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Prologo

La convexidad es una nocién bdsica en geometria que aparece en mas ramas de las matematicas.
Una de la ramas en las que aparece es en el andlisis funcional. Esta relacién se debe a que la bola unidad
cerrada de cualquier norma en R” define un cuerpo convexo simétrico, es decir, un conjunto convexo si-
métrico de interior no vacio y, reciprocamente, todo cuerpo convexo simétrico es la bola unidad cerrada
de una norma en R”.

Ademds, un cuerpo convexo simétrico K puede ser incluido dentro de algunas clases de funciones
integrables via su funcién caracteristica yx o via la funcién e~I'lx, donde || - ||x denota la norma cuya
bola unidad es K. De esta manera el volumen n-dimensional de K estd determinado por la integral de
estas funciones, hecho que provoca que ciertas desigualdades funcionales proporcionen desigualdades
geométricas y, reciprocamente, algunas desigualdades geométricas tengan una version funcional.

En el afio 1976, Brascamp y Lieb demostraron una desigualdad funcional que afirma que, para unos
vectores (u;)_; € R" y unos escalares (p;)7_; C [1,0) que cumplen ciertas condiciones, se puede en-
contrar una constante D, que depende Unicamente de los vectores y de los escalares, tal que la integral
de R” del producto de funciones f; € LP/(R), evaluadas en los productos escalares de la variable contra
los vectores estd acotada por D veces el producto de las normas || fj|| ;. Esta desigualdad extiende, en
cierto sentido, el teorema de Fubini, que nos proporciona el valor de dicha integral cuando los vectores
forman una base ortonormal de R" y los escalares son 1.

La finalidad de este trabajo es demostrar la desigualdad de Brascamp-Lieb y estudiar alguna de sus
aplicaciones para las estimaciones de volimenes de cuerpos convexos en una posicion particular, que
es la posicién de John.

El teorema de John afirma, para cualquier cuerpo convexo, la existencia de un dnico elipsoide de
mdaximo volumen contenido en él. En caso de que dicho elipsoide sea la bola Eculidea se dice que di-
cho cuerpo convexo estd en posicion de John. Esta posicién viene caracterizada por la existencia de
unos vectores y unos escalares que proporcionan una descomposicion de la identidad. La desigualdad
de Brascamp-Lieb resulta especialmente conveniente en esta situacién ya que para unos vectores y unos
escalares que proporcionan una descomposicion de la identidad es posible calcular el valor de la cons-
tante en la desigualdad de Brascamp-Lieb.

Como principal aplicacién de la desigualdad de Brascamp-Lieb para el estudio de volimenes de
cuerpos en posicion de John, en este trabajo demostraremos que, entre todos los cuerpos convexos si-
métricos en posicion de John, el cubo n-dimensional es el de mayor volumen y, entre todos los cuerpos
convexos no necesariamente simétricos en posicién de John, el simplex regular n-dimensional (conve-
nientemente reescalado) es el de mayor volumen.
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Abstract

The aim of this work is the study of Brascamp-Lieb inequality and its applications in convex geo-
metry. We will focus on its aplications related to the obtention of volume inequalities for convex bodies
in the so-called John’s position.

In the first chapter we are going to introduce some basic general concepts in convex geometry, which
will be needed in the rest of the work. A special role will be played by two particular convex bodies,
which will be the n-dimensional cube, B”,, and the regular simplex A", which will be introduced in this
chapter and whose volume will be computed.

In the second chapter we will prove Brascamp-Lieb inequality, which can be expressed in the fo-
llowing way: Given (u;)7_; C R" a generating system and (c;)"_; C (0,1] such that ¢ +---+c = n,

let
det(Y7 cidiu .
F:fnf{ (i eiAy ’),,1,->0}.

m Cj
j=1 )’j

Then, for every integrable functions (f;)7.; : R — [0,0) we have

/.njln_l[lf;j(<x,uj>)dx < \/lf,ﬁl </Rfj<x)dx> c_/.

A reverse version of this inequality will also be proved, showing that the constant that appears in both
Brascamp-Lieb inequality and its reverse version is the constant that appears when only Gaussian fun-
ctions are considered.

In the third chapter, we will focus on the study of convex bodies in John’s position, which are those
whose maximum volume ellipsoid contained in them is the Euclidean ball. Such convex bodies have
some vectors and some scalars associated to them, for which we will prove that the constant F' that
appears in Brascamp-Lieb inequality is F = 1. We will also show in this chapter that the n-dimensional
cube and the (appropriately rescalated) regular simplex are in John’s position.

Finally, in the last chapter, we will make use of Brascamp-Lieb inequality to show that among all
convex bodies in John’s position, the (appropriately rescalated) regular simplex is the one with maxi-
mum volume and, among all symmetric convex bodies, the n-dimensional cube is the one with maximum
volume.
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Capitulo 1

Cuerpos convexos. Generalidades.

Un cuerpo convexo es un conjunto K C R" que es convexo, compacto y tiene interior no vacio.
Decimos que un cuerpo convexo es simétrico si para cualquier x € R” se tiene que x € K si y solo si
—x € K. Por ejemplo, dada una norma || - || en R”, su bola unidad cerrada K = {x e R" : ||x|| < 1} es
un cuerpo convexo simétrico.

Dado un cuerpo convexo K C R” que contiene a O en su interior, se define el funcional de Minkowski
asociado a K como
x|k =inf{A >0 : x€AK} VxeR".

