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Resumen

Las redes de comunicación se han convertido en una pieza fundamental de los sistemas modernos de
información. Sin embargo, esto ha hecho que los elementos de estas redes se conviertan en un objetivo
de ataque. Para protegerlos, en una primera clasificación, podemos distinguir entre modelos de defensa
pasivos, reactivos o activos. En estos últimos, tanto el atacante como el defensor pueden aprovechar
las propiedades topológicas de la red para realizar su misión. En este contexto, se ha propuesto crear
aplicaciones que utilicen las mismas técnicas que los gusanos emplean para propagarse a través de los
dispositivos pero, en lugar de atacar el dispositivo, estos programas reforzarı́an la seguridad del sistema.

Cada gusano (el del atacante y el del defensor) puede utilizar vulnerabilidades distintas de los disposi-
tivos y, por tanto, es posible que cada uno tenga caracterı́sticas de propagación diferentes. Se propone
explorar la dinámica de difusión de ambos gusanos y su interacción.
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1. Introducción

Las epidemias llevan siendo un tema de estudio durante ya mucho tiempo debido a la importancia que
pueden tener en las vidas de las personas. Al principio, debido a la limitación de los medios técnicos
de los que se disponı́an para investigar, solo se estudiaban mediante modelos de ecuaciones que se
intentaban resolver de forma analı́tica, para ver como influı́an los distintos parámetros en el desarrollo
de los virus.

Conforme fueron avanzando los medios, se buscaron nuevas formas de abordar estos temas. Uno de los
avances más importantes que se hicieron fue el uso de redes complejas a la hora de hacer simulaciones.
Como rápidamente se vio, el uso de redes conformaba un punto de inflexión en este campo ya que per-
mitı́a añadir muchos más grados de libertad a los modelos que hacı́an que los resultados que se obtenı́an
cambiasen radicalmente con respecto a los obtenidos mediante los modelos anteriores. El inconveniente
de estos avances era la necesidad de tener una ingente cantidad de datos reales para poder parametri-
zar los modelos. Pero los estudios no tardaron en realizarse debido al potencial que tenı́an estas nuevas
formas de trabajar.

A la vez que se desarrollaban estas técnicas, habı́a otro campo que empezaba a crecer a gran velocidad.
Este era internet, el cual comenzaba a conectar más y más ordenadores de todo el mundo mediante una
red. Esto propició la aparición de elementos malignos que viviesen en la red y se dedicasen a atacar
los ordenadores que estaban conectados. Estos elementos son, obviamente, los virus informáticos, los
cuales son programas informáticos que pueden “infectar” otros programas, modificándolos para incluir
una copia suya.

El hecho de que los virus informáticos “viviesen” en la red de ordenadores, infectando algunos de ellos
y propagándose por ella si habı́a conexiones entre los programas, hizo que se viese una clara analogı́a
con los modelos epidemiológicos que ya estaban muy estudiados. Por esta razón, se comenzaron a
usar las herramientas que se habı́an desarrollado, tomando como datos reales las redes de ordenadores
conectados que habı́a. Los resultados que obtuvieron fueron bastante sorprendentes, al encontrar com-
portamientos extraños de los virus, que en una red aleatoria como la que consideraban serı́a muy extraño
que ocurriesen. Como se acabó descubriendo posteriormente, esto era debido a que la topologı́a de las
redes que estudiaban no era como se imaginaban, si no que se trataban de redes libres de escala [1].

Como se vio rápidamente, los virus informáticos presentaban una clara amenaza, por lo que desde el
primer momento se empezaron a desarrollar herramientas para contrarrestarlos. Las primeras que apa-
recieron fueron de tipo reactivas, es decir, una vez que se detectaba que uno de los ordenadores de la
red habı́a sido infectado, se aplicaban técnicas para eliminar al virus y dejar protegido al ordenador. Sin
embargo, conforme la red de ordenadores conectados ha ido creciendo, este tipo de herramientas se han
quedado algo obsoletas, en el sentido de que no aprovechan la conectividad de la red, a diferencia de
los virus, los cuales van infectando ordenadores propagándose por ella. Esta es la razón por la cual el
campo de la ciberdefensa activa está ganando importancia. Esta se encarga de desarrollar técnicas que
sean capaces de proteger los ordenadores de amenazas aprovechándose de la conectividad de la red. De
esta forma, no habrı́a una asimetrı́a entre los atacantes y los defensores [2].

Una de las técnicas con las que se ha comenzado a experimentar es la inclusión en la red de white worms.
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Estos, al igual que los virus, se comportan como gusanos informáticos que viven en la red y se propagan
de la misma forma que ellos. Sin embargo, su fin último es muy distinto, ya que se encargan de eliminar
cualquier infección que pueda haber e intentan evitar cualquier otra posterior. Estos white worms están
aún en las fases tempranas de desarrollo y quedan muchos problemas por resolver, sobre todo de carácter
ético y legal. No obstante, se cree que pueden llegar a ser muy importantes para proteger en especial redes
de aparatos IoT, las cuales cada vez crecen más y suponen una amenaza importante de ciberseguridad.
Esto es debido a que este tipo de aparatos, por lo general, no tienen ni un hardware ni un software lo
suficientemente potentes como para protegerse de ataques informáticos, por lo que resulta muy fácil
infectarlos, provocando que se creen grandes redes de dispositivos infectados conectados a internet y
capaces de hacer ataques muy poderosos. Estas redes son conocidas como botnets. La introducción
en estas redes de un gusano que sea capaz de “curar” los dispositivos infectados y proteger al resto,
permitirı́a evitar muchos problemas relacionados con las botnets [3].

Ya ha habido alguna propuesta de white worm capaz de realizar una tarea parecida a la descrita en
el párrafo anterior, esta es AntibIoTic [4]. Más tarde se presentó la segunda versión de este gusano,
AntibIoTic 2.0 [5]. Con esta nueva versión, los creadores trataron de solventar todos los problemas
legales que tenı́a la primera versión, combinando el gusano con el nuevo paradigma fog computing de
IoT. Este nuevo modelo trata de mover servicios que recogen los datos producidos por dispositivos IoT
más cerca de estos, lo que reducirı́a el tráfico de datos en internet y mejorarı́a los servicios.

El objetivo del trabajo es desarrollar estrategias óptimas de defensa en función de las caracterı́sticas de
los gusanos y de la red de comunicación. Para ello, se estudiará la dinámica del sistema mediante un
modelo compartimental sobre una red compleja.

2. Teorı́a de redes

En esta sección se introducirán algunos de los aspectos más básicos en la ciencia de redes. Se empezará
dando un pequeño resumen de los aspectos matemáticos más esenciales a la hora de estudiar redes,
ası́ como de las propiedades que sirven para caracterizarlas. Después se hará énfasis en dos tipos de
distribuciones de grado concretas, las cuales serán esenciales en el transcurso de este trabajo, y, por
último, se verán los modelos de redes que se han empleado.

Esta introducción a redes no es completa, ya que para eso ya hay buenas referencias como [6], si no más
bien como una forma de establecer la terminologı́a que se usará a lo largo del trabajo.

2.1. Definiciones y propiedades topológicas

Las redes complejas son estudiadas matemáticamente gracias a la teorı́a de grafos, ya que, formalmente,
una red compleja puede ser representada mediante un grafo. Un grafo es una colección de nodos unidos
por enlaces (links) [6]. Un grafo no dirigido G = (N ,L) consiste en dos conjuntos N y L, tales que
N , ∅ y L es un conjunto de pares desordenados de elementos de N . Los elementos de N son los
nodos, mientras que los de L son los links. El número de elementos enN y en L se denotan por N y K,
respectivamente. Para identificar un grafo se usará la notación G = (N ,L), o, simplemente, G (N,K).
En un grafo dirigido la única diferencia es que los pares que constituyen L son ordenados, ya que, como
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Figura 1: Representación gráfica de (a) un grafo no dirigido y (b) un grafo dirigido. Ambos grafos
constan de N = 6 nodos y K = 12 enlaces. En el grafo dirigido los nodos vecinos son conectados
mediante flechas indicando el sentido de cada link.

se verá ahora, el sentido en el que va el enlace es importante.

