infectarlos, provocando que se creen grandes redes de dispositivos infectados conectados a internet y
capaces de hacer ataques muy poderosos. Estas redes son conocidas como botnets. La introduccién
en estas redes de un gusano que sea capaz de “curar” los dispositivos infectados y proteger al resto,
permitiria evitar muchos problemas relacionados con las botnets [3].

Ya ha habido alguna propuesta de white worm capaz de realizar una tarea parecida a la descrita en
el parrafo anterior, esta es AntibloTic [4]. Mas tarde se presentd la segunda versidn de este gusano,
AntibloTic 2.0 [5]. Con esta nueva version, los creadores trataron de solventar todos los problemas
legales que tenia la primera version, combinando el gusano con el nuevo paradigma fog computing de
IoT. Este nuevo modelo trata de mover servicios que recogen los datos producidos por dispositivos IoT
mads cerca de estos, lo que reduciria el trafico de datos en internet y mejoraria los servicios.

El objetivo del trabajo es desarrollar estrategias 6ptimas de defensa en funcion de las caracteristicas de
los gusanos y de la red de comunicacion. Para ello, se estudiard la dindmica del sistema mediante un
modelo compartimental sobre una red compleja.

2. Teoria de redes

En esta seccion se introducirdn algunos de los aspectos mds bésicos en la ciencia de redes. Se empezara
dando un pequefio resumen de los aspectos mateméticos mds esenciales a la hora de estudiar redes,
asi como de las propiedades que sirven para caracterizarlas. Después se hard énfasis en dos tipos de
distribuciones de grado concretas, las cuales serdn esenciales en el transcurso de este trabajo, y, por
dltimo, se veran los modelos de redes que se han empleado.

Esta introduccién a redes no es completa, ya que para eso ya hay buenas referencias como [6], si no mds
bien como una forma de establecer la terminologia que se usara a lo largo del trabajo.

2.1. Definiciones y propiedades topologicas

Las redes complejas son estudiadas matematicamente gracias a la teoria de grafos, ya que, formalmente,
una red compleja puede ser representada mediante un grafo. Un grafo es una coleccion de nodos unidos
por enlaces (links) [6]. Un grafo no dirigido G = (N, L) consiste en dos conjuntos N y L, tales que
N # 0y L es un conjunto de pares desordenados de elementos de N. Los elementos de N son los
nodos, mientras que los de L son los links. El nimero de elementos en Ny en L se denotan por Ny K,
respectivamente. Para identificar un grafo se usard la notaciéon G = (N, £), o, simplemente, G (V, K).
En un grafo dirigido la tnica diferencia es que los pares que constituyen £ son ordenados, ya que, como
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(@) (b)

Figura 1: Representacion grafica de (a) un grafo no dirigido y (b) un grafo dirigido. Ambos grafos
constan de N = 6 nodos y K = 12 enlaces. En el grafo dirigido los nodos vecinos son conectados
mediante flechas indicando el sentido de cada link.

se verd ahora, el sentido en el que va el enlace es importante.

La manera de referirse a un nodo suele ser mediante su orden i en el conjunto N. Después, en un grafo
no dirigido los links se definen como una pareja de nodos distintos i y j y se denotan por /;;. Dos nodos
unidos por un enlace se dice que son vecinos. Por otro lado, en un grafo dirigido el orden de los nodos
que definen un enlace es importante: /;; se refiere a un enlace que va desde el nodo i al j, y [;; # ;. Un
grafo se suele dibujar mediante un punto para cada nodo y uniendo dos puntos por una linea si existe un
link entre los correspondientes nodos [7]. En la Figura 1 se observan ejemplos de un grafo no dirigido y
uno dirigido.

Hay ciertos casos donde puede haber més de un link entre los mismos nodos. La manera de referirse
a estos vértices es como multiedges. También puede ocurrir que haya algtiin nodo conectado consigo
mismo, lo que se conoce como self-loop. Notar que en ninguno de los grafos de la Figura 1 hay elementos
de este tipo, ya que, segtn la definicién que se ha dado de grafo, estos no estdn permitidos. Los grafos
que contienen alguno de estos elementos se conocen como multigrafos [6]. En este trabajo el interés
reside en los grafos mds que en los multigrafos, mds concretamente en los no dirigidos, es decir, como
el que aparece en la Figura 1a. También existen grafos en los cuales cada enlace tiene un peso diferente,
usualmente un nimero real, son los que se conocen como grafos ponderados. De todas formas, para este
trabajo no se consideraran este tipo de grafos, si no que serd como si todos los links tuvieran un peso
unitario.

Otro de los conceptos claves a la hora de caracterizar redes es la capacidad de conexion entre dos nodos
del grafo. De hecho, aunque dos nodos no sean vecinos, podra ser accesible ir de uno a otro. De esta
forma se define el camino del nodo i al nodo j como la secuencia de nodos vecinos que empieza en i
y acaba en j. La longitud del camino se define como el nimero de enlaces en la secuencia. También
existen los paths, que son caminos en los que no se pasa por ningliin nodo mas de una vez. Se dice que
un grafo estd conectado si para cada par de nodos distintos i y j hay, al menos, un path que los una. Si
esto no se cumple, el grafo estard desconectado [7].
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2.1.1. Matriz de adyacencia

La forma fundamental de representar matemdticamente una red es mediante la matriz de adyacencia.
Considerando que se tiene un grafo G = (N, L), la matriz de adyacencia A se define como la matriz

cuadrada N X N cuyos elementos A;; (i, j = 1,..., N) cumplen

A

1 si el link /; ; existe,
. { i 1)

0 de otra manera.

En el caso de las redes que interesan en el trabajo (no dirigidas, simples, no pesadas), la matriz de
adyacencia es simétrica, ya que si existe el link /;; también existird el /j;, y cero en la diagonal principal,
debido a que no tiene ni multiedges ni self-loops [6, 7]. Por tanto, considerando el grafo de la Figura 1a,
su matriz de adyacencia seria

011110

1 01 101

1 10110
A=

1 11011

1 01 1 0 1

01 0110

2.1.2. Grado y distribucion de grado

En una red no dirigida G = (N, £) el grado de un nodo es el ntimero de vértices conectados a él. A pesar
de la simplicidad del concepto, es una de las herramientas mads ttiles y mas usadas en redes. El grado de
un nodo i se denota por k; y se calcula en términos de la matriz de adyacencia como

ki= > A )
JEN
Cada vértice tiene dos finales y si hay K de ellos, en total habrd 2K finales de vértices. Pero el nimero
de finales coincide también con la suma de los grados de todos los nodos, ya que

2K = A=) ki 3)
i,jeN ieN
Existen redes las cuales todos sus nodos tienen el mismo grado. En teoria de grafos estas se conocen
como redes regulares [6].

La caracterizacién topoldgica més basica de una red se consigue gracias a su distribucién de grado P (k).
Esta se define como la probabilidad de que al elegir un nodo de forma aleatoria, este tenga grado & o,
equivalentemente, la fraccion de nodos en la red con grado k. Para obtener informacién sobre cémo se
distribuye el grado entre los nodos se calculan los momentos de la distribucién. El momento n de P (k)
se define como

(k") = " K"P(R), )
k
El primer momento (k) se corresponde con el grado medio de G [7].