Si K es un cuerpo convexo simétrico este funcional de Minkowski define una norma en R” tal que su
bola unidad cerrada es K. Observamos que para cualquier transformacién lineal de determinante no nulo
T € GL(n) se tiene que si K contiene a 0 en su interior entonces TK contiene a 0 en su interior y para
cualquier x € R”

|xlrk = iInf{A >0 : x€ATK}=inf{A >0 : xe T(AK)}
= mf{A>0: TT 'xeT(AK)} =inf{A >0 : T 'xe AK}
1T~ x]

Dado un cuerpo convexo K C R" que contiene a 0 en su interior, se define su cuerpo polar como
K°={xeR": (x,y) <1, VyeK},

donde (-,-) denota el producto escalar en R". K° es un cuerpo convexo que contiene a 0 en su interior
tal que para todo x € R”

Ixge = f{A>0:xeAK°} =nf{A>0 : %GKO}
X

— WffA>0 : < ,
inf{ max {7

> <1} =ff{A >0 : mdx(xr,y) <A}
yeK
= max(x,y).
yeK < 7y>
Ademas, si K es un cuerpo convexo simétrico se tiene que K° es un cuerpo convexo simétrico. Observa-

mos que para cualquier transformacién lineal T € GL(n), denotando T’ su matriz traspuesta 'y por T~/
la matriz traspuesta de su inversa,

(TK)® = {xeR": (x,y)<1,VweTK}={xeR" : (x,Ty) <1, VyeK}
= {xeR": (T'x,y)<1,VyeK}={T"xeR" : (x,y) <1, VyeK}
= T7K°

Ademis, si B} denota la bola Euclidea B5 = {x € R" : ||x||2 < 1}, se tiene que (Bj)° = Bj.
Dado un cuerpo convexo K C R”, su volumen, o medida de Lebesgue, se denotard por |K|. La frontera de
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2 Capitulo 1. Cuerpos convexos. Generalidades.

K la denotaremos por dK. La frontera de la bola Euclidea B} se denotard por "' = {x ¢ R" : ||x[] = 1}.
Denotaremos al cubo n-dimensional B, = {x € R" : ||x||. < 1}, que es un cuerpo convexo simétrico y
cuyo volumen es |BZ| = 2".

Se define el simplex regular n-dimensional como

n+1

A" = {xGR"H : Zx,-: I, x,>0Vi= 1,...,n+l}.
i=1

Segiin esta definicién A" est4 contenido en el hiperplano afin H C R"*! dado por

n+1 () n+l1 1
H=(¢(xeR" : Zx,-zl =<xeR"™ : (x,v) = ,
i=1

n+1

donde v = ( ﬁ, \/ﬁ) € §". Identificando H con R" y ¢ = (+15,-.., -17) con 0 € R” considera-

mos A" como un cuerpo convexo en R”.

€n+1
AN"CH~TR"

()

el
/

A continuacién, calcularemos el volumen del simplex regular n-dimensional, A" C R".

Teorema 1.1. Sea A" C R” el simplex regular n-dimensional. Entonces,

vn+1

A" =
n!

Demostracion. Para calcular el volumen de A", calcularemos la siguiente integral en (R"+1)* = [0, 00)"*+1:

/ eV dx,
(Rr+1)+

donde v = ( n1+1 yeens \/ﬁ) € §". Por un lado, aplicando el teorema de Fubini, tenemos,

ntl o n+l
/ ey = / Hemdx— </ emdt>
(Rn+l)+ (Rn+l 0
n+1
= (\/n—i- 1/ esds> = (Vn+1)"t,
0
Por otra parte, observando que para cada t > 0 se tiene que

{re T (v =t} =tVn+1A" C {xeR"™ : (xv) =1},

donde en la dltima ecuacién hemos considerado A" C H en vez de su identificacién con un subconjunto
de R", se tiene por el teorema de Fubini que

/ e Wdx = / / dxdt :/ "(Vn+1)"|A"e " dt
(Rn+l)+ \/ﬁ n 0
= (Wn+1)"A"I(n+1).

Luego, igualando las dos integrales calculadas, obtenemos que

(VT = (VDA 1) < ) = Y20

n!




Capitulo 2

La desigualdad de Brascamp-Lieb.

2.1. Introduccion

Como consecuencia del teorema de Fubini, para cualquier n € N se cumple que dadas n funciones
(fi)t-; : R — [0,00) integrables en R se tiene que

/Rn fi(x)fa(x2) ... fu(xy)dx = ilﬁ/Rfi(xi)dx,-.

Equivalentemente, si denotamos por (e;)”_, una base ortonormal de R” se tiene que

/R,,lﬁfi((x, ei))dx = ilﬁ/Rfi(x)dx.

Cuando el vector x se enfrenta a un sistema generador de vectores ()
mal, no siempre se da esta igualdad.
En este contexto més general se plantea la siguiente cuestion:
Dado m > n, (uj);”zl C R”" un sistema generador de R” y (pj)’}’zl conp;>1lparatodo1 < j<my

m

j=1> que no es base ortonor-

i 4+ pi = n, {Cudl es la mejor constante D, dependiente dnicamente de los vectores (u J')T:I y de

los nimeros (p;)_; tal que para cualesquiera (f;)"; : R — [0,0) con f; € LP/(R) se cumple que

[ fTsanas<ofi (| )

Equivalentemente, llamando c; = ﬁ y considerando que para 1 < j < m se tiene que f; € LPI(R) siy
J
1
solo si ff T=f ij es integrable en R, la cuestion es equivalente a la siguiente:
Dado m > n, (u;)_; C R un sistema generador de R" y (c;)7.; con 0 <¢; < lparatodo 1 < j<my
c1+---+cm =n, (Cudl es la mejor constante D, dependiente tinicamente de los vectores (u j)T:l y de
los nimeros (c;)"_; tal que para cualesquiera (f;)"_; : R — [0, c0) integrables se cumple que

/nflf;‘_i(<x,uj>)dx§Df[] </Rfj(x)dx)cj?

i1

Brascamp y Lieb demostraron en [5] que D = ﬁ, siendo
det(Y"  cidjuu’
F:fnf{ (Zf‘”: M J),/lj>0}, 2.1)
=14

era la mejor constante y dicha constante aparece como la mejor constante que se puede poner cuando se
consideran inicamente funciones Gaussianas.