La manera de referirse a un nodo suele ser mediante su orden i en el conjunto N . Después, en un grafo
no dirigido los links se definen como una pareja de nodos distintos i y j y se denotan por li j. Dos nodos
unidos por un enlace se dice que son vecinos. Por otro lado, en un grafo dirigido el orden de los nodos
que definen un enlace es importante: li j se refiere a un enlace que va desde el nodo i al j, y li j , l ji. Un
grafo se suele dibujar mediante un punto para cada nodo y uniendo dos puntos por una lı́nea si existe un
link entre los correspondientes nodos [7]. En la Figura 1 se observan ejemplos de un grafo no dirigido y
uno dirigido.

Hay ciertos casos donde puede haber más de un link entre los mismos nodos. La manera de referirse
a estos vértices es como multiedges. También puede ocurrir que haya algún nodo conectado consigo
mismo, lo que se conoce como self-loop. Notar que en ninguno de los grafos de la Figura 1 hay elementos
de este tipo, ya que, según la definición que se ha dado de grafo, estos no están permitidos. Los grafos
que contienen alguno de estos elementos se conocen como multigrafos [6]. En este trabajo el interés
reside en los grafos más que en los multigrafos, más concretamente en los no dirigidos, es decir, como
el que aparece en la Figura 1a. También existen grafos en los cuales cada enlace tiene un peso diferente,
usualmente un número real, son los que se conocen como grafos ponderados. De todas formas, para este
trabajo no se considerarán este tipo de grafos, si no que será como si todos los links tuvieran un peso
unitario.

Otro de los conceptos claves a la hora de caracterizar redes es la capacidad de conexión entre dos nodos
del grafo. De hecho, aunque dos nodos no sean vecinos, podrá ser accesible ir de uno a otro. De esta
forma se define el camino del nodo i al nodo j como la secuencia de nodos vecinos que empieza en i
y acaba en j. La longitud del camino se define como el número de enlaces en la secuencia. También
existen los paths, que son caminos en los que no se pasa por ningún nodo más de una vez. Se dice que
un grafo está conectado si para cada par de nodos distintos i y j hay, al menos, un path que los una. Si
esto no se cumple, el grafo estará desconectado [7].
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2.1.1. Matriz de adyacencia

La forma fundamental de representar matemáticamente una red es mediante la matriz de adyacencia.
Considerando que se tiene un grafo G = (N ,L), la matriz de adyacencia A se define como la matriz
cuadrada N × N cuyos elementos Ai j (i, j = 1, . . . ,N) cumplen

Ai j =

®
1 si el link li j existe,
0 de otra manera.

(1)

En el caso de las redes que interesan en el trabajo (no dirigidas, simples, no pesadas), la matriz de
adyacencia es simétrica, ya que si existe el link li j también existirá el l ji, y cero en la diagonal principal,
debido a que no tiene ni multiedges ni self-loops [6, 7]. Por tanto, considerando el grafo de la Figura 1a,
su matriz de adyacencia serı́a

A =



0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1
1 0 1 1 0 1
0 1 0 1 1 0


.

2.1.2. Grado y distribución de grado

En una red no dirigida G = (N ,L) el grado de un nodo es el número de vértices conectados a él. A pesar
de la simplicidad del concepto, es una de las herramientas más útiles y más usadas en redes. El grado de
un nodo i se denota por ki y se calcula en términos de la matriz de adyacencia como

ki =
∑
j∈N

Ai j. (2)

Cada vértice tiene dos finales y si hay K de ellos, en total habrá 2K finales de vértices. Pero el número
de finales coincide también con la suma de los grados de todos los nodos, ya que

2K =
∑

i, j∈N

Ai j =
∑
i∈N

ki. (3)

Existen redes las cuales todos sus nodos tienen el mismo grado. En teorı́a de grafos estas se conocen
como redes regulares [6].

La caracterización topológica más básica de una red se consigue gracias a su distribución de grado P (k).
Esta se define como la probabilidad de que al elegir un nodo de forma aleatoria, este tenga grado k o,
equivalentemente, la fracción de nodos en la red con grado k. Para obtener información sobre cómo se
distribuye el grado entre los nodos se calculan los momentos de la distribución. El momento n de P (k)
se define como 〈

kn〉 =
∑

k

knP (k). (4)

El primer momento 〈k〉 se corresponde con el grado medio de G [7].

En las redes no correlacionadas la distribución de grado caracteriza completamente las propiedades
estadı́sticas. Sin embargo, en las redes reales suele ocurrir que existen correlaciones en el sentido de que
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la probabilidad de que un nodo de grado k esté conectado a otro nodo de grado k′ depende de k. En estos
casos es necesario introducir la probabilidad condicionada P (k′ | k), que se define como la probabilidad
de que un link desde un nodo de grado k apunte a un nodo de grado k′. P (k′ | k) cumple la condición de
normalización

∑
k′ P (k′ | k) = 1 y la de equilibrio detallado kP (k′ | k) P (k) = k′P (k | k′) P (k′) [8].

En función de las correlaciones de grado que haya, se clasifica a las redes en dos grandes grupos, redes
asortativas y redes disortativas. Las primeras se corresponden con aquellas en las que los nodos de grado
alto tienden a conectarse con otros nodos de grado también alto. Por otro lado, en las disortativas los
nodos de grado alto tienden a conectarse con nodos de grado bajo. Una forma de medir la asortatividad
en una red es mediante el coeficiente de asortatividad r, que toma valores entre -1 y 1. Cuando r < 0 la
red es disortativa y cuando r > 0 es asortativa. En el caso r = 0 la red es no correlacionada [9].

En redes no correlacionadas, en las que P (k′ | k) no depende de k, las condiciones de normalización y
de balance detallado dan ∑

k

kP
(
k′ | k

)
P (k) =

∑
k

k′P
(
k | k′

)
P
(
k′
)
⇒

⇒ P
(
k′ | k

)∑
k

kP (k) = k′P
(
k′
)∑

k

P
(
k | k′

)
⇒

⇒ P
(
k′ | k

)
〈k〉 = k′P

(
k′
)
⇒ P

(
k′ | k

)
=

k′P (k′)
〈k〉

. (5)

2.2. Modelos de redes

En la actualidad, gracias a la abundancia de datos y medidas de redes reales, se ha descubierto la exis-
tencia de diferentes tipos de redes, caracterizadas por una gran variabilidad de sus métricas básicas y
propiedades estadı́sticas. Esto ha impulsado la investigación de diferentes modelos de generación de
redes. La utilidad de estos modelos es que sirven como generadores de redes sintéticas con caracterı́sti-
cas parecidas a las de las redes reales y en las que se puede estudiar el comportamiento de procesos
dinámicos.

El primer modelo que se propuso es la red aleatoria clásica de Erdös-Rényi [10]. Según este modelo, un
grafo G (N,K) es construido a partir de un conjunto de N nodos en el que cada uno de los N (N − 1) /2
posibles enlaces está presente con probabilidad p. La distribución de grado de esta red está dada por una
distribución binomial

P (k) =

Ç
N − 1

k

å
pk (1 − p)N−1−k ,

que en el lı́mite de grado medio constante (especı́ficamente p = 〈k〉 / (N − 1)) y N grande, tiende a una
distribución de Poisson

P (k) = e−〈k〉
〈k〉k

k!
. (6)

Por tanto, este modelo es adecuado en el caso de redes gobernadas únicamente por la estocástica, aun-
que G (N,K) tienda a un grafo regular para N grande y p constante. La distribución de grado alcanza su
máximo en torno al valor medio, denotando cierta homogeneidad estadı́stica en los nodos [9]. En cuanto
a las correlaciones de grado, para este modelo se encuentra que r = 0, por lo que se generan redes no
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correlacionadas [11]. En la Figura 2a se observa el grafo de una red aleatoria, donde se ve la homoge-
neidad en los nodos de la que se ha hablado. Por otro lado, en la Figura 2b se observa la distribución de
grado de otra red aleatoria, en la que se ve como se aproxima muy bien a una distribución de Poisson.