En las redes no correlacionadas la distribucién de grado caracteriza completamente las propiedades
estadisticas. Sin embargo, en las redes reales suele ocurrir que existen correlaciones en el sentido de que
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la probabilidad de que un nodo de grado k esté conectado a otro nodo de grado k” depende de k. En estos
casos es necesario introducir la probabilidad condicionada P (k" | k), que se define como la probabilidad
de que un link desde un nodo de grado k apunte a un nodo de grado k’. P (k" | k) cumple la condicién de
normalizacién Y, P (k" | k) = 1 y la de equilibrio detallado kP (k' | k) P (k) = K’P (k| k") P (k") [8].

En funcidn de las correlaciones de grado que haya, se clasifica a las redes en dos grandes grupos, redes
asortativas y redes disortativas. Las primeras se corresponden con aquellas en las que los nodos de grado
alto tienden a conectarse con otros nodos de grado también alto. Por otro lado, en las disortativas los
nodos de grado alto tienden a conectarse con nodos de grado bajo. Una forma de medir la asortatividad
en una red es mediante el coeficiente de asortatividad r, que toma valores entre -1 y 1. Cuando r < 0 la
red es disortativa y cuando r > 0 es asortativa. En el caso r = 0 la red es no correlacionada [9].

En redes no correlacionadas, en las que P (k’ | k) no depende de k, las condiciones de normalizacién y
de balance detallado dan

D kP (K 1K) Py =Y KP(k|K)P(K)=

= P (K 1K) Y kPU)=kP(K) D P(kIK)=

K'P (K
=P (K |k)ky=kP([K)=P(K k)= <k(> ), (5)

2.2. Modelos de redes

En la actualidad, gracias a la abundancia de datos y medidas de redes reales, se ha descubierto la exis-
tencia de diferentes tipos de redes, caracterizadas por una gran variabilidad de sus métricas bdsicas y
propiedades estadisticas. Esto ha impulsado la investigacion de diferentes modelos de generacién de
redes. La utilidad de estos modelos es que sirven como generadores de redes sintéticas con caracteristi-
cas parecidas a las de las redes reales y en las que se puede estudiar el comportamiento de procesos
dindmicos.

El primer modelo que se propuso es la red aleatoria clasica de Erdos-Rényi [10]. Segtin este modelo, un
grafo G (N, K) es construido a partir de un conjunto de N nodos en el que cada uno de los N (N — 1) /2
posibles enlaces esta presente con probabilidad p. La distribucién de grado de esta red estd dada por una
distribucién binomial

P(k) = <N; 1) ph(1 = pNIk,

que en el limite de grado medio constante (especificamente p = (k) / (N — 1)) y N grande, tiende a una

distribucion de Poisson

R
TR (6)

Por tanto, este modelo es adecuado en el caso de redes gobernadas Unicamente por la estocéstica, aun-

Pk)=e

que G (N, K) tienda a un grafo regular para N grande y p constante. La distribucién de grado alcanza su
maximo en torno al valor medio, denotando cierta homogeneidad estadistica en los nodos [9]. En cuanto
a las correlaciones de grado, para este modelo se encuentra que r = 0, por lo que se generan redes no




Trabajo Fin de Grado 2. Teoria de redes

correlacionadas [11]. En la Figura 2a se observa el grafo de una red aleatoria, donde se ve la homoge-
neidad en los nodos de la que se ha hablado. Por otro lado, en la Figura 2b se observa la distribucién de
grado de otra red aleatoria, en la que se ve como se aproxima muy bien a una distribucién de Poisson.

Sin embargo, la evidencia empirica ha demostrado que las redes reales no se comportan como redes
aleatorias, sino que estas exhiben altos niveles de heterogeneidad. Las distribuciones estadisticas que
caracterizan estas redes son generalmente desiguales y varian a lo largo de varios 6rdenes de magnitud.
Suele ser esclarecedor representar las distribuciones de grado de redes reales para sacar mds conclusio-
nes. Esto es lo que hicieron en 1999 Barabasi, Albert y Jeong cuando estudiaron la red WWW [12]. Lo
que encontraron es que la gran mayoria de los nodos tenian un grado bajo, pero la distribucién tenia una
gran “cola” por la derecha, correspondiente con nodos de alto grado. A estos nodos tan bien conectados
se les llama hubs.

Lo interesante de todo esto es que, estudios posteriores han llegado a la conclusién de que la mayoria
de las redes reales tienen distribuciones de grado con una cola de hubs de alto grado como la descrita
hace un momento. En el lenguaje de la estadistica se conoce a este tipo de distribuciones por su término
en inglés heavy-tailed, y suelen aproximarse por un comportamiento de una ley potencial de la forma
P (k) ~ k™%, lo que implica una probabilidad no despreciable de encontrar nodos con alto grado.

A pesar de la simplicidad de este tipo de distribuciones, las cantidades que las describen se comportan de
maneras sorprendentes [6]. Comenzando por la constante de normalizacion, tomando que se normaliza
a partir de cierto grado k,,;;, > 0, esta es

1 B 1
k= L (o kin)”

donde ¢ (@, kpin) es la funcién zeta generalizada. Asi, la distribucién completa es P (k) = Ck™“. Si

C=

i

min

se considera que en la cola la suma sobre k se aproxima bien con una integral, la constante queda
C=(a-1k>]

min °
Pasando ahora a los momentos de la distribucion, usando la expresién (4) y separando la suma en dos
partes, la del principio de la distribucion y la de la cola (donde sigue una ley potencial), el momento n

queda
kmin—1 oo
(K= > K'PUR)+C Y K.
k=0 k=Kynin

Al igual que para la constante de normalizacidn, si se considera que para la cola, la suma se puede
aproximar por una integral el momento queda

Kmin—1
n\ . N n C —a+17®
(k") = kZ:(;kP(k)+—n_a+l[k” Vo -

El primer término es un nimero finito cuyo valor depende de la forma particular de la distribucién no
potencial para pequeiios k. El segundo término depende de los valores de ny a. Sin—a+1 < 0la
integral tiene un valor finito, pero si n — @ + 1 > 0 la integral divergird y con ella el momento (k™). Por
tanto, el momento »n de la distribucion sera finito solosi @ > n + 1.

De especial interés es el segundo momento, el cual serd finito si @ > 3. Lo que se encuentra es que, para
muchas redes reales con leyes potenciales, el coeficiente @ toma valores en el rango 2 < @ < 3, por lo que
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Figura 2: Diferentes ejemplos de modelos de redes. En (a) se representa el grafo y en (b) la distribucién
de grado para redes aleatorias. El grafo estd construido a partir de una red con N = 50 nodos y una
probabilidad de conexién p = 0.2, mientras que la distribucién de grado se ha hecho a partir de una red
con N = 10000 nodos y una probabilidad p = 0.02. Después, en (c) se representa el grafo y en (d) la
distribucién de grado de dos redes libres de escala. Estas redes han sido generadas gracias al modelo
Barabadsi-Albert, tomando para el grafo los pardmetros my = 5, m = 3y T = 45 y para la distribucion de
grado, mp =20, m =4y T = 9980. En ambos grafos el tamafio de los nodos es proporcional a su grado.