4 Capitulo 2. La desigualdad de Brascamp-Lieb.

Ademads, Barthe plante6 en [4] la siguiente desigualdad inversa:
Dado m > n, (u;)7_; € R" un sistema generador de R" y (c;)"_; con 0 <c¢; <1yci+-+cm=n,

(Cuadl es la mejor constante D, dependiente dnicamente de los vectores (u;)". 1 y de los nimeros (cj)m

j=1
tal que para cualesquiera (h;)_; : R — [0,0) integrables y /1 : R" — [0, ) integrable tales que

m m
h(x) > [Th}(6) si x=Y 6jcju;
=1 =1

[ h(x)dx 2D_</h >?

se cumple que

Barthe demostré que D = /F, siendo la constante F definida en (2.1).
Estos dos resultados, de Brascamp-Lieb y de Barthe quedan recogidos en el siguiente teorema, que
demostraremos en este capitulo:

Teorema 2.1 (Desigualdad de Brascamp-Lieb y Desigualdad de Brascamp-Lieb inversa). Sean 1 <n <
m. Dados (u;)_, un sistema generador de R" y (c;)"_; con 0 < c; <1y ci+---+cu = n definimos

det(Y™ . cidiu i,
F:fnf{ i el J),/lj>o}.
mflkj'/
l_

Entonces

1. Para cualesquiera (f;)"_; : R — [0,c0) integrables se cumple que

2. Para cualesquiera (h;)"

"1 i R —[0,00) integrables y h : R" — [0,0) integrable tales que

h(x) > th?"(ej) si x= Z Ojcju;j
=1

se cumple que

2.2. La desigualdad de Brascamp-Lieb

En esta seccidon vamos a demostrar el Teorema 2.1. Primero fijaremos alguna notacién que iremos
utilizando durante esta seccion. Sean (f;)"_;, (h;)7.; : R — [0,c0) integrables definimos:

- I(fla'--afm):/l;nljf;j«x,llj))dx

- K(hy,...,h,) =inf h(x)dx : h(x )six=) Ojcju;,0; R
(h ) {'Rn 131 Z juj }

Ademads, observamos que

: p{Mf LR >}=sup{1<f1,...,fm> Al =1},
NI
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| Khy,....n )
- ll’lf{(ml”hHZj.), h/ELl(R)} :lnf{K(hl,...,hm) . HhJHl :1}
j=11"%j11

Demostraremos el Teorema 2.1 siguiendo la idea de Barthe, tal y como estd expuesta en [6], demos-
trando las siguientes desigualdades:

\/lfgsup{l(fl,...,fm) : Hfj||1:1}g%inf{l((hl,...,hm) gl =1} <

Asi, demostraremos que todas las desigualdades son igualdades y tendremos que:

_ Sup{l(fl)"'vfm)

pig (vl

5l-

fJELl(R)a J:1,7m}:

K(hy,....h
- inf (ml’i’x),hjELl(R),jzl,...,m =F.
TS 1Al

Lema 2.2. Sean 1 < n < m. Dados (u;)"_, un sistema generador de R" y (c;)7_; con 0 <c; <1y

c1+ - +cm =n, se tiene que

\/lfgsup{l(fl,...,fm) SISl =1, j=1,...,m},

donde el supremo se toma en las funciones integrables (f;)7_; : R — [0,c0).
Demostracion. En esta demostracion vamos a ver que si consideramos funciones gaussianas g; : R —
2 .
[0,00) de la forma g;(¢) = e " con A; >0, j = 1,...,m, entonces
1 (g1, &m)
= —
Foogngn [T7 gl

De esta forma tendremos que

1 1 1
— su (g17 agm)< su (flv 7fm)

- p ;= p )
VFE g T MGG ™ s TU 1LY

donde el segundo supremo se toma entre todas las funciones (f j)?:l : R — [0,0) integrables.

Dadas g;(t) = et con Aj > 0 para todo 1 < j < m tenemos entonces que

1(81,---:8m) _ Jn o~ Libiciditeu)? g
Tl T (fpe ™ dr)”

Calculamos las integrales del denominador utilizando el cambio de variable t =

1
u:
22,

/e"“ﬂza’z:/ e%‘zdu: V21 _ VT
R R \24; V2 A

Por tanto, el denominador queda:

]m‘[ <ﬁ>c": i Vme mrLiie N
j=1 \/Ij 1 )

" (VA ALy A

Calculemos ahora el numerador. Definimos la matriz A como A = Y| ¢;Au !”5 Esta matriz A es
simétrica y semidefinida positivayaque si 1 <i,k<n

SIS

m

_ ! _ e _

Ay = el-Aek—z c]/l]eiujujek—
~

m
cjhi(uj,ei)(uj,ex)
Jj =1

J



6 Capitulo 2. La desigualdad de Brascamp-Lieb.

m m
t t 1
Z i(uj,er)(uj,ei) = Z cJ-?Ljekujuje,- = e Ae; = Ay
y para cualquier x € R”

(Ax,x) = X' Ax = Zc]l o ujulx = ZCJ {x,up)? > 0.
=

My 0

Por lo tanto, existen una matriz ortogonal U y una matriz diagonal D = ( ' ) con Y; > 0 para
0 Uy

todo 1 <i<ntalesque A=U'DU.