Sin embargo, la evidencia empı́rica ha demostrado que las redes reales no se comportan como redes
aleatorias, sino que estas exhiben altos niveles de heterogeneidad. Las distribuciones estadı́sticas que
caracterizan estas redes son generalmente desiguales y varı́an a lo largo de varios órdenes de magnitud.
Suele ser esclarecedor representar las distribuciones de grado de redes reales para sacar más conclusio-
nes. Esto es lo que hicieron en 1999 Barabási, Albert y Jeong cuando estudiaron la red WWW [12]. Lo
que encontraron es que la gran mayorı́a de los nodos tenı́an un grado bajo, pero la distribución tenı́a una
gran “cola” por la derecha, correspondiente con nodos de alto grado. A estos nodos tan bien conectados
se les llama hubs.

Lo interesante de todo esto es que, estudios posteriores han llegado a la conclusión de que la mayorı́a
de las redes reales tienen distribuciones de grado con una cola de hubs de alto grado como la descrita
hace un momento. En el lenguaje de la estadı́stica se conoce a este tipo de distribuciones por su término
en inglés heavy-tailed, y suelen aproximarse por un comportamiento de una ley potencial de la forma
P (k) ∼ k−α, lo que implica una probabilidad no despreciable de encontrar nodos con alto grado.

A pesar de la simplicidad de este tipo de distribuciones, las cantidades que las describen se comportan de
maneras sorprendentes [6]. Comenzando por la constante de normalización, tomando que se normaliza
a partir de cierto grado kmin > 0, esta es

C =
1∑∞

k=kmin
k−α

=
1

ζ (α, kmin)
,

donde ζ (α, kmin) es la función zeta generalizada. Ası́, la distribución completa es P (k) = Ck−α. Si
se considera que en la cola la suma sobre k se aproxima bien con una integral, la constante queda
C ' (α − 1) kα−1

min .

Pasando ahora a los momentos de la distribución, usando la expresión (4) y separando la suma en dos
partes, la del principio de la distribución y la de la cola (donde sigue una ley potencial), el momento n
queda 〈

kn〉 =

kmin−1∑
k=0

knP (k) + C
∞∑

k=kmin

kn−α.

Al igual que para la constante de normalización, si se considera que para la cola, la suma se puede
aproximar por una integral el momento queda

〈
kn〉 ' kmin−1∑

k=0

knP (k) +
C

n − α + 1
[
kn−α+1]∞

k=kmin
.

El primer término es un número finito cuyo valor depende de la forma particular de la distribución no
potencial para pequeños k. El segundo término depende de los valores de n y α. Si n − α + 1 < 0 la
integral tiene un valor finito, pero si n − α + 1 ≥ 0 la integral divergirá y con ella el momento 〈kn〉. Por
tanto, el momento n de la distribución será finito solo si α > n + 1.

De especial interés es el segundo momento, el cual será finito si α > 3. Lo que se encuentra es que, para
muchas redes reales con leyes potenciales, el coeficiente α toma valores en el rango 2 ≤ α ≤ 3, por lo que
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Figura 2: Diferentes ejemplos de modelos de redes. En (a) se representa el grafo y en (b) la distribución
de grado para redes aleatorias. El grafo está construido a partir de una red con N = 50 nodos y una
probabilidad de conexión p = 0.2, mientras que la distribución de grado se ha hecho a partir de una red
con N = 10000 nodos y una probabilidad p = 0.02. Después, en (c) se representa el grafo y en (d) la
distribución de grado de dos redes libres de escala. Estas redes han sido generadas gracias al modelo
Barabási-Albert, tomando para el grafo los parámetros m0 = 5, m = 3 y T = 45 y para la distribución de
grado, m0 = 20, m = 4 y T = 9980. En ambos grafos el tamaño de los nodos es proporcional a su grado.
Las distribuciones de grado también se representan junto a sus curvas teóricas.
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el segundo momento de estas redes tendrı́a que divergir. En estos casos, las redes se denominan como
libres de escala. Obviamente, los momentos solo divergirán cuando se esté en el lı́mite de una red de
tamaño infinito (N → ∞). Para redes reales, debido al tamaño finito y a otras restricciones, los momentos
no se harán infinitos, aunque sı́ que tendrán valores sorprendentemente grandes en comparación con el
grado medio, reflejando las enormes fluctuaciones en la conectividad de los nodos [9].

Para crear este tipos de redes se han considerado diferentes paradigmas y modelos. Aquı́ se presenta el
modelo Barabási-Albert (BA) [13], el cual es un modelo de red en crecimiento que considera que los
nuevos nodos se conectarán a los nodos que ya estaban mediante una regla de conexión preferencial.
En concreto, se considera que esta regla está basada en el grado de cada nodo, es decir, la probabilidad
de añadir un enlace al nodo i es una función F (ki) de su grado. En su versión más simple el modelo
funciona de la siguiente manera: (i) Se comienza con una pequeña red aleatoria de m0 nodos, y a cada
paso de tiempo se va añadiendo un nodo con m (m < m0) links, que son conectados a los nodos antiguos
de la red. (ii) Los nuevos enlaces se conectan al nodo i con una probabilidad F (ki) = ki/

∑
j k j [9].

La distribución de grado que genera este modelo es

P (k) =
2m (m + 1)

k (k + 1) (k + 2)
, (7)

que en el lı́mite de k grande cumple P (k) ∼ k−3, por lo que se genera una red libre de escala con
exponente α = 3 [14]. Otra caracterı́stica interesante es que para las redes que se generan con este
modelo r = 0, es decir, son redes no correlacionadas [11]. En la Figura 2c se observa el grafo de una red
libre de escala, donde se puede ver la heterogeneidad en el grado de cada nodo. Después, en la Figura
2d se representa la distribución de grado de otra red libre de escala, se ve como sigue una ley potencial,
sobretodo para los grados más pequeños. Después, cuando ya crece el grado, debido a los efectos finitos
el comportamiento se aleja del predicho.

Otro aspecto que no se ha tenido en cuenta sobre las redes es su carácter temporal. Hasta ahora se
ha considerado que la topologı́a de las redes era estática, ya que los conjuntos de nodos y links no
cambiaban con el tiempo. Sin embargo, hay muchas redes reales que están lejos de ser estáticas. En
algunas de estas redes, como la de Internet, la escala de tiempos caracterı́stica a la que cambia la red
es bastante pequeña. Es por esto, que en los casos donde las propiedades de los procesos dinámicos
cambien mucho más rápido que la red, será una buena aproximación tomar redes estáticas [15]. Debido
al ámbito que interesa para este trabajo, es decir, dispositivos conectados a internet que sufren ataques
informáticos, tomar la aproximación anterior y usar redes estáticas es correcto.

Para finalizar esta sección se va a considerar una red real y se van a estudiar sus caracterı́sticas. En
concreto se considera la red Internet AS graph (2006) [16], la cual representa la estructura de internet
al nivel de sistemas autónomos. Es una red de N = 22963 nodos y K = 48436 links. En la Figura 3
se observa su distribución de grado que, como se puede ver, sigue una ley potencial como la descrita.
Comparándola con la distribución de la Figura 2d, para grados pequeños se comporta bastante bien, pero
para grados grandes se desvı́a más, de igual forma que la otra. Se obtiene que el coeficiente de la ley
potencial está en torno a α ' 2.3, por lo que es una red libre de escala.