Las distribuciones de grado también se representan junto a sus curvas tedricas.
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el segundo momento de estas redes tendria que divergir. En estos casos, las redes se denominan como
libres de escala. Obviamente, los momentos solo divergirdn cuando se esté en el limite de una red de
tamafio infinito (N — o0). Para redes reales, debido al tamafio finito y a otras restricciones, los momentos
no se hardn infinitos, aunque si que tendrdn valores sorprendentemente grandes en comparacién con el
grado medio, reflejando las enormes fluctuaciones en la conectividad de los nodos [9].

Para crear este tipos de redes se han considerado diferentes paradigmas y modelos. Aqui se presenta el
modelo Barabési-Albert (BA) [13], el cual es un modelo de red en crecimiento que considera que los
nuevos nodos se conectardn a los nodos que ya estaban mediante una regla de conexién preferencial.
En concreto, se considera que esta regla estd basada en el grado de cada nodo, es decir, la probabilidad
de afadir un enlace al nodo i es una funcién F (k;) de su grado. En su versién mds simple el modelo
funciona de la siguiente manera: (i) Se comienza con una pequefia red aleatoria de mg nodos, y a cada
paso de tiempo se va afiadiendo un nodo con m (m < myg) links, que son conectados a los nodos antiguos
de la red. (ii) Los nuevos enlaces se conectan al nodo i con una probabilidad F (k;) = k;/ Y, ik [9].

La distribucién de grado que genera este modelo es

2m(m+ 1)

PO = s D

(7)
que en el limite de k grande cumple P (k) ~ k=3, por lo que se genera una red libre de escala con
exponente @ = 3 [14]. Otra caracteristica interesante es que para las redes que se generan con este
modelo r = 0, es decir, son redes no correlacionadas [11]. En la Figura 2c se observa el grafo de una red
libre de escala, donde se puede ver la heterogeneidad en el grado de cada nodo. Después, en la Figura
2d se representa la distribucién de grado de otra red libre de escala, se ve como sigue una ley potencial,
sobretodo para los grados més pequeios. Después, cuando ya crece el grado, debido a los efectos finitos
el comportamiento se aleja del predicho.

Otro aspecto que no se ha tenido en cuenta sobre las redes es su cardcter temporal. Hasta ahora se
ha considerado que la topologia de las redes era estdtica, ya que los conjuntos de nodos y links no
cambiaban con el tiempo. Sin embargo, hay muchas redes reales que estdn lejos de ser estéticas. En
algunas de estas redes, como la de Internet, la escala de tiempos caracteristica a la que cambia la red
es bastante pequeia. Es por esto, que en los casos donde las propiedades de los procesos dindmicos
cambien mucho mas rapido que la red, serd una buena aproximacion tomar redes estaticas [15]. Debido
al ambito que interesa para este trabajo, es decir, dispositivos conectados a internet que sufren ataques
informaticos, tomar la aproximacién anterior y usar redes estaticas es correcto.

Para finalizar esta seccién se va a considerar una red real y se van a estudiar sus caracteristicas. En
concreto se considera la red Internet AS graph (2006) [16], la cual representa la estructura de internet
al nivel de sistemas auténomos. Es una red de N = 22963 nodos y K = 48436 links. En la Figura 3
se observa su distribucién de grado que, como se puede ver, sigue una ley potencial como la descrita.
Comparandola con la distribucién de la Figura 2d, para grados pequefios se comporta bastante bien, pero
para grados grandes se desvia mds, de igual forma que la otra. Se obtiene que el coeficiente de la ley
potencial estd en torno a @ =~ 2.3, por lo que es una red libre de escala.

En cuanto a los momentos de la distribucién, se obtienen (k) = 4.22 y <k2> =~ 1100. Es decir, se ve
como el segundo momento se hace muy grande, en comparacién con el grado medio, por lo que cumple
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Figura 3: Distribucién de grado de la red Internet AS graph (2006).

lo predicho para redes libre de escala. El coeficiente de asortatividad para esta red es r = —0.2, es decir,
es una red ligeramente disortativa.

Debido a que esta red cumple las caracteristicas descritas para una red real como las que interesan en
este trabajo, serd la que se use mas adelante para realizar simulaciones y sacar resultados.

3. Procesos de propagacion

El estudio de procesos de difusién lleva siendo un tema de gran interés desde hace tiempo. Esto se debe
a la gran utilidad que tiene conocer cdmo estos procesos se dan. Una de las aplicaciones més extendidas
es la del estudio de difusion de epidemias. Gracias a los resultados que aportan estos estudios se pueden
desarrollar estrategias para controlar y erradicar enfermedades. Pero no solo se puede modelar la difusién
de enfermedades, sino que cualquier sistema que pueda verse como un proceso de contagio, también.

En esta seccidn se verdn algunos de los modelos mds basicos usados para modelar la difusion de en-
fermedades; después se estudiaran algunas aproximaciones que se pueden realizar a la hora de intentar
abordar el problema de resolver este tipo de modelos; y, por ultimo, se vera como se puede llevar todo
esto a redes para ver como influye la topologia de estas a los procesos de difusion.

3.1. Modelos de difusion de enfermedades

La asuncién més bdsica realizada a la hora de modelar epidemias es la de considerar que la poblacién
se puede dividir en diferentes clases o compartimentos dependiendo del estado de la enfermedad. Esto
es lo que se conoce como modelo compartimental [17]. En el caso mas simple solo se consideran dos




Trabajo Fin de Grado 3. Procesos de propagacién

estados: susceptible (S) e infectado (/). Los individuos en el estado susceptible son aquellos que no
tienen la enfermedad pero si tienen contacto con alguien que si la tenga, pueden infectarse. Por otro
lado, los individuos del estado infectado son aquellos que tienen la enfermedad y pueden infectar a otros
que no la tengan. A partir de aqui se pueden seguir afiadiendo compartimentos para tener en cuenta mas
estados que pueda tener una enfermedad. Por ejemplo, suele ser itil el estado recuperado (R), donde
estarian los individuos que ya han pasado la enfermedad y no pueden volver a contagiarse porque se han
inmunizado [9].

El objetivo de estos modelos es conocer como evoluciona el nimero de individuos en cada estado a
lo largo del tiempo. Para ello se tienen que definir los procesos bdsicos que tienen lugar al nivel de
individuos y que gobiernan las transiciones de un estado a otro. Estos se caracterizan gracias a ciertos
pardmetros que describirfan las probabilidades de que un individuo cambie de compartimento. Para
obtener el valor de estos pardmetros se recurre a métodos completamente experimentales.