Ademas, se tiene que para todo x € R”

Z Ajcj(x,uj)? = (Ax,x) = (U'DUx,x) = (DUx,Ux)

y entonces la intregal del numerador es

/€7<Ax’x>dx = / <DU’CUX>dx—/ ~Dr gy = / L] gy
%

= e*lliy dy: \/7 :

i—l/R zI_I Hi \/det Tycjhuju)

n
donde hemos utilizado que detA = detD = H Uj.
i=1
Entonces, ya calculados numerador y denominador, tenemos que, para las funciones de la forma g; =
a2
e ]

,con A; >0paratodo j=1,...,m:

n
n2

oty (oD |
T gy = det(YL cjhjuju)

J
/|2']

Tomando supremos para estas funciones g;, se tiene que:

I(i,... i(g,... 1 1

p TWszecsln) gy ML) = UF

St T AT v TE [l ﬁﬁ{ Qe i) A;>O} VF
H)]nllj

Lema 2.3. Sean 1 < n < m. Dados (u;)"_, un sistema generador de R" y (c;)7_; con 0 <c; <1y
c1+:+cpm =n, se tiene que

inf {K(h1,....hn) : ||hj]1 =1, j=1,...,m} <VF,
donde el infimo se toma en las funciones integrables (h;)7_; : R — [0,c0).

Demostracion. Para esta demostracion vamos a considerar las funciones gaussianas g; : R — [0,00) de
1.2

—*t .
laformagj=e % conA; >0, j=1,...,m. Vamos a ver entonces que

K
inf (g]7 7gl’I1) S \/F

8l5e8m H;":1 ||ngij
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De esta forma, tendremos que:

K(hy,....,h K
fnf ( 1, b m) < 1’nf (817 ,gm) S\/f

Ry HTZI th”? 8l H’/nZI Hg]Hi/

Para calcular las integrales del denominador, aplicamos el cambio de variable r = %u:
— L u
/ A / du =V2n =.\/TAj.
Entonces, sustituyendo el valor de esta integral en el denominador, este queda:
m € 1 Zm mn c m c
. — 2 Lj=1€j i o5 J
H(Mn%) = 2216 H?Lj =72 H)Lj.
j=1 Jj=1 j=1
Calculamos ahora el numerador para estas funciones g; con j = 1,...,m. Recordamos que

2
!

m.o_ ‘g
K(g1,..., = inf x)dx : A
(815---,8m) { 8 g(x f:Il

six:chBjuj,GjeR}
= inf{/ g(x)dx: g(x) > ”n”ej szx-Zc,GuJ,G ER}
Rn

Buscamos una funcion g integrable en R" tal que si descomponemos x como x = }."; ¢;6,u; entonces
. —yn el . .

se cumple la desigualdad g(x) > e “/~'% /. De esta manera K(gi,...,g) serd menor o igual que la

integral de la funcién g.

Definimos el elipsoide & = {x € R" : (Ax,x) < 1} donde A es, como en el Lema 2.2, la matriz simétrica
m
definida positiva A = Y_ ¢;Ajuju;
j=1
Sea x € R" con x = Y7L, ¢;0;u; para algunos 6; € Ry sea y € &. Luego se tiene que (Ay,y) < 1.
Entonces aplicando la desigualdad de Cauchy-Schwarz al producto escalar (x,y) se tiene lo siguiente:

w3 = (L) = X ety = X Vonfew.y

Jj=1 j=1 %

b NPl N
=< (Z}L]9]2> (ch/lj@tj,wz) = Z{#) (Ay,y)2

j=1" Jj=1 j=17

1

oo 2
< -6?

(£37)

1

m
, . . L. . . 2, Cj
Asi, teniendo en cuenta que & es simétrico se tiene que ||x||%. = max(x,y)* < E TJGJZ De manera
ye& =17
. o S wm
obvia, esto implica que si x =}/ ¢;0;u; entonces

m <j 2
J

ol > T

Por lo tanto,

fnf{/ g(x)dx: g(x) > I Six= ZCJQ uj,0; e R} / e Ilze gy (2.2)
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W 0

Por otra parte, como existen U matriz ortogonal y una matriz diagonal D = ( ) ) con U; > 0 para
0w

todo 1 <i < ntales que A= U'DU, el elipsoide & se puede escribir como

E = {xeR":{Ax,x) <1} ={xeR": (DUx,Ux) <1} =
= {U'zeR": (Dz,2) <1} =U'{z€eR": (Dz,2) <1} =U'é}, (2.3)
con
& = {zeR":(Dz,z>§1}:{zeR":(D%z,D%@SI}:

= {Diéz eR":(z,2) < 1} =D {z€R": |z, <1} =D B,

1
donde D? es la matriz diagonal cuyos elementos de la diagonal son u;* y D~ ? la matriz diagonal cuyos

_1
elementos de la diagonal son y; * paratodo 1 <i<n.
Por lo tanto,

&° = (U'&)° =U'(&)° =U' (D 2BL)° =U'D?(B})° = U'DB}. (2.4)

_1
= [lUx]l )y ., = D72 Ux]|sy.