En cuanto a los momentos de la distribución, se obtienen 〈k〉 = 4.22 y
〈
k2
〉
' 1100. Es decir, se ve

como el segundo momento se hace muy grande, en comparación con el grado medio, por lo que cumple
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Figura 3: Distribución de grado de la red Internet AS graph (2006).

lo predicho para redes libre de escala. El coeficiente de asortatividad para esta red es r = −0.2, es decir,
es una red ligeramente disortativa.

Debido a que esta red cumple las caracterı́sticas descritas para una red real como las que interesan en
este trabajo, será la que se use más adelante para realizar simulaciones y sacar resultados.

3. Procesos de propagación

El estudio de procesos de difusión lleva siendo un tema de gran interés desde hace tiempo. Esto se debe
a la gran utilidad que tiene conocer cómo estos procesos se dan. Una de las aplicaciones más extendidas
es la del estudio de difusión de epidemias. Gracias a los resultados que aportan estos estudios se pueden
desarrollar estrategias para controlar y erradicar enfermedades. Pero no solo se puede modelar la difusión
de enfermedades, sino que cualquier sistema que pueda verse como un proceso de contagio, también.

En esta sección se verán algunos de los modelos más básicos usados para modelar la difusión de en-
fermedades; después se estudiarán algunas aproximaciones que se pueden realizar a la hora de intentar
abordar el problema de resolver este tipo de modelos; y, por último, se verá como se puede llevar todo
esto a redes para ver como influye la topologı́a de estas a los procesos de difusión.

3.1. Modelos de difusión de enfermedades

La asunción más básica realizada a la hora de modelar epidemias es la de considerar que la población
se puede dividir en diferentes clases o compartimentos dependiendo del estado de la enfermedad. Esto
es lo que se conoce como modelo compartimental [17]. En el caso más simple solo se consideran dos
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estados: susceptible (S ) e infectado (I). Los individuos en el estado susceptible son aquellos que no
tienen la enfermedad pero si tienen contacto con alguien que sı́ la tenga, pueden infectarse. Por otro
lado, los individuos del estado infectado son aquellos que tienen la enfermedad y pueden infectar a otros
que no la tengan. A partir de aquı́ se pueden seguir añadiendo compartimentos para tener en cuenta más
estados que pueda tener una enfermedad. Por ejemplo, suele ser útil el estado recuperado (R), donde
estarı́an los individuos que ya han pasado la enfermedad y no pueden volver a contagiarse porque se han
inmunizado [9].

El objetivo de estos modelos es conocer cómo evoluciona el número de individuos en cada estado a
lo largo del tiempo. Para ello se tienen que definir los procesos básicos que tienen lugar al nivel de
individuos y que gobiernan las transiciones de un estado a otro. Estos se caracterizan gracias a ciertos
parámetros que describirı́an las probabilidades de que un individuo cambie de compartimento. Para
obtener el valor de estos parámetros se recurre a métodos completamente experimentales.

El primer modelo compartimental que se considera es el SIS. Este consta de dos estados y solo puede
haber dos transiciones

S + I
β
−→ 2I,

I
µ
−→ S .

La primera describe el proceso de contagio y ocurre cuando un individuo infectado tiene contacto con
uno susceptible. Está caracterizada por el parámetro β, que describe el ritmo de transmisión de la en-
fermedad. La segunda da cuenta de las recuperaciones de los individuos infectados, volviendo al estado
susceptible, ya que pasar la enfermedad no otorga inmunidad. Esta está caracterizada por el parámetro
µ, que representa el ritmo de recuperación. Como es obvio, la naturaleza de estos procesos es com-
pletamente distinta, ya que las recuperaciones ocurren de manera espontánea al cabo de cierto tiempo,
mientras que los procesos de contagio dependen de los patrones de interacción entre individuos [6].

Otro modelo interesante es el SIR. Este consta de tres estados y la diferencia con el SIS es que los indi-
viduos que se recuperan de la enfermedad pasan al estado recuperado, ya que han adquirido inmunidad
contra ella. De esta forma, las transiciones que puede haber son

S + I
β
−→ 2I,

I
µ
−→ R.

Claramente, en este modelo la evolución no es infinita, sino que esta para en el momento en el que ya no
hay individuos infectados. Esto quiere decir que todos los individuos están bien en el estado susceptible
o bien en el protegido. A este tipo de estados se les conoce como estados absorbentes, ya que, cuando
acaba la evolución, todos los nodos están en alguno de estos estados. Por el contrario, en el modelo
SIS los individuos pueden infectarse una y otra vez, experimentando un ciclo S → I → S , que bajo
ciertas condiciones se puede mantener para siempre, llegando a un estado estacionario en el que haya
individuos infectados, conocido como estado endémico [9].

Existen muchos otros modelos compartimentales más complejos (ver Figura 4), pero para el interés
de esta sección, con estos es suficiente. A partir de aquı́, en lo que queda de sección se considerará el
modelo SIS a la hora de hablar de los siguientes temas.
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Figura 4: Representación con diagramas de flujo de diferentes modelos compartimentales usados en
modelización de epidemias. Cada caja representa un compartimento, mientras que las flechas represen-
tan transiciones entre compartimentos, ocurriendo aleatoriamente de acuerdo a sus respectivos ritmos.
El nuevo estado que aparece es latente (E), el cual representa a los individuos que están infectados y
pueden contagiar, pero aún no tienen sı́ntomas.

3.2. Aproximación homogeneous mixing

Los modelos descritos hasta ahora están basados en las propiedades de la enfermedad y de los individuos
(para la recuperación), pero no se ha tenido en cuenta en ningún momento un elemento crucial en la
difusión de enfermedades, la red de contactos.

La primera hipótesis clásica que se realiza sobre la red de contactos cuando se quiere estudiar la evolu-
ción de una enfermedad es la de homogeneous mixing [18, 19], también conocida como aproximación de
campo medio, debido a las similitudes que tiene con este tipo de aproximaciones de la fı́sica estadı́stica.
Bajo este enfoque, se considera que la población está completamente mezclada y se asume que cada
individuo tiene la misma probabilidad por unidad de tiempo de contactar con cualquier otro individuo.
Esto, obviamente, no es una buena representación de cómo es el mundo en realidad, aun ası́, un estudio
de los acercamientos clásicos resulta útil a la hora de estudiar la epidemiologı́a en redes.

La gran ventaja que presenta esta aproximación es que permite escribir el modelo en la forma de un
sistema de ecuaciones diferenciales ordinarias de las densidades de los individuos en cada estado. Este
sistema puede ser resuelto mediante cualquier método de resolución numérica de ecuaciones diferencia-
les (como Runge-Kutta) y ası́ obtener la evolución de la enfermedad a lo largo del tiempo. En teorı́a,
como el proceso de difusión es completamente aleatorio, la evolución no está determinada unı́vocamen-
te, ya que si la enfermedad volviese a propagarse por la misma población más de una vez, incluso bajo
las mismas condiciones, cada vez se obtendrı́a una evolución distinta. Sin embargo, resolviendo este
sistema se alcanzarı́a siempre el mismo resultado. Esto se puede entender como que los resultados obte-
nidos con el sistema de ecuaciones son los que se obtendrı́an al hacer el promedio de muchas evoluciones
bajo las mismas condiciones y son resultados completamente deterministas.