El primer modelo compartimental que se considera es el SIS. Este consta de dos estados y solo puede
haber dos transiciones

s+1501
155,

La primera describe el proceso de contagio y ocurre cuando un individuo infectado tiene contacto con
uno susceptible. Estd caracterizada por el pardmetro 3, que describe el ritmo de transmisién de la en-
fermedad. La segunda da cuenta de las recuperaciones de los individuos infectados, volviendo al estado
susceptible, ya que pasar la enfermedad no otorga inmunidad. Esta estd caracterizada por el pardmetro
U, que representa el ritmo de recuperaciéon. Como es obvio, la naturaleza de estos procesos es com-
pletamente distinta, ya que las recuperaciones ocurren de manera espontdnea al cabo de cierto tiempo,
mientras que los procesos de contagio dependen de los patrones de interaccion entre individuos [6].

Otro modelo interesante es el SIR. Este consta de tres estados y la diferencia con el SIS es que los indi-
viduos que se recuperan de la enfermedad pasan al estado recuperado, ya que han adquirido inmunidad
contra ella. De esta forma, las transiciones que puede haber son

s+1501
15 R

Claramente, en este modelo la evolucién no es infinita, sino que esta para en el momento en el que ya no
hay individuos infectados. Esto quiere decir que todos los individuos estan bien en el estado susceptible
o bien en el protegido. A este tipo de estados se les conoce como estados absorbentes, ya que, cuando
acaba la evolucidn, todos los nodos estdn en alguno de estos estados. Por el contrario, en el modelo
SIS los individuos pueden infectarse una y otra vez, experimentando un ciclo S — I — §, que bajo
ciertas condiciones se puede mantener para siempre, llegando a un estado estacionario en el que haya
individuos infectados, conocido como estado endémico [9].

Existen muchos otros modelos compartimentales mas complejos (ver Figura 4), pero para el interés
de esta seccidn, con estos es suficiente. A partir de aqui, en lo que queda de seccién se considerard el
modelo SIS a la hora de hablar de los siguientes temas.

10



Trabajo Fin de Grado 3. Procesos de propagacién

SIS | s P SIRS siuiﬂ

H T n
SR s "1 "R SER s HE "R |

Figura 4: Representacion con diagramas de flujo de diferentes modelos compartimentales usados en

modelizacion de epidemias. Cada caja representa un compartimento, mientras que las flechas represen-
tan transiciones entre compartimentos, ocurriendo aleatoriamente de acuerdo a sus respectivos ritmos.
El nuevo estado que aparece es latente (E), el cual representa a los individuos que estdn infectados y

pueden contagiar, pero ain no tienen sintomas.

3.2. Aproximacion homogeneous mixing

Los modelos descritos hasta ahora estan basados en las propiedades de la enfermedad y de los individuos
(para la recuperacién), pero no se ha tenido en cuenta en ningin momento un elemento crucial en la
difusién de enfermedades, la red de contactos.

La primera hipétesis cldsica que se realiza sobre la red de contactos cuando se quiere estudiar la evolu-
cion de una enfermedad es la de homogeneous mixing [18, 19], también conocida como aproximacién de
campo medio, debido a las similitudes que tiene con este tipo de aproximaciones de la fisica estadistica.
Bajo este enfoque, se considera que la poblacién estd completamente mezclada y se asume que cada
individuo tiene la misma probabilidad por unidad de tiempo de contactar con cualquier otro individuo.
Esto, obviamente, no es una buena representacion de cémo es el mundo en realidad, aun asi, un estudio
de los acercamientos cldsicos resulta titil a la hora de estudiar la epidemiologia en redes.

La gran ventaja que presenta esta aproximacion es que permite escribir el modelo en la forma de un
sistema de ecuaciones diferenciales ordinarias de las densidades de los individuos en cada estado. Este
sistema puede ser resuelto mediante cualquier método de resolucién numérica de ecuaciones diferencia-
les (como Runge-Kutta) y asi obtener la evolucién de la enfermedad a lo largo del tiempo. En teoria,
como el proceso de difusién es completamente aleatorio, la evolucion no estd determinada univocamen-
te, ya que si la enfermedad volviese a propagarse por la misma poblacién mds de una vez, incluso bajo
las mismas condiciones, cada vez se obtendria una evolucidn distinta. Sin embargo, resolviendo este
sistema se alcanzaria siempre el mismo resultado. Esto se puede entender como que los resultados obte-
nidos con el sistema de ecuaciones son los que se obtendrian al hacer el promedio de muchas evoluciones

bajo las mismas condiciones y son resultados completamente deterministas.

Se describe ahora como seria el modelo SIS bajo esta aproximacion. Se supone que S (¢) es el nimero de
individuos en el estado susceptible a tiempo ¢ e I (f) son los que estan infectados. El nimero de infectados
crece cuando los individuos susceptibles contraen la enfermedad de los infectados. Como este proceso
esta caracterizado por el ritmo de transicion 3, esto quiere decir que cada individuo infectado tiene, en
promedio, (k) 8 contactos por unidad de tiempo con el resto de individuos de forma aleatoria, donde (k)

11
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es el nimero medio de contactos dentro de la red, i.e. el grado medio. Si la poblacién total estd formada
por N individuos, la probabilidad de contactar con un susceptible es S /N, por lo que un infectado tiene
de media (k) 8S /N contactos con susceptibles por unidad de tiempo. Como hay I infectados en total, el
ritmo global de nuevas infecciones serd (k) 58S I/N. Por otro lado, como los infectados se recuperan a un
ritmo y, el ritmo de recuperaciones serd ul [6].

Segun lo explicado en el parrafo anterior, el sistema de ecuaciones que permite simular el modelo es el
siguiente [9]

ds SI

i —(k>ﬁﬁ +ud, (8a)
dl SI
i (@ﬁﬁ —ul. (8b)

Si ahora se definen las densidades de cada estado como p® = N%/N, siendo N“ el nimero de individuos
en el estado «, el sistema de ecuaciones (8) queda

d S

% = —(kyBoSp" + up', (9a)
d I

% = (kB p! - o, (9b)

con p% +p’ = 1, por lo que una de las dos ecuaciones es redundante y con una es suficiente para describir
el modelo.

3.3. Aproximacion DBMF

Como ya se ha dicho, la aproximacién homogeneous mixing no es del todo realista ya que no tiene
en cuenta los diferentes patrones de contacto que puede haber en una red real. Pensar que todos los
individuos tienen aproximadamente el mismo nimero de contactos y que pueden ser con cualquier otro
individuo de forma aleatoria choca con la realidad. En la vida real cada individuo tendria su propio patrén
de contacto social, por lo que resulta razonable pensar que estos diferentes patrones de contacto podrian
representarse mediante una red compleja. Hay diferentes formas de introducir este aspecto dentro de un
modelo. En concreto, en esta seccion se describird la aproximacion degree-based mean field (DBMF)
[20].