Asi, teniendo en cuenta (2.4), se tiene que ||x]| I 1
U'DIB} D2B!

go = |Ix]

Visto esto y volviendo a la desigualdad (2.2) se obtiene

2
i

1 1 y
—lxl2e —ID"2 U2 —|ID~ 2|2 -yt
/ oo gy — /e I Uxuzdx:/ o ID ynzdy:/ e i gy —
n n n Rﬂ

n 7 n ; n
= 1/ ¢ #ay=T]vez—x* det<chljujutj>.
i=1/R" i=1 i=1

Una vez calculados numerador y denominador tenemos que:

7 LI
K(gl,...,gm) < 7T2\/det (Zi:l CJA’JMJM]> B det (Z?:l Cj)LijMS-)

I llgslly nf\/w a4y

Por tanto,

det <):§’:1 cjljuju’j> N

K
inf (g17 7gm) — ch ,
=1

818 H?l:l ||81H61!

< inf

O]

Teorema 2.4. Sean 1 < n <m, (“j)T:l un sistema generador de R" y (Cj)’}1:1 con0<c;<lyci+
~tem =1 Sean (f;)1_; : R —[0,00) y (h;)7L; : R — [0,00) funciones integrables tales que

/Rfj(t)dt:/th(t)dt:L j=1,...,m.

Entonces, se tiene:
F-I(f1,...,fm) <K(hi...,hy).
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Demostracion. Supongamos primero que las funciones (f;)7; y ()., son estrictamentes positivas y
continuas. Suponemos que la constante F es positiva y ﬁmta ya que si F' =0 el enunciado es trivial y,
claramente, de la definicién de F tenemos que F es finita.

Definimos, para cada 1 < j < m, la aplicacién 7; : R — R tal que

/_Z(t) hj(s)ds = /_;fj(s)ds

Como hemos supuesto f; y hj son continuas y estrictamente positivas para todo j = 1,...,m con
Ilfilli = ||kj][1 = 1, la aplicacién T; estd bien definida para todo j = 1,...,m y ademds es estricta-
mente creciente. Esta aplicacién también es inyectiva, pues para t,r € R, suponiendo que 7(t) = T;(r)

d T;(t) Ti(r) r
en R, se tiene que / fi(s)ds :/ hj(s)ds = / hi(s)ds = / fj(s)ds, y entonces t = r ya
que estamos suponiendo f; estrictamente positiva. La aplicacion T; es sobreyectiva, pues para cada

1" € R se tiene que / hj(s)ds es un nimero en el intervalo (0,1), ya que por el teroema funda-

t
mental del calculo integral H;(t) = / h;j(s)ds es una funcién continua y estrictamente creciente en

R que cumple que lfm Hj(t)=0y limH i(t) = 1. Como por el teorema fundamental del célculo

integral F;(t / fj(s)ds es una funcién continua y estrictamente creciente en R que cumple que

thm Fj(t) = OythmF()— 1, se tiene que existe un dnico ¢ € R tal que Fj(t) = H;(¢') y asi T;(t) =
——o0 —00

Ademéds, por el teorema fundamental del cdlculo integral y por el teorema de derivacion de la funcién
inversa se tiene que 7; es derivableen R y

Ti(t)hj(T(1)) = fi(t), Vt€R.

Definimos W : R" — R" dada por

ch vuj))uj, YyeR"

m
Podemos calcular la matriz jacobiana de W y obtenemos que Jy (y Z ((vyu;j))u ]u Ademds,
por la definicién de F' se tiene que
(chj y,u] uj >>F H y,uj )< > 0.
j

Consideramos £ : R" — [0, o) una funcién integrable que cumple que

m c: m

Z thj(ej) Si x= Z ejle/tj.
j=1 j=1

Por tanto, se tiene que

H yauj ) vyEan
j=1
y asi:
Wwds > [ hGde= [ #W () detw(0)ldy
R W(Rn) Rn
> /th’( (v, uj)) det<z ((y,u;)) utl>dy

J=1
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n
> Fo [ T8 T 0a))(T] () ey
=1
jm B
= F'/Rnnf/(@,btﬁ)dy: FI(fi,.. fm)-
=1
Por tanto, tomando {nfimo en h, tenemos que F - I(f1,..., fi) < K(h1 ..., hy), como querfamos probar.

Por un proceso de aproximacion se puede demostrar este teorema para funciones integrables en general,
tal y como estd enunciado. O



Capitulo 3

Cuerpos convexos en posicion de John.

3.1. La posicion de John y descomposicion de la identidad

Sea K un cuerpo convexo en R”. El teorema de John [7] afirma que existe un tnico elipsoide & de
maximo volumen contenido en K . A dicho elipsoide se le denomina elipsoide de John de K.
Si tomamos una transformacion lineal, T € GL(n), es claro que aplicando esta transformacién al elip-
soide y a K se tiene que T(&) C TK. Por otra parte, si existiese un elipsoide &1 C TK con volumen
mayor que T(&) entonces [T~ (&) > |T~'T(&)|=|&|y T~ (&) C T-'TK =K, lo que cual es una
contradiccion. Por tanto, 7'(&) es el elipsoide de John de TK.
Decimos que un cuerpo K C R" estéd en posicion de John si su elipsoide de John es la bola Euclidea B7.
Es decir, si B} C K y para cualquier elipsoide & contenido en K se tiene que |&'| < |Bj|.
El siguiente teorema, que no vamos a demostrar en este trabajo, caracteriza el hecho de que un cuerpo
convexo se encuentre en posicién de John:

Teorema 3.1. Sea K un cuerpo convexo en R". K estd en posicion de John si'y solo si B C K y ademds

existen (u;)7 C oKNS" 1y (¢;)y € (0,00) tales que

m
Z le/tj =0
=1

m
t
I, = Z cjuju;,
Jj=1

donde I, denota la matriz identidad.