Se describe ahora como serı́a el modelo SIS bajo esta aproximación. Se supone que S (t) es el número de
individuos en el estado susceptible a tiempo t e I (t) son los que están infectados. El número de infectados
crece cuando los individuos susceptibles contraen la enfermedad de los infectados. Como este proceso
está caracterizado por el ritmo de transición β, esto quiere decir que cada individuo infectado tiene, en
promedio, 〈k〉 β contactos por unidad de tiempo con el resto de individuos de forma aleatoria, donde 〈k〉
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es el número medio de contactos dentro de la red, i.e. el grado medio. Si la población total está formada
por N individuos, la probabilidad de contactar con un susceptible es S/N, por lo que un infectado tiene
de media 〈k〉 βS/N contactos con susceptibles por unidad de tiempo. Como hay I infectados en total, el
ritmo global de nuevas infecciones será 〈k〉 βS I/N. Por otro lado, como los infectados se recuperan a un
ritmo µ, el ritmo de recuperaciones será µI [6].

Según lo explicado en el párrafo anterior, el sistema de ecuaciones que permite simular el modelo es el
siguiente [9]

dS
dt

= − 〈k〉 β
S I
N

+ µI, (8a)

dI
dt

= 〈k〉 β
S I
N
− µI. (8b)

Si ahora se definen las densidades de cada estado como ρα = Nα/N, siendo Nα el número de individuos
en el estado α, el sistema de ecuaciones (8) queda

dρS

dt
= − 〈k〉 βρS ρI + µρI , (9a)

dρI

dt
= 〈k〉 βρS ρI − µρI , (9b)

con ρS +ρI = 1, por lo que una de las dos ecuaciones es redundante y con una es suficiente para describir
el modelo.

3.3. Aproximación DBMF

Como ya se ha dicho, la aproximación homogeneous mixing no es del todo realista ya que no tiene
en cuenta los diferentes patrones de contacto que puede haber en una red real. Pensar que todos los
individuos tienen aproximadamente el mismo número de contactos y que pueden ser con cualquier otro
individuo de forma aleatoria choca con la realidad. En la vida real cada individuo tendrı́a su propio patrón
de contacto social, por lo que resulta razonable pensar que estos diferentes patrones de contacto podrı́an
representarse mediante una red compleja. Hay diferentes formas de introducir este aspecto dentro de un
modelo. En concreto, en esta sección se describirá la aproximación degree-based mean field (DBMF)
[20].

Bajo esta hipótesis de campo medio se supone que todos los nodos con el mismo grado k se comportan
estadı́sticamente igual. Esta asunción implica que ya no es necesario considerar el estado especı́fico de
cada nodo, si no que las cantidades relevantes son las densidades ραk (t) = Nα

k (t) /Nk, que representan
la densidad de nodos con grado k en el estado α (Nα

k es el número de individuos con grado k en el
estado α, y Nk es la cantidad de nodos con grado k). La asunción también implica que cualquier nodo de
grado k está conectado con la misma probabilidad P (k′ | k) a un nodo de grado k′. Esta aproximación es
conveniente ya que reduce el número de grados de libertad del sistema enormemente.

En la teorı́a DBMF, las densidades ραk se pueden ver como la probabilidad de que un individuo de
la población con grado k esté en el compartimento α. Aunque estas variables no son independientes,
satisfacen la condición de normalización

∑
α ρ

α
k = 1. Después, la fracción total de individuos en el

estado α se calcula como ρα =
∑

k P (k) ραk .
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Esta teorı́a contiene, implı́citamente, otra aproximación, ya que la equivalencia entre los nodos de un
mismo grado considera la red en una perspectiva de campo medio en la que la matriz de adyacencia A
se rompe completamente y solo se mantienen la distribución de grado y las correlaciones entre nodos
de distinto grado. Esto es equivalente a pensar que la escala de tiempos de los procesos de difusión
es mucho más lenta que la que caracteriza los cambios de los patrones de interacción en la red. Es
como si la red estuviese constantemente reconectándose, pero preservando P (k) y P (k′ | k). Aunque la
teorı́a DBMF es obviamente una aproximación muy grande, es capaz de capturar el comportamiento de
epidemias y de procesos dinámicos complejos [9].

Considerando el modelo SIS, las ecuaciones que gobiernan la evolución del sistema se pueden obtener
siguiendo un razonamiento similar al hecho para el sistema de ecuaciones (8). El ritmo de recuperaciones
tendrá una forma similar, pero ahora solo se contará la densidad de infectados con grado k, por lo que
queda µρI

k. En cuanto al ritmo de contagios, para un cierto grado k el número de contactos que realiza
por unidad de tiempo es kβ. La probabilidad de que un nodo de grado k sea susceptible es ρS

k , por lo que
un infectado tiene de media kβρS

k contactos con susceptibles. Ahora, teniendo en cuenta la probabilidad
de que el nodo esté conectado a otro de grado k′ y este esté infectado: P (k′ | k) ρI

k′ , el ritmo de contagios
quedarı́a kβρS

k P (k′ | k) ρI
k′ . Este factor se debe sumar a todos los posibles valores de k′. Ası́, según lo

explicado, el sistema queda

dρS
k

dt
= −kβρS

k

∑
k′

P
(
k′ | k

)
ρI

k′ + µρI
k, (10a)

dρI
k

dt
= kβρS

k

∑
k′

P
(
k′ | k

)
ρI

k′ − µρ
I
k, (10b)

donde se cumple que ρS
k + ρI

k = 1, por lo que con una de las ecuaciones es suficiente. Estas expresiones
constituyen un sistema de dos ecuaciones para cada grado k, por lo que serı́a necesario resolverlo para
cada uno de los grados simultáneamente para ası́ obtener el resultado global. En el caso de tener un red
no correlacionada, se cumple la ecuación (5) y el sistema queda

dρS
k

dt
= −kβρS

k Θ + µρI
k, (11a)

dρI
k

dt
= kβρS

k Θ − µρI
k, (11b)

donde
Θ =
∑

k′

k′P (k′)
〈k〉

ρI
k′ , (12)

que serı́a la probabilidad de encontrar un nodo infectado tomando un vértice de forma aleatoria [9].

3.4. Propagación en redes: Gillespie

Hasta ahora se han empleado diferentes aproximaciones que permitı́an resolver estos modelos de forma
completamente determinista. Sin embargo, este tipo de procesos son totalmente estocásticos, ya que los
parámetros de los que dependen las transiciones son probabilidades. Para realizar estas simulaciones
estocásticas se empleará el método de Monte Carlo y se controlará el estado de cada nodo, viendo todos
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Figura 5: Esquemas de (a) el algoritmo de Gillespie y (b) la actualización sı́ncrona en redes. Las marcas
verticales en el eje del tiempo indican los momentos en los que se producen transiciones. En la actuali-
zación sı́ncrona estos momentos ocurren cada un tiempo fijo ∆t, mientras que en Gillespie el intervalo
es una variable aleatoria τ. Los cı́rculos verdes y rojos representan nodos de la red en los estados suscep-
tible e infectado, respectivamente. Un cuadrado alrededor de un cı́rculo indica que ha sido seleccionado
para actualizarse en ese intervalo y podrı́a cambiar su estado. En el algoritmo de Gillespie solo se elige
un nodo y siempre cambia su estado. En la actualización sı́ncrona todos los nodos tienen la opción de
cambiar su estado, pero lo harán o no con una probabilidad que depende de su estado y del estado de sus
vecinos. Imagen extraı́da de [23].

los posibles eventos que pueden ocurrir y la probabilidad con la que podrı́a ocurrir cada uno. En la Figura
5 se pueden ver los esquemas de los dos métodos que se van a comentar a continuación.