Bajo esta hipétesis de campo medio se supone que todos los nodos con el mismo grado k se comportan
estadisticamente igual. Esta asuncién implica que ya no es necesario considerar el estado especifico de
cada nodo, si no que las cantidades relevantes son las densidades p} (t) = N}/ (¢) /Nk, que representan
la densidad de nodos con grado k en el estado @ (N} es el numero de individuos con grado k en el
estado a, y Ny es la cantidad de nodos con grado k). La asuncién también implica que cualquier nodo de
grado k estd conectado con la misma probabilidad P (k' | k) a un nodo de grado k’. Esta aproximacion es
conveniente ya que reduce el nimero de grados de libertad del sistema enormemente.

En la teoria DBMF, las densidades p} se pueden ver como la probabilidad de que un individuo de
la poblacién con grado k esté en el compartimento @. Aunque estas variables no son independientes,
satisfacen la condicién de normalizacion >, o = 1. Después, la fraccion total de individuos en el
estado « se calcula como p® = X; P (k) o).

12
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Esta teoria contiene, implicitamente, otra aproximacion, ya que la equivalencia entre los nodos de un
mismo grado considera la red en una perspectiva de campo medio en la que la matriz de adyacencia A
se rompe completamente y solo se mantienen la distribucién de grado y las correlaciones entre nodos
de distinto grado. Esto es equivalente a pensar que la escala de tiempos de los procesos de difusiéon
es mucho més lenta que la que caracteriza los cambios de los patrones de interaccién en la red. Es
como si la red estuviese constantemente reconectdndose, pero preservando P (k) y P (k' | k). Aunque la
teoria DBMF es obviamente una aproximacién muy grande, es capaz de capturar el comportamiento de
epidemias y de procesos dindmicos complejos [9].

Considerando el modelo SIS, las ecuaciones que gobiernan la evolucién del sistema se pueden obtener
siguiendo un razonamiento similar al hecho para el sistema de ecuaciones (8). El ritmo de recuperaciones
tendrd una forma similar, pero ahora solo se contard la densidad de infectados con grado k, por lo que
queda ,up,’(. En cuanto al ritmo de contagios, para un cierto grado k el nimero de contactos que realiza
por unidad de tiempo es k8. La probabilidad de que un nodo de grado & sea susceptible es pi, por lo que
un infectado tiene de media kﬂpi contactos con susceptibles. Ahora, teniendo en cuenta la probabilidad
de que el nodo esté conectado a otro de grado k’ y este esté infectado: P (k' | k) pi,, el ritmo de contagios
quedaria kﬁpi P | k) pi,. Este factor se debe sumar a todos los posibles valores de k’. Asi, segiin lo
explicado, el sistema queda

dp; s / I 1
e —kBpy §k, P (K| k) py + pop (10a)
dpy s / I I
i kBpy, %/ P (K' | k) pf = upp (10b)

donde se cumple que pi + ,o,’c = 1, por lo que con una de las ecuaciones es suficiente. Estas expresiones
constituyen un sistema de dos ecuaciones para cada grado k, por lo que seria necesario resolverlo para
cada uno de los grados simultineamente para asi obtener el resultado global. En el caso de tener un red
no correlacionada, se cumple la ecuacién (5) y el sistema queda

dp?
— = ~kBoLO + ppy. (11a)
dp!
— ¢ =KBpy © — up}, (11b)
donde KP®K)
0=~ Pl (12)
(k)

que seria la probabilidad de encontrar un nodo infectado tomando un vértice de forma aleatoria [9].

3.4. Propagacion en redes: Gillespie

Hasta ahora se han empleado diferentes aproximaciones que permitian resolver estos modelos de forma
completamente determinista. Sin embargo, este tipo de procesos son totalmente estocasticos, ya que los
pardmetros de los que dependen las transiciones son probabilidades. Para realizar estas simulaciones
estocdsticas se empleard el método de Monte Carlo y se controlard el estado de cada nodo, viendo todos

13
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(a) Gillespie Algorithm (b) Synchronous Updating
T At

Figura 5: Esquemas de (a) el algoritmo de Gillespie y (b) la actualizacién sincrona en redes. Las marcas
verticales en el eje del tiempo indican los momentos en los que se producen transiciones. En la actuali-
zacion sincrona estos momentos ocurren cada un tiempo fijo A¢, mientras que en Gillespie el intervalo
es una variable aleatoria 7. Los circulos verdes y rojos representan nodos de la red en los estados suscep-
tible e infectado, respectivamente. Un cuadrado alrededor de un circulo indica que ha sido seleccionado
para actualizarse en ese intervalo y podria cambiar su estado. En el algoritmo de Gillespie solo se elige
un nodo y siempre cambia su estado. En la actualizacidn sincrona todos los nodos tienen la opcién de
cambiar su estado, pero lo hardn o no con una probabilidad que depende de su estado y del estado de sus
vecinos. Imagen extraida de [23].

los posibles eventos que pueden ocurrir y la probabilidad con la que podria ocurrir cada uno. En la Figura
5 se pueden ver los esquemas de los dos métodos que se van a comentar a continuacion.

Una primera forma de llevar a cabo este tipo de simulaciones es mediante la aproximacién de tiempo
discreto. En esta aproximacion se divide el tiempo en pequefios intervalos Af y en cada uno de ellos se
calcula la probabilidad de que un nodo cambie su estado en el siguiente intervalo. Entonces, generando
nimeros aleatorios se puede escoger qué cambios son los que se producirdn sincronamente y después
pasar al siguiente intervalo. Una importante limitacidén que tiene este método es que, si los intervalos
son muy largos, puede ocurrir que en un mismo intervalo ocurran varios eventos que podrian afectarse
mutuamente. Por ejemplo, un nodo podria recuperarse y transmitir en el mismo intervalo, pero no se
sabria qué ocurre antes. Esto podria arreglarse cogiendo intervalos muy pequefios, pero esto haria que la
simulacién fuese muy lenta [21].

Existen enfoques alternativos, como la aproximacién de tiempo continuo. En este tipo de aproximacio-
nes el estado de los nodos se actualiza de forma asincrona, es decir, en cada intervalo de tiempo solo
cambia el estado de un nodo. En concreto, en este trabajo se presenta el algoritmo de Gillespie [22].
Inicialmente, este método fue propuesto para hacer simulaciones estocdsticas de reacciones quimicas,
pero posteriormente, debido al amplio rango de aplicabilidad que tenia, se empezé a usar para hacer
simulaciones epidemiolégicas en redes. En una simulacién de Gillespie se calcula el tiempo que pasard
hasta que ocurra el siguiente evento, sabiendo el ritmo combinado de todos los posibles eventos que
podrian ocurrir en ese momento. El tiempo se escoge aleatoriamente de una distribucién exponencial
con ese ritmo. Después, usando otro nimero aleatorio se determina cudl de los posibles eventos es el
que ocurre. Esto da una simulacién estocéstica exacta.
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Segun este método, dado el estado de la red, se pueden calcular las distribuciones de probabilidad que
gobiernan tanto la longitud del intervalo hasta el proximo suceso como la decision de qué nodo es el
que se actualiza, gracias a los ritmos de transicion individuales de cada nodo 7; (¢). Por ejemplo, para el
modelo SIS estos ritmos de transicidén serian nf (t) = kjnsB, donde k;,r es el nimero de nodos vecinos
infectados, para los nodos susceptibles, y 7]{ (f) = u para los nodos infectados. Asi, si » es un nimero
aleatorio uniforme en el intervalo [0, 1) y se define el ritmo total de transicién w (¢) = ; n; (), el tiempo

r=tm (1) (13)

w r

que pasa hasta el siguiente suceso es

Después, para elegir la transicién que va a ocurrir se usa otro nimero aleatorio uniforme u € [0, 1) y se
ve para qué nodo se cumple la condicién

k-1 k

Zﬂqmzm k=1.....N). (14)
- w Fla)