Demostracion. La demostracion se debe a John y a Ball. Se puede veren [1] . O

El teorema anterior nos dice que todo cuerpo convexo en posicién de John tiene asociados unos
escalares y unos vectores. El siguiente lema nos muestra que dichos escalares satisfacen las condiciones
que se han considerado en el Capitulo 2:

m

Lema 3.2. Sean (u;)}., € sty (¢;)"1 € (0,00) y que satisfacen I, = Z cjuju; entonces:
j=1

1) 0<cj<lparatodo j=1,....m

m
2) Z cj=n
Jj=1
Demostracion. Vamos a demostrar ambos puntos:

11
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1) Como estamos suponiendo que los ¢; son mayores que cero, probaremos que cada c; es menor o
igual que 1 paratodo j=1,...,m.
m
Como se satisface que [,, = Z cju ju’j, entonces para todo x € R" se tiene:
Jj=1

m m
— e - N
x=Ix=Y cjuux="Y c;{ujx)u;.
j=1 J=1

Esto implica que

=rs

ell3 = Gv,x) = ¢

m
ciluj,x)uj,x) =Y cj(x,u;)’.
=1

j=1

En particular, como u; € §"~! paratodo j = 1,...,m, entonces:
) v 2 2 2
U=lujlls = Y (g u) = cjllujl3 + Y clujyu)® > ;.
k=1 k)

Luego c; < 1paratodo 1< j<m.
2) Para demostrar la igualdad utilizaremos que la traza de la matriz identidad es n. Antes de eso

calculamos la traza de la matriz u ju; paracadal < j<m:

Tr(ujy) =Y (uj); = (uj,u;) = 1.

on

l
_

Por lo tanto,

m

m m m
n="Tr(l,) = Tr(Z cjuju;) = Z chr(uju’j) = Z cj-1=
=1 = =1 j

Cj.
=1

O]

A continuacién, en el siguiente lema, enunciaremos y demostraremos la formula de Cauchy-Binet,
la cual utilizaremos m4s adelante:

Lema 3.3 (Férmula de Cauchy-Binet). Sea A matriz n xmy B matriz mxn conm >ny nm € N.
Si 1 C{1,...,m} con |I| = n, donde |I| denota el cardinal de I, denotamos por Ay la matriz cuadrada
formada por las i-ésimas columnas de A, con i € I y By la matriz cuadrada formada por las i-ésimas
filas de B, con i € 1. Entonces:
det(AB) = ) detA;detB.
[ll=n

Demostracion. La columna i-ésima de AB es bj;A| + -+ -+ byiA,, donde A; es la columna j-ésima de la
matrizA con j=1,...,m.
Entonces, aplicando la multilinealidad del determinante, se tiene:

det(AB) = det(bnA] 4+ 4+ bpiAm, ..., bipAL+ +bmnAm) = Z detA;detB;.
[I|=n

O

Después de haber visto esto, podemos plantearnos cudl serd la constante F' de la desigualdad de
Brascamp-Lieb con las condiciones del Lema 3.2. En el siguiente lema veremos cudl es. Necesitaremos
la férmula de Cauchy-Binet para demostrar el lema.
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m
Lema 3.4. Sean (u;)7_, € sty (¢;)"_1 € (0,00) y que satisfacen I, = Z cjuju;. Entonces,
=1

det(Y™, cidiuul
F:inf{ (L= citju, f),zj>o}:1.

vy
Demostracion. Sean A; >0, j=1,...,m. Paratodo I C {1,...,m} cuyo cardinal es |I| = n, definimos:
2
A= H?Lj y U= (det (ZCijMS-)) .
jel jel

Aplicamos la férmula de Cauchy-BinetaA = (vVeiAui] ... [V emAmitm) y B= (V1 diur| .. |V emAmim)'

y obtenemos:
det cidjuu’; | = det \eiriui(y/cidup) | = MU 3.1
(jg,11111> <J§ VRILS] ]]J) Z

|=n

Tomando los A; = 1 tenemos que Z U; = 1. Por la desigualdad aritmogeométrica de medias,
|7|=n

Y uu> [ = ﬁ/lf{"fe” o (3.2)
j=1

|=n [l|=n

Volvemos a aplicar la férmula de Cauchy-Binet al exponente de la desigualdad anterior:

Z U = Z Uy — Z U =1 —det(ln—ﬁujﬁu;)
{1:jer} [1|=n {1:j¢1}
= 1—det(UU" —c;jUe e\ U") =1—det(U(I, — cjerey)U")
1 —det(U)det(I, — cjeie})det(U") =1— (1 —¢;) =c;j,

donde U € O(n) es tal que u ;= Uej con e el primer vector de la base canénica.
Observamos que, volviendo a las ecuaciones (3.1) y (3.2), obtenemos

m m

t Cj

det (Z lejbtjl“) > I ij]
j=1 J=1

y esto implica

det(Y™, cidiuul
F:,nf{ (Z]—l J CJ~.] Jj
moA%
=17

),Aj>0} > 1.

La igualdad se da en esta tltima igualdad por la eleccion de los A; = 1. Con esto terminamos la demos-
tracién del lema. O

3.2. El cubo y el simplex regular

En esta seccién demostraremos que el cubo n-dimensional y un dilatado del simplex regular n-
dimensional estdn en posicién de John.
Primero demostremos que el cubo lo esta.

Teorema 3.5. El cubo n-dimensional B”, se encuentra en posicion de John.
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Demostracion. Para esta demostracion utilizaremos la caracterizacién de un cuerpo en poscién de John
del Teorema 3.1.
Tenemos que B; C BY,. Ademds, cualquier punto x € R" podemos escribirlo de la forma

(=Y gttty 3t (~en)(~e)
i= l

1 i=1

M:

X =

i

donde (e;)"_, son los vectores de la base canénica.