Una primera forma de llevar a cabo este tipo de simulaciones es mediante la aproximación de tiempo
discreto. En esta aproximación se divide el tiempo en pequeños intervalos ∆t y en cada uno de ellos se
calcula la probabilidad de que un nodo cambie su estado en el siguiente intervalo. Entonces, generando
números aleatorios se puede escoger qué cambios son los que se producirán sı́ncronamente y después
pasar al siguiente intervalo. Una importante limitación que tiene este método es que, si los intervalos
son muy largos, puede ocurrir que en un mismo intervalo ocurran varios eventos que podrı́an afectarse
mutuamente. Por ejemplo, un nodo podrı́a recuperarse y transmitir en el mismo intervalo, pero no se
sabrı́a qué ocurre antes. Esto podrı́a arreglarse cogiendo intervalos muy pequeños, pero esto harı́a que la
simulación fuese muy lenta [21].

Existen enfoques alternativos, como la aproximación de tiempo continuo. En este tipo de aproximacio-
nes el estado de los nodos se actualiza de forma ası́ncrona, es decir, en cada intervalo de tiempo solo
cambia el estado de un nodo. En concreto, en este trabajo se presenta el algoritmo de Gillespie [22].
Inicialmente, este método fue propuesto para hacer simulaciones estocásticas de reacciones quı́micas,
pero posteriormente, debido al amplio rango de aplicabilidad que tenı́a, se empezó a usar para hacer
simulaciones epidemiológicas en redes. En una simulación de Gillespie se calcula el tiempo que pasará
hasta que ocurra el siguiente evento, sabiendo el ritmo combinado de todos los posibles eventos que
podrı́an ocurrir en ese momento. El tiempo se escoge aleatoriamente de una distribución exponencial
con ese ritmo. Después, usando otro número aleatorio se determina cuál de los posibles eventos es el
que ocurre. Esto da una simulación estocástica exacta.
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Según este método, dado el estado de la red, se pueden calcular las distribuciones de probabilidad que
gobiernan tanto la longitud del intervalo hasta el próximo suceso como la decisión de qué nodo es el
que se actualiza, gracias a los ritmos de transición individuales de cada nodo ηi (t). Por ejemplo, para el
modelo SIS estos ritmos de transición serı́an ηS

i (t) = kin fβ, donde kin f es el número de nodos vecinos
infectados, para los nodos susceptibles, y ηI

i (t) = µ para los nodos infectados. Ası́, si r es un número
aleatorio uniforme en el intervalo [0, 1) y se define el ritmo total de transición ω (t) =

∑
i ηi (t), el tiempo

que pasa hasta el siguiente suceso es

τ =
1
ω

ln
Å

1
r

ã
. (13)

Después, para elegir la transición que va a ocurrir se usa otro número aleatorio uniforme u ∈ [0, 1) y se
ve para qué nodo se cumple la condición

k−1∑
j=1

η j

ω
< u <

k∑
j=1

η j

ω
(k = 1, . . . ,N) , (14)

donde N es el número de nodos en la red. Ası́, el nodo k será el elegido para cambiar su estado en ese
intervalo de tiempo. Este proceso se repetirá hasta que la población alcance un estado estacionario, bien
porque todos los individuos han ido a un estado absorbente, como el estado recuperado del modelo SIR,
o porque se ha llegado a un estado endémico [24].

4. Propagación de virus informáticos

Como ya se ha dicho anteriormente, todo lo explicado anteriormente tiene un rango de aplicabilidad muy
amplio, y no se restringe únicamente al estudio de epidemias. Hay otros campos donde se usan métodos
similares, como por ejemplo en biologı́a, donde se usan redes biomecánicas para intentar entender los
complejos procesos quı́micos que tienen lugar en las células e incluso descubrir nuevas terapias para
tratar enfermedades. También se usan estos métodos para estudiar internet y ası́ entender mejor cómo
fluyen los datos por él o cómo se podrı́a cambiar la red para que funcione mejor. Por nombrar un ejemplo
más, también se estudian las redes de contactos sociales para comprender la naturaleza de las interaccio-
nes sociales y sus implicaciones en el comercio, la estructura de la sociedad, la difusión de información,
etc [6].

En esta sección, en concreto, se estudiará un modelo completamente original que sirve para estudiar
cómo se extienden un virus informático y un “antivirus” por una red tecnológica, como podrı́a ser la
red de internet. Se comenzará explicando el modelo y planteando las reacciones por las que se rige, y,
finalmente, se pasará a ver como se comporta el modelo en diferentes tipos de redes.

4.1. Modelo

El modelo se basa en algunos trabajos hechos sobre ciberdefensa activa, donde se introduce en una red en
la que se está propagando un virus informático, un white worm que irá protegiendo los dispositivos frente
al virus [2], tal como ya se comentó en la introducción. En particular, para este modelo se considerará
que tanto el virus como el white worm ven la misma red, por lo que, en principio, ninguno jugarı́a con
ventaja respecto al otro.
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Figura 6: Representación del diagrama de flujo del modelo usado para simular la difusión de un virus
informático y un white worm por una red tecnológica.

Las formas que tienen de trabajar los dos gusanos son sencillas. El virus se va propagando por la red
a la vez que va intentando infectar al mayor número posible de dispositivos y ası́ crear la botnet más
grande posible. Una vez que el virus infecta un nodo, este puede infectar a todos los nodos con los que
tiene contacto que no estén infectados aún. En contraposición, el white worm también se va propagan-
do por la red y va “infectando” los dispositivos con un antivirus que arreglará las vulnerabilidades que
pueda tener. Una vez que el antivirus está en un dispositivo, no actúa directamente, sino que espera un
tiempo prudencial, avisando al usuario de que tiene que arreglar algo en su ordenador para protegerlo,
por ejemplo. En función de cuánto tiempo pase en el dispositivo sin actuar, se dirá que el white worm
es más o menos ético, ya que, a más tiempo sin actuar, más tiempo deja al usuario para arreglar el pro-
blema él mismo y no obliga al gusano a hacer modificaciones en el sistema para arreglarlo, y viceversa.
Además, durante este periodo el white worm tampoco puede infectar a otros dispositivos. Una vez que
el dispositivo queda protegido y ya se ha eliminado al virus, si lo hubiese, el white worm desaparece del
sistema.

Se comienza describiendo el modelo compartimental. Este consta de 7 estados y 17 transiciones, cada
una de ellas caracterizada por su respectivo ritmo de transición. Los estados son los siguientes:

Vulnerable (V): los individuos en este estado son aquellos que no están infectados por ninguno de
los dos gusanos, pero si tienen contacto con algún individuo que sı́ lo esté, pueden infectarse.

Infectado negro (B): estos son los individuos que están infectados por el virus informático y pue-
den contagiar a otros que no lo tengan.

Latente (L): estos individuos están infectados por el white worm, pero este aún no ha comenzado
a actuar y está esperando a que el usuario arregle el problema él mismo. Los dispositivos en este
estado no pueden infectar otros dispositivos que aún no tengan el white worm.

Infectado blanco (W): cuando un individuo está infectado por el white worm y este está tratando
de proteger el dispositivo, está en este estado. Los dispositivos en este estado sı́ pueden infectar
otros dispositivos que aún no tengan el white worm.
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Infectado negro-latente (LB): estos son los individuos que han sido infectados por los dos gusanos,
pero el white worm aún no ha comenzado actuar. Serı́a una mezcla de los estados B y L, por lo
que el white worm no podrı́a infectar otros individuos pero el virus sı́.

Infectado negro-blanco (WB): los individuos en este estado están infectados por los dos gusanos
y el white worm está tratando de eliminar al virus del sistema para dejarlo protegido. Serı́a una
mezcla de los estados B y W, por lo que tanto el white worm como el virus pueden infectar otros
individuos.

Protegido (P): estos son los individuos que ya no tienen ninguna vulnerabilidad en su sistema por
lo que no tienen ninguno de los dos gusanos y no pueden ser infectados por ninguno de ellos.