J=1

donde N es el nimero de nodos en la red. Asi, el nodo k serd el elegido para cambiar su estado en ese
intervalo de tiempo. Este proceso se repetird hasta que la poblacién alcance un estado estacionario, bien
porque todos los individuos han ido a un estado absorbente, como el estado recuperado del modelo SIR,
o porque se ha llegado a un estado endémico [24].

4. Propagacion de virus informaticos

Como ya se ha dicho anteriormente, todo lo explicado anteriormente tiene un rango de aplicabilidad muy
amplio, y no se restringe Ginicamente al estudio de epidemias. Hay otros campos donde se usan métodos
similares, como por ejemplo en biologia, donde se usan redes biomecdnicas para intentar entender los
complejos procesos quimicos que tienen lugar en las células e incluso descubrir nuevas terapias para
tratar enfermedades. También se usan estos métodos para estudiar internet y asi entender mejor cémo
fluyen los datos por él o cdmo se podria cambiar la red para que funcione mejor. Por nombrar un ejemplo
mads, también se estudian las redes de contactos sociales para comprender la naturaleza de las interaccio-
nes sociales y sus implicaciones en el comercio, la estructura de la sociedad, la difusién de informacion,
etc [6].

En esta seccién, en concreto, se estudiard un modelo completamente original que sirve para estudiar
cOmo se extienden un virus informdtico y un “antivirus” por una red tecnoldgica, como podria ser la
red de internet. Se comenzard explicando el modelo y planteando las reacciones por las que se rige, y,
finalmente, se pasard a ver como se comporta el modelo en diferentes tipos de redes.

4.1. Modelo

El modelo se basa en algunos trabajos hechos sobre ciberdefensa activa, donde se introduce en una red en
la que se estd propagando un virus informatico, un white worm que ird protegiendo los dispositivos frente
al virus [2], tal como ya se coment6 en la introduccién. En particular, para este modelo se considerara
que tanto el virus como el white worm ven la misma red, por lo que, en principio, ninguno jugaria con
ventaja respecto al otro.
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y

Figura 6: Representacion del diagrama de flujo del modelo usado para simular la difusién de un virus
informético y un white worm por una red tecnoldgica.

Las formas que tienen de trabajar los dos gusanos son sencillas. El virus se va propagando por la red
a la vez que va intentando infectar al mayor nimero posible de dispositivos y asi crear la botnet més
grande posible. Una vez que el virus infecta un nodo, este puede infectar a todos los nodos con los que
tiene contacto que no estén infectados atin. En contraposicion, el white worm también se va propagan-
do por lared y va “infectando” los dispositivos con un antivirus que arreglara las vulnerabilidades que
pueda tener. Una vez que el antivirus estd en un dispositivo, no actiia directamente, sino que espera un
tiempo prudencial, avisando al usuario de que tiene que arreglar algo en su ordenador para protegerlo,
por ejemplo. En funcién de cuanto tiempo pase en el dispositivo sin actuar, se dird que el white worm
es mas o menos ético, ya que, a mas tiempo sin actuar, mas tiempo deja al usuario para arreglar el pro-
blema él mismo y no obliga al gusano a hacer modificaciones en el sistema para arreglarlo, y viceversa.
Ademéds, durante este periodo el white worm tampoco puede infectar a otros dispositivos. Una vez que
el dispositivo queda protegido y ya se ha eliminado al virus, si lo hubiese, el white worm desaparece del
sistema.

Se comienza describiendo el modelo compartimental. Este consta de 7 estados y 17 transiciones, cada
una de ellas caracterizada por su respectivo ritmo de transicién. Los estados son los siguientes:

= Vulnerable (V): los individuos en este estado son aquellos que no estdn infectados por ninguno de
los dos gusanos, pero si tienen contacto con algin individuo que s lo esté, pueden infectarse.

= Infectado negro (B): estos son los individuos que estan infectados por el virus informatico y pue-
den contagiar a otros que no lo tengan.

= Latente (L): estos individuos estdn infectados por el white worm, pero este ain no ha comenzado
a actuar y estd esperando a que el usuario arregle el problema él mismo. Los dispositivos en este
estado no pueden infectar otros dispositivos que ain no tengan el white worm.

= Infectado blanco (W): cuando un individuo estd infectado por el white worm y este esta tratando
de proteger el dispositivo, estd en este estado. Los dispositivos en este estado si pueden infectar
otros dispositivos que ain no tengan el white worm.
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= Infectado negro-latente (LB): estos son los individuos que han sido infectados por los dos gusanos,
pero el white worm ain no ha comenzado actuar. Seria una mezcla de los estados B y L, por lo
que el white worm no podria infectar otros individuos pero el virus si.

= Infectado negro-blanco (W B): los individuos en este estado estan infectados por los dos gusanos
y el white worm estd tratando de eliminar al virus del sistema para dejarlo protegido. Seria una
mezcla de los estados By W, por lo que tanto el white worm como el virus pueden infectar otros
individuos.

= Protegido (P): estos son los individuos que ya no tienen ninguna vulnerabilidad en su sistema por
lo que no tienen ninguno de los dos gusanos y no pueden ser infectados por ninguno de ellos.

Por otro lado, las transiciones que pueden ocurrir son

v+B2 08B, w+B2 wB+B, B+wB2 LB+ Wb,
€
v+LB 2 B4 LB, W+ LB wB+ LB, LW,
€
v+ws 2 B+ wa, W+ WB 2 2wB, LB— WB,
o
L+B2 1B+ B, vew s Lew W— P
ﬁb ﬂw WBZP
L+1B 2 0B, v+wB 2 L+ wa,
L+wB2s LB+ wB, B+wiiB+w

Las nueve primeras se corresponden con la infeccién de un nodo por el virus informatico. Como es
obvio, solo pueden infectarse los nodos en los estados V, L y W, que son los que atin no lo tienen,
y solo pueden infectar los nodos en los estados B, LB'y WB, es decir, los que estdn infectados. Estas
transiciones estin controladas por el pardmetro 3, que es el ritmo de transmision del virus. Después, las
cuatro siguientes se corresponden con los procesos de contagio del white worm. Los tinicos nodos que
se podran infectar son los que estén en los estados V' y B, mientras que los que podrdn infectar son los
que estén en los estados W y WB. El parametro de control en estas transiciones es 3,,, que es el ritmo
de transmisién del white worm. Las dos siguientes transiciones dan cuenta de los cambios entre que el
white worm no actiie y se ponga a actuar. Solo se pueden dar desde estados en los que el white worm
estd latente en el individuo, es decir, L y LB. Estan caracterizadas por el pardmetro €, que mediria la
eticidad del white worm, de forma que cuanto mds valga, menos ético serd. Las dos ultimas transiciones
representan las protecciones de individuos debidas a la accidn del white worm. Solo se pueden dar desde
estados donde el white worm estd de forma activa en el individuo, es decir, W y WB. Las controla el
pardmetro u,,, que seria el ritmo de proteccién del white worm.