Se cumple que
Y pet )50

i=1 i=1

| =
N\'—

<N

U
=) -eiei+) ~(—
n i:Z]zelel 12212(

También se cumple que (+e;)? ; C dBLN §"=1. Asi se cumplen las condiciones del Teorema 3.1 y por
tanto el cubo n-dimensional estd en posicién de John.

€2

—eq €l

O]

A continuacién demostraremos que un dilatado del simplex regular n-dimensional esta en posicién
de John.

Teorema 3.6. El simplex regular n-dimensional reescalado S, = \/n(n+ 1)A" C R" estd en posicion
de John.

n+1
Demostracion. Sea A" = { x e R"! . in =1, x>0Vi= 1,...,n+1} C H donde H es el hiper-

plano afin en R"*! dado por

1
H=<xeR"" : (xy) = },
{ v vn+1

€ §". Identificamos H con R" y ¢ = (-1 L) con 0 € R".

- 1
sm:ndovf(\/'m7 \/ﬁ) prs EREE e §

Definimos el hiperplano lineal Hy C R"*! dado por
Hy={xe R (x,v) = 0},
que es paralelo a H y que cumple que Py,c = 0. De esta manera el simplex regular en R" se identifica

Py, A

con Py,A" C Hy. Vamos a demostrar que, identificando Hy con R", S, = ———
r (P H()An)

estd en posicién de

John, donde r(Py,A") denota el inradio de Py,A" dentro de Hy. Es decir,

r(Py,A") =max {r >0 : rBy"' NHy C Py,A"}.
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Es claro que By ™' N Hy C S,. Veamos que existen (u;)iey € 9S8, NS"~ Ly (¢j)7y € (0,00) que cum-

plan las cond1c1ones del Teorema 3.1 para que S, esté en posicién de John. Visto en Hy, tomaremos

u; los opuestos de las proyecciones de e; sobre Hy normalizadas para todo j = 1,...,n+ 1, es decir,
Pryej

1 Prge ;2

Queremos ver que existen (¢ j)

uj=— €S,NHypparatodo j=1,...,n+1.

"“ tales que para x € Hy se verifica que

ril ril PHoé’j > PHoej
x= Y cj{xu; cj
o) i N Pagesll2” | Pageill>
Sea x € Hy, tenemos que
n+1
x= Z (x,ej)e;
=1
y por tanto
n+1 n+1 n+1 P . P .
Ho€j Ho€j
x=Pyx=Y (x,ej)Pye;j=Y (x,Pye;)Pye;= |PHe|2< : >
0 j:ZI =) 0~J j;l 0~ (A Z 0=J ||PH0€]‘||2 HPHoejHZ’
tomando c; = ||Py,e;|5 para todo j = 1,...,n+ 1. Hemos demostrado que, identificando R" con Hy,
I, = ¥ cjuju; con I, 1a matriz identidad.
n+1

Veamos ahora que se cumple que Z cjuj =0. Antes de comprobarlo, veamos que || Py,e;l|> es igual
=1

1 .
para todo j = 1,...,n+ 1. Sabemos que Py e; =¢e;— (e;,v)v =e; — mv, luego este vector tiene
n
todas sus coordenadas iguales a —ﬁ salvo una que serd igual a 1 — # Asi,paratodo j=1,...,n+1,
IPre] -
el = .
Ho€jll2 n- l

Asi se tiene que

n+1 n+1 —Py ej n+1
0
Z cjj = Z 1Prge 1375~ Pacilh ~1Pmerllz ), Pre; = —[|Paserll2P (1., 1) =0,
Ho€j Jj=1
yaque (1,...,1) es proporcional a v.
Falta comprobar que u; € dS, paratodo j =1,...,n+ 1. Veamos que
—Pr,e1
ri = (Py.e;,uy :<PHe- — >
J < 0=J > 0= ”PHO€1||2
tiene el mismo valor r; para todo j = 2,...,n+ 1. Si esto ocurre, tendremos que la cara del simplex

regular opuesta a Py, e tiene vector normal u; y el punto més cercano de la cara es rju;.
Calculamos r;. Sabemos que

1 1 1
PHOel—el—<e1,v>V—<1—,—...,— ),

n+1" n+1 n+1

luego su norma es:
n

n+1°

| Prgerll2 =

Por tanto, paratodo j =2,...,n+1

—PH (4] —PH (4] 1
rj = <PHoejv T > = < , > = (ejs—Pmer)

| Prger |2 I Pmerl | Pryer |2
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1 < < 1 1 >> 1 1
= — e[ — -1, — ) )= —————
[Pyl n+1 n+1 [Pryerll2n+1
1

Vn(n+1)
De manera andloga se obtendria que punto mds cercano al origen de la cara opuesta a Py ex de Py, A" es
1
"k Porlo tanto r(A") = ———=yu € d(\/n(n+1)Py,)A" = 98,.

nn+1) vnn+1)

u ui

us



Capitulo 4

Aplicaciones de la desigualdad de
Brascamp-Lieb en geometria convexa.

Segun hemos visto en el Capitulo 3, K esta en posicion de John si y solo si K contiene a B, y existen

m m

()i, € oKNS* 'y (c;)y € (0,1] tales que I, = Z cjuju; y Z cjuj =0. Ademds en tal caso la
j=1 j=1

constante en la desigualdad de Brascamp-Lieb para los vectores (1)1 y los escalares (c;)"_; es F = 1.