Por otro lado, las transiciones que pueden ocurrir son

V + B
βb
−−→ 2B,

V + LB
βb
−−→ B + LB,

V + WB
βb
−−→ B + WB,

L + B
βb
−−→ LB + B,

L + LB
βb
−−→ 2LB,

L + WB
βb
−−→ LB + WB,

W + B
βb
−−→ WB + B,

W + LB
βb
−−→ WB + LB,

W + WB
βb
−−→ 2WB,

V + W
βw
−−→ L + W,

V + WB
βw
−−→ L + WB,

B + W
βw
−−→ LB + W,

B + WB
βw
−−→ LB + WB,

L
ε
−→ W,

LB
ε
−→ WB,

W
µw
−−→ P,

WB
µw
−−→ P.

Las nueve primeras se corresponden con la infección de un nodo por el virus informático. Como es
obvio, solo pueden infectarse los nodos en los estados V , L y W, que son los que aún no lo tienen,
y solo pueden infectar los nodos en los estados B, LB y WB, es decir, los que están infectados. Estas
transiciones están controladas por el parámetro βb, que es el ritmo de transmisión del virus. Después, las
cuatro siguientes se corresponden con los procesos de contagio del white worm. Los únicos nodos que
se podrán infectar son los que estén en los estados V y B, mientras que los que podrán infectar son los
que estén en los estados W y WB. El parámetro de control en estas transiciones es βw, que es el ritmo
de transmisión del white worm. Las dos siguientes transiciones dan cuenta de los cambios entre que el
white worm no actúe y se ponga a actuar. Solo se pueden dar desde estados en los que el white worm
está latente en el individuo, es decir, L y LB. Están caracterizadas por el parámetro ε, que medirı́a la
eticidad del white worm, de forma que cuanto más valga, menos ético será. Las dos últimas transiciones
representan las protecciones de individuos debidas a la acción del white worm. Solo se pueden dar desde
estados donde el white worm está de forma activa en el individuo, es decir, W y WB. Las controla el
parámetro µw, que serı́a el ritmo de protección del white worm.

En la Figura 6 se puede ver el diagrama de flujo del modelo, con los diferentes estados y las transiciones
entre estados que puede haber. Cabe destacar que teóricamente tendrı́a que existir una transición más
desde cada estado al estado protegido. Estas transiciones representarı́an la posibilidad de que un sistema
arregla sus vulnerabilidades mediante una actualización de software, por ejemplo, y estarı́an caracteri-
zadas por un parámetro µu. Sin embargo, se asume que la probabilidad de que ocurra algo ası́ es muy
pequeña, es decir, µu � 1, por lo que estas transiciones son despreciadas desde el principio y no apa-
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recen en ningún sitio. Otro aspecto interesante del modelo es que, debido a cómo son los estados y las
transiciones que puede haber, existen tres estados absorbentes: V , B y P, por lo que cuando el sistema
evolucione hasta un estado estacionario, solo se espera ver nodos en estos estados.

Por otro lado, siguiendo un procedimiento análogo al hecho para el modelo SIS en la Sección 3.3, se
puede llegar al sistema de ecuaciones que gobierna la evolución del modelo en la aproximación DBMF
para el caso no correlacionado

dρV
k

dt
= −βbkρV

k Θb − βwkρV
k Θw, (15a)

dρB
k

dt
= βbkρV

k Θb − βwkρB
k Θw, (15b)

dρL
k

dt
= βwkρV

k Θw − βbkρL
k Θb − ερ

L
k , (15c)

dρLB
k

dt
= βwkρB

k Θw + βbkρL
k Θb − ερ

LB
k , (15d)

dρWB
k

dt
= ερLB

k + βbkρW
k Θb − µwρ

WB
k , (15e)

dρW
k

dt
= ερL

k − βbkρW
k Θb − µwρ

W
k , (15f)

dρP
k

dt
= µwρ

W
k + µwρ

WB
k , (15g)

donde
Θw =

∑
k′

k′P (k′)
〈k〉

(
ρW

k′ + ρWB
k′
)

y Θb =
∑

k′

k′P (k′)
〈k〉

(
ρB

k′ + ρLB
k′ + ρWB

k′
)
, (16)

que son las probabilidades de encontrar un nodo infectado por el white worm o por el virus tomando
un vértice aleatorio, respectivamente. El sistema se puede adimensionalizar definiendo las cantidades
τ = µwt, λw = βw/µw, λb = βb/µw y ε′ = ε/µw. Ası́ queda

dρV
k

dτ
= −λbkρV

k Θb − λwkρV
k Θw, (17a)

dρB
k

dτ
= λbkρV

k Θb − λwkρB
k Θw, (17b)

dρL
k

dτ
= λwkρV

k Θw − λbkρL
k Θb − ε

′ρL
k , (17c)

dρLB
k

dτ
= λwkρB

k Θw + λbkρL
k Θb − ε

′ρLB
k , (17d)

dρWB
k

dτ
= ε′ρLB

k + λbkρW
k Θb − ρ

WB
k , (17e)

dρW
k

dτ
= ε′ρL

k − λbkρW
k Θb − ρ

W
k , (17f)

dρP
k

dτ
= ρW

k + ρWB
k . (17g)

Esto deja el sistema en función de solo tres parámetros y permite estudiarlo según el valor del cociente
λw/λb, de forma que si es mayor que uno el white worm se propaga más fácilmente que el virus y si es
menor al revés, y según el valor de ε′, es decir, la eticidad del white worm.
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4.2. Redes aleatorias

Ahora que ya se ha introducido el modelo y se han explicado todas las caracterı́sticas necesarias so-
bre él, se pasa a ver cómo se comporta en diferentes tipos de redes. En esta sección se estudiará su
comportamiento en redes aleatorias de Erdös-Rényi.

Los resultados que se sacarán son dos mapas de calor en función de las cantidades mencionadas en
la sección anterior, uno de ellos representará la fracción total de infectados por el virus en el estado
estacionario y el otro representará igualmente la fracción de infectados por el virus, pero será el valor
máximo que ha alcanzado a lo largo de la evolución. El interés de este segundo mapa es debido a que
es importante saber si en el algún momento de la evolución se ha creado una botnet tan grande que
era capaz de realizar un ataque muy poderoso. De poco servirı́a que al final de la evolución quedasen
muchos dispositivos protegidos si aun ası́ el virus ha sido capaz de infectar muchos en algún momento.
La fracción de infectados por el virus está representada por la cantidad ρB + ρLB + ρWB, ya que todos los
individuos que pertenezcan a alguno de estos tres estados pueden infectar a otros individuos del virus.

Para realizar las simulaciones se ha tomado una red de grado medio 〈k〉 = 10 con N = 10000 nodos y
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Figura 7: Mapas de calor obtenidos con la red aleatoria de 〈k〉 = 10 para la fracción de infectados final
con (a) Runge-Kutta y con (b) Gillespie, y los obtenidos para la fracción de infectados máxima con
(c) Runge-Kutta y con (d) Gillespie. Las lı́neas representan una fracción de infectados constante.
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p = 0.001. Las condiciones iniciales que se han tomado para las poblaciones de estados son ρV = 0.8,
ρB = 0.1 y ρW = 0.1, es decir, al principio hay un 10 % de nodos infectados del white worm y otro 10 %
del virus, el 80 % restante está en el estado vulnerable. Que haya un 10 % de nodos en el estado W al
principio va a implicar que en el estado final nunca vaya a haber menos de un 10 % de nodos protegidos.
Los resultados son obtenidos resolviendo el sistema de ecuaciones (17) con Runge-Kutta y, también,
usando el algoritmo de Gillespie. Esto permitirá comparar ambos métodos.