En la Figura 6 se puede ver el diagrama de flujo del modelo, con los diferentes estados y las transiciones
entre estados que puede haber. Cabe destacar que tedricamente tendria que existir una transiciéon mas
desde cada estado al estado protegido. Estas transiciones representarian la posibilidad de que un sistema
arregla sus vulnerabilidades mediante una actualizacién de software, por ejemplo, y estarfan caracteri-
zadas por un paradmetro yu,. Sin embargo, se asume que la probabilidad de que ocurra algo asi es muy
pequeiia, es decir, u,, < 1, por lo que estas transiciones son despreciadas desde el principio y no apa-
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recen en ningtn sitio. Otro aspecto interesante del modelo es que, debido a como son los estados y las
transiciones que puede haber, existen tres estados absorbentes: V, By P, por lo que cuando el sistema
evolucione hasta un estado estacionario, solo se espera ver nodos en estos estados.

Por otro lado, siguiendo un procedimiento andlogo al hecho para el modelo SIS en la Seccién 3.3, se
puede llegar al sistema de ecuaciones que gobierna la evolucion del modelo en la aproximacién DBMF
para el caso no correlacionado

% = —Bukp, Oy — Bukp] Oy, (15a)
ddL? = Brkp ®p — Bukpp Oy, (15b)
fﬁ-wnmi@ ~ Bokp©p — e, (13¢)
dff = Bukpg Oy + Bk ©p — epi”, (15d)
%%:mkHMm%—W%, (15¢)
% = epy; — Bokpy Op — tupy (15)
d;'f = wup +iup s (15¢)
donde
—Zk,P(k) P +pk/ ) y ®bzz%(P1§+P1€/B+PE/B)> (16)

k/
que son las probablhdades de encontrar un nodo infectado por el white worm o por el virus tomando
un vértice aleatorio, respectivamente. El sistema se puede adimensionalizar definiendo las cantidades

T = Uyt, Ay = Buw/tws b = Bo/ttw ¥ € = €/1y,. Asi queda

dp} v 14
T = —/lbkpk Q) - /lwkpk 0,, (17a)
L _ 1kl 0y — ko® (17b)
dr = ApKP, Yp — Pr Dw,
dp*
d—Tk = Avkp] ©,, — LkpE®, — € pk, (17¢)
dpéB _ / LB
I =41 kpk® + /lbkka)b —€p;", (17d)
-
deB
dlfr = €pt® + Lokp,' @ — , (17¢)
dp? ,
d_‘zlf =€ pé - /l,,kp,fV@b - pZV, (17f)
dpy, W, WB

Esto deja el sistema en funcién de solo tres pardmetros y permite estudiarlo segin el valor del cociente
A/ Ap, de forma que si es mayor que uno el white worm se propaga mas facilmente que el virus y si es
menor al revés, y segun el valor de €', es decir, la eticidad del white worm.
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4.2. Redes aleatorias

Ahora que ya se ha introducido el modelo y se han explicado todas las caracteristicas necesarias so-
bre él, se pasa a ver cdmo se comporta en diferentes tipos de redes. En esta seccién se estudiard su
comportamiento en redes aleatorias de Erdos-Rényi.

Los resultados que se sacardn son dos mapas de calor en funcién de las cantidades mencionadas en
la seccién anterior, uno de ellos representard la fraccién total de infectados por el virus en el estado
estacionario y el otro representard igualmente la fraccién de infectados por el virus, pero serd el valor
maximo que ha alcanzado a lo largo de la evolucion. El interés de este segundo mapa es debido a que
es importante saber si en el algin momento de la evolucién se ha creado una botnet tan grande que
era capaz de realizar un ataque muy poderoso. De poco serviria que al final de la evolucién quedasen
muchos dispositivos protegidos si aun asi el virus ha sido capaz de infectar muchos en algin momento.
La fraccién de infectados por el virus est4 representada por la cantidad p? + p8 + p"5, ya que todos los
individuos que pertenezcan a alguno de estos tres estados pueden infectar a otros individuos del virus.

Para realizar las simulaciones se ha tomado una red de grado medio (k) = 10 con N = 10000 nodos y

0.9
0.8
0.7
062
0.5
0.4
03 %
0.2

0.1

0.0

+ptB4WB

04 08 1.2 16 20

12 3 45 6 7 8 910 12 3 45 6 7 8 9

€ €

(© )

Figura 7: Mapas de calor obtenidos con la red aleatoria de (k) = 10 para la fraccién de infectados final
con (a) Runge-Kutta y con (b) Gillespie, y los obtenidos para la fraccién de infectados méxima con
(c) Runge-Kutta y con (d) Gillespie. Las lineas representan una fraccion de infectados constante.

19



Trabajo Fin de Grado 4. Propagacién de virus informéaticos

p = 0.001. Las condiciones iniciales que se han tomado para las poblaciones de estados son p¥ = 0.8,
pP =0.1yp" = 0.1, es decir, al principio hay un 10 % de nodos infectados del white worm y otro 10 %
del virus, el 80 % restante estd en el estado vulnerable. Que haya un 10 % de nodos en el estado W al
principio va a implicar que en el estado final nunca vaya a haber menos de un 10 % de nodos protegidos.
Los resultados son obtenidos resolviendo el sistema de ecuaciones (17) con Runge-Kutta y, también,
usando el algoritmo de Gillespie. Esto permitird comparar ambos métodos.

En la Figura 7 se pueden ver los resultados obtenidos. Como se puede ver, hay mucha concordancia
entre los resultados obtenidos para Runge-Kutta y los de Gillespie. Respecto a la fraccién de infectados
final, se ve como esta no depende de la eticidad del white worm y que se consigue erradicar el virus
incluso aunque su ritmo de contagio sea mayor al del white worm. Se ve gracias a las isolineas que la
fraccion final se anula muy rdpidamente al aumentar el ritmo de contagio del white worm respecto al
del virus. Después, en los mapas de la fraccién méxima se observa un comportamiento distinto. Cuanto
mayor sea la eticidad, menor es la fracciéon méxima, algo que era de esperar. Sin embargo, cuando la
eticidad es muy baja, hay un pico de infectados para cualquier valor de A,,/4p, ya que los dispositivos
estan mucho en el estado latente y dejan al virus propagarse sin problema.