En este capitulo vamos a utilizar la desigualdad de Brascamp-Lieb para obtener propiedades geométri-

cas de cuerpos convexos en posiciéon de John. Demostraremos que, entre todos los cuerpos convexos

simétricos en posicién de John, el cubo n-dimensional B es el de mayor volumen y que, entre todos

los cuerpos (no necesariamente simétricos) en posicion de John, el simplex regular en posicion de John

S, es el de mayor volumen. Estos reultados fueron demostrados por Ball en [2] y [3].
Teorema 4.1. Sea K C R" un cuerpo convexo en posicion de John. Entonces
K| < [Sl-

Ademds, si K es simétrico entonces
K| < Bl

Demostracion. Supongamos primero que K C R” es un cuerpo convexo simétrico en posicion de John.
Entonces, por el Teorema 3.1 y el Lema 3.2 existen (u;)_; € OKNS" 1y (c;)™, C (0,1] tales que

Jj=1=
m m
f— . . t . . —_—
I, = Z cjuju;y Z cjuj = 0. Sea
Jj=1 Jj=1

Ly={xeR" : [(xu;)| <1V1<j<m}.

Se tiene entonces que, como K es simétrico, K C Ly y entonces
m m c:
Ki< ol = [ gadx= [ Thaounuhdr= [ TTx ()
Rn Rn ]:1 Rn ]:1 )

uz

us ui

ug

17
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Aplicando la desigualdad de Brascamp-Lieb (Teorema 2.1) y, teniendo en cuenta que por el Lema 3.4
se tiene que F' = 1, obtenemos que

ki<t = [ T G < [T ([ 2o 0ar)
Rrj=1 =~ j=1 R

Por tanto, por el Lema 3.4
mn < m m
‘K| < |L()‘ SH(/ X[l,l](t)dt> :HZCjZQijlcj:2n:|BZ‘.
j=1 R =1

Supongamos ahora que K C R” es un cuerpo convexo no necesariamente simétrico en posicic’)n de John.
De nuevo, por el Teorema 3.1 y el Lema 3.2 existen (u;)7.; € IKNS" 'y (c cj)iey € (0,1] tales que

m m
I, = chuju’j y chuj =0.
Jj=1 j=1

Definimos el cuerpo convexo L; C R"

={xeR": xu)<1VI<j<m}.
J

Tenemos que K C L;. Tomamos en R"*!, paratodo j=1,...,m,
n 1
-vi=4/—— | —u;,— | €5,
K n+1< Y ﬁ)
n+1
-dj= i
J n G
V2
V3 Vi T
v 1
N . il
— Uy uy — \ L
u3

Estos vectores y escalares cumplen las siguientes propiedades:
Dado (x,7) € R" x R, entonces

Y dilenvy = Y, Juj— M (g, )4
A(x,t),vi)v; = —u, ;i ——={—u;,—)+—
= J ISR VA = n+1 Al ] \/ﬁv ]7\/ﬁ n
s tciu; X tc;

= Z( —uj,X)uj— \;ﬁ], cj{— “jv\/;l>+nj> = (x,1). 4.1)

Por tanto, 1,11 = Z’]”:l djv jv’j donde /,, | denota la matriz identidad en R"*t!, Ademds, también cumplen

que
u mofn+1 1 & ntl & Vit 1
j:Zldj"j = Zl n ( ”J"\/ﬁ> = (Z -\, Gt Z ncj>

j= j=1 j=1
= (0,Vnt1). (4.2)
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Por tltimo, como consecuencia directa de I,1| = ZT: 1djv jv’j y del Lema 3.2 se tiene que
m
Ydi=n+1 y 0<d;<1Vj=1,....m
j=1
Denotamos como C al cono

C={(xt) eER"xXR : ((x,1),v;) >0,VI < j<m}.

Observamos que
t
C:{(x,t)eR"xR:tZO,xe\/ﬁLl}. 4.3)

En efecto, sea (x,7) € C. Supongamos que ¢ < 0, entonces como ((x,),v;) > 0 para todo 1 < j <m
tenemos
n t

— (X, u;)+
n+1< 2 n+1

((e1),v)) = —

>0 VI<j<m

y obtenemos que (x,u;) < 0 paratodo 1 < j <m. Como consecuencia como c¢; € (0, 1] paratodo 1 < j <
m m

m, Z cj{x,uj) <0, que contradice la hipotesis Z cju;j = 0. Por lo tanto, si (x,7) € C necesariamente
J=1 Jj=1
. . . ¢
debe ser r > 0 y entonces tenemos que ((x,#),v;) > 0 paratodo 1 < j <msiy solosi (x,u;) < 75 bara

. .., . . t
todo 1 < j < m. La tdltima condicién se cumple si y solo si x € TLI.
n

Por otra parte, si (x,) verificaquet >0y x € ﬁLl, lo cual ocurre si y solo si (x,u;) < —= para todo

\f

1 < j < m, entonces se tiene que

n t
<(x>t)>vj> = _\/;<x7uj>+\/m >0

paratodo 1 < j <my asi (x,¢) € C.
Definimos para todo 1 < j <m, fj: R — [0,c0)

e’ si s>0
0 si s<0

paratodo 1 < j <m.
Calculamos la siguiente integral en R"*!. Por (4.2) y por (4.3) se tiene que:

m
H fillr),v)bdidx = | e E @ Ovigrgy = | eV drdx = e Vi dxd
Rn+l J ] C

dt = |L1\/ < >e””+’dt

v *Sds - T(n+1)
|L1|/ NCES |L1|(\/ﬁ)n(\/m)n+l'

/ —v/n+1t Ll

Por otro lado

m d:
. . dj — *<(X,l),Vj> !
s 1 GICOREE