En la Figura 7 se pueden ver los resultados obtenidos. Como se puede ver, hay mucha concordancia
entre los resultados obtenidos para Runge-Kutta y los de Gillespie. Respecto a la fracción de infectados
final, se ve como esta no depende de la eticidad del white worm y que se consigue erradicar el virus
incluso aunque su ritmo de contagio sea mayor al del white worm. Se ve gracias a las isolı́neas que la
fracción final se anula muy rápidamente al aumentar el ritmo de contagio del white worm respecto al
del virus. Después, en los mapas de la fracción máxima se observa un comportamiento distinto. Cuanto
mayor sea la eticidad, menor es la fracción máxima, algo que era de esperar. Sin embargo, cuando la
eticidad es muy baja, hay un pico de infectados para cualquier valor de λw/λb, ya que los dispositivos
están mucho en el estado latente y dejan al virus propagarse sin problema.

La conclusión que se extrae de estos resultados es que, cuando el grado medio de la red empleada es
pequeño, hay buena concordancia entre la aproximación DBMF y el algoritmo de Gillespie, y que los
resultados obtenidos para una red aleatoria son los que cabrı́a esperar desde un principio.

4.3. Redes libres de escala

En esta última sección se analizarán los resultados obtenidos al usar redes libres de escala para realizar
las simulaciones. Se usarán una red Barabási-Albert y la red Internet AS graph mencionada en la Sección
2.2. La red Barabási-Albert se genera con los valores de parámetros m0 = 50, m = 2 y T = 9950. Estos
valores dan una red con un grado medio 〈k〉 ' 4.2. Es decir, tanto la red BA como la red Internet
AS graph tienen grados medios bastante bajos (como ya se dijo, 〈k〉 = 4.22 para la red Internet AS
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Figura 8: Mapas de calor obtenidos con la red Barabási-Albert para (a) la fracción de infectados final con
Gillespie y para (b) la fracción de infectados máxima con Gillespie. Las lı́neas representan una fracción
de infectados constante.
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graph), por lo que debido a las conclusiones sacadas en el apartado anterior, se espera que los resultados
obtenidos con la aproximación DBMF y con Gillespie sean muy parecidos. Por esta razón, solo se
presentarán los resultados del algoritmo de Gillespie. En cuanto a las condiciones iniciales, son las
mismas que en el apartado anterior.

Se comienza por la red Barabási-Albert. En la Figura 8 se observan los resultados y, como se puede ver,
los comportamientos son bastante parecidos a los obtenidos para redes aleatorias, aunque hay diferencias
notables en los resultados cuantitativos. Por tanto, comparando con los mapas de la Figura 7 se sacan las
siguientes conclusiones.

En cuanto a la cantidad de infectados por el virus finales, que se puede ver en la Figura 8a, se obtiene
que hay una cantidad no despreciable para un rango más amplio de valores de λw/λb, llegando incluso
a no anularse cuando λw/λb = 2. A diferencia de la red aleatoria, que cuando λw/λb = 0.5 ya era
prácticamente nula la densidad de infectados finales. Por otro lado, la dependencia de esta densidad con
la eticidad ε′ es igual en las dos redes, no existiendo ninguna influencia de este parámetro.

Pasando ahora a la fracción de infectados máxima, la cual se aprecia en la Figura 8b, se obtiene un
comportamiento parecido, aunque ahora los valores se han reducido en comparación con los resultados
de la red aleatoria. La densidad de infectados máxima ha disminuido en todo el rango de parámetros
representado, por lo que, por ejemplo, no serı́a necesario que la eticidad del white worm fuese extrema-
damente baja para conseguir que la botnet no se hiciese muy grande en algún momento intermedio de la
evolución.

Con la red Internet AS graph, cuyos resultados se pueden observar en la Figura 9, se obtienen resultados
prácticamente análogos a los de la red BA, coincidiendo los valores de densidad de infectados, tanto
finales como máximos, en los dos rangos de parámetros empleados. Por tanto, el análisis que se puede
hacer es parecido para estas dos redes libres de escala. Como se puede ver, la leve disasortatividad que
tiene la red Internet AS graph no ha influido para nada en los resultados.
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Figura 9: Mapas de calor obtenidos con la red Internet AS graph para (a) la fracción de infectados final
con Gillespie y para (b) la fracción de infectados máxima con Gillespie. Las lı́neas representan una
fracción de infectados constante.
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En conclusión, las propiedades topológicas que tienen las redes libres de escala frente a las aleatorias
posibilitan que la propagación del virus por la red no sea tan extendida, permitiendo al white worm
proteger una gran cantidad de individuos sin que puede haber consecuencias fatales.

Como la mayorı́a de redes tecnológicas que existen actualmente son libres de escalas, muy parecidas
a las analizadas en este trabajo, se deduce que para proteger una red real en la que hubiese un virus
propagándose, podrı́a usarse un white worm como el descrito. No serı́a necesario que la eticidad de
este método estuviese muy comprometida, ya que podrı́a hacerse un gusano muy ético pero con una
capacidad de propagación por la red mucho mayor que el virus. Esto no es algo descabellado, ya que
se supone que el white worm se introduce en la red con la ayuda de los encargados de administrarla,
por lo que tienen un conocimiento mucho mayor de las propiedades de la red que los atacantes que han
introducido el virus.

5. Conclusiones

A lo largo de este trabajo se han estudiado distintos aspectos de las redes, ası́ como se ha presentado un
modelo totalmente original para el estudio de protección de redes frente a ciberataques.

En la Sección 2 se presentaron las caracterı́sticas más importantes que ayudan a determinar una red
compleja. También se habló de diferentes modelos para producir redes sintéticas que comparten algunas
caracterı́sticas con las redes reales, como la distribución de grado en el modelo Barabási-Albert, y que
permiten el estudio de ciertos comportamientos sin la necesidad de emplear redes reales, las cuales puede
ser que no estén disponibles por diversas razones.

Después, a lo largo de la Sección 3 se presentaron las consideraciones principales que se realizan a
la hora de estudiar la propagación de epidemias en poblaciones, debido a la estrecha relación que hay
entre esto y la propagación de virus informáticos por redes tecnológicas. También se habló de algunas
aproximaciones que se hacen para poder resolver los modelos epidemiológicos, tanto cuando se quiere
abordar el problema resolviendo las ecuaciones diferenciales que describen el modelo (aproximación
DBMF), como cuando se quiere estudiar la evolución directamente sobre una red compleja (algoritmo
de Gillespie).

Finalmente, en la Sección 4 se describió el modelo empleado para simular la evolución de un virus
informático por una red compleja cuando también hay presencia de un white worm que intenta acabar
con él. Se vieron los resultados sobre redes aleatorias y libres de escalas y se analizaron sus diferencias.
En concreto, se ha empleado una red real tecnológica que representa muy bien una situación tı́pica en la
que se podrı́a aplicar esta estrategia de seguridad.

Todos los programas desarrollados durante la realización de este trabajo para hacer las simulaciones, las
redes, etc. están disponibles en [25].

La principal conclusión que se extrae del estudio realizado con el modelo mencionado es que, debido
a las propiedades que tienen las redes tecnológicas reales, que las hacen comportarse como redes libres
de escala, es posible el desarrollo de un modelo de defensa activa. Este modelo usarı́a un white worm
para proteger la red, sin que la eticidad se vea expuesta, algo muy importante debido a la gran cantidad
de datos que hay moviéndose por cualquier red de internet actualmente.
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Para concluir, serı́a interesante mencionar algún aspecto que ha quedado por estudiar sobre este modelo
y que podrı́a servir como punto de partida para trabajos posteriores. El más destacado es la inclusión de
redes multicapa en el modelo. Esto permitirı́a representar la red tecnológica como una red de dos capas,
en la que cada una de ellas serı́a la red que es capaz de ver cada gusano, ya que no tendrı́an porqué
ver la misma red de interconexiones porque utilizan vulnerabilidades distintas de los dispositivos para
propagarse.
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