La conclusion que se extrae de estos resultados es que, cuando el grado medio de la red empleada es
pequefio, hay buena concordancia entre la aproximacién DBMF vy el algoritmo de Gillespie, y que los
resultados obtenidos para una red aleatoria son los que cabria esperar desde un principio.

4.3. Redes libres de escala

En esta tltima seccidn se analizaran los resultados obtenidos al usar redes libres de escala para realizar
las simulaciones. Se usaran una red Barabdsi-Albert y la red Internet AS graph mencionada en la Seccién
2.2. La red Barabasi-Albert se genera con los valores de pardmetros my = 50, m = 2y T = 9950. Estos
valores dan una red con un grado medio (k) =~ 4.2. Es decir, tanto la red BA como la red Internet
AS graph tienen grados medios bastante bajos (como ya se dijo, (k) = 4.22 para la red Internet AS
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Figura 8: Mapas de calor obtenidos con la red Barabdsi-Albert para (a) la fraccion de infectados final con
Gillespie y para (b) la fraccién de infectados médxima con Gillespie. Las lineas representan una fraccion
de infectados constante.
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graph), por lo que debido a las conclusiones sacadas en el apartado anterior, se espera que los resultados
obtenidos con la aproximacién DBMF y con Gillespie sean muy parecidos. Por esta razén, solo se
presentaran los resultados del algoritmo de Gillespie. En cuanto a las condiciones iniciales, son las

mismas que en el apartado anterior.

Se comienza por la red Barabdsi-Albert. En la Figura 8 se observan los resultados y, como se puede ver,
los comportamientos son bastante parecidos a los obtenidos para redes aleatorias, aunque hay diferencias
notables en los resultados cuantitativos. Por tanto, comparando con los mapas de la Figura 7 se sacan las

siguientes conclusiones.

En cuanto a la cantidad de infectados por el virus finales, que se puede ver en la Figura 8a, se obtiene
que hay una cantidad no despreciable para un rango mds amplio de valores de 4,,/ 4, llegando incluso
a no anularse cuando 4,,/4, = 2. A diferencia de la red aleatoria, que cuando 4,,/1, = 0.5 ya era
practicamente nula la densidad de infectados finales. Por otro lado, la dependencia de esta densidad con
la eticidad €’ es igual en las dos redes, no existiendo ninguna influencia de este parimetro.

Pasando ahora a la fraccién de infectados médxima, la cual se aprecia en la Figura 8b, se obtiene un
comportamiento parecido, aunque ahora los valores se han reducido en comparacion con los resultados
de la red aleatoria. La densidad de infectados maxima ha disminuido en todo el rango de pardmetros
representado, por lo que, por ejemplo, no seria necesario que la eticidad del white worm fuese extrema-
damente baja para conseguir que la botnet no se hiciese muy grande en algin momento intermedio de la

evolucidn.

Con la red Internet AS graph, cuyos resultados se pueden observar en la Figura 9, se obtienen resultados
practicamente andlogos a los de la red BA, coincidiendo los valores de densidad de infectados, tanto
finales como maximos, en los dos rangos de pardmetros empleados. Por tanto, el andlisis que se puede
hacer es parecido para estas dos redes libres de escala. Como se puede ver, la leve disasortatividad que
tiene la red Internet AS graph no ha influido para nada en los resultados.
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Figura 9: Mapas de calor obtenidos con la red Internet AS graph para (a) la fraccién de infectados final
con Gillespie y para (b) la fraccién de infectados maxima con Gillespie. Las lineas representan una

fraccion de infectados constante.
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En conclusion, las propiedades topoldgicas que tienen las redes libres de escala frente a las aleatorias
posibilitan que la propagacién del virus por la red no sea tan extendida, permitiendo al white worm
proteger una gran cantidad de individuos sin que puede haber consecuencias fatales.

Como la mayoria de redes tecnoldgicas que existen actualmente son libres de escalas, muy parecidas
a las analizadas en este trabajo, se deduce que para proteger una red real en la que hubiese un virus
propagandose, podria usarse un white worm como el descrito. No serfa necesario que la eticidad de
este método estuviese muy comprometida, ya que podria hacerse un gusano muy ético pero con una
capacidad de propagacion por la red mucho mayor que el virus. Esto no es algo descabellado, ya que
se supone que el white worm se introduce en la red con la ayuda de los encargados de administrarla,
por lo que tienen un conocimiento mucho mayor de las propiedades de la red que los atacantes que han
introducido el virus.

5. Conclusiones

A lo largo de este trabajo se han estudiado distintos aspectos de las redes, asi como se ha presentado un
modelo totalmente original para el estudio de proteccién de redes frente a ciberataques.

En la Seccidn 2 se presentaron las caracteristicas mds importantes que ayudan a determinar una red
compleja. También se habl6 de diferentes modelos para producir redes sintéticas que comparten algunas
caracteristicas con las redes reales, como la distribucién de grado en el modelo Barabési-Albert, y que
permiten el estudio de ciertos comportamientos sin la necesidad de emplear redes reales, las cuales puede
ser que no estén disponibles por diversas razones.

Después, a lo largo de la Seccién 3 se presentaron las consideraciones principales que se realizan a
la hora de estudiar la propagacion de epidemias en poblaciones, debido a la estrecha relacion que hay
entre esto y la propagacion de virus informaticos por redes tecnoldgicas. También se hablé de algunas
aproximaciones que se hacen para poder resolver los modelos epidemiolégicos, tanto cuando se quiere
abordar el problema resolviendo las ecuaciones diferenciales que describen el modelo (aproximacion
DBMF), como cuando se quiere estudiar la evolucion directamente sobre una red compleja (algoritmo
de Gillespie).

Finalmente, en la Seccioén 4 se describié el modelo empleado para simular la evolucién de un virus
informatico por una red compleja cuando también hay presencia de un white worm que intenta acabar
con él. Se vieron los resultados sobre redes aleatorias y libres de escalas y se analizaron sus diferencias.
En concreto, se ha empleado una red real tecnoldgica que representa muy bien una situacion tipica en la
que se podria aplicar esta estrategia de seguridad.

Todos los programas desarrollados durante la realizacion de este trabajo para hacer las simulaciones, las
redes, etc. estan disponibles en [25].

La principal conclusién que se extrae del estudio realizado con el modelo mencionado es que, debido
a las propiedades que tienen las redes tecnoldgicas reales, que las hacen comportarse como redes libres
de escala, es posible el desarrollo de un modelo de defensa activa. Este modelo usaria un white worm
para proteger la red, sin que la eticidad se vea expuesta, algo muy importante debido a la gran cantidad
de datos que hay moviéndose por cualquier red de internet actualmente.
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Para concluir, seria interesante mencionar algin aspecto que ha quedado por estudiar sobre este modelo
y que podria servir como punto de partida para trabajos posteriores. El mds destacado es la inclusién de
redes multicapa en el modelo. Esto permitiria representar la red tecnolégica como una red de dos capas,
en la que cada una de ellas seria la red que es capaz de ver cada gusano, ya que no tendrian porqué
ver la misma red de interconexiones porque utilizan vulnerabilidades distintas de los dispositivos para
propagarse.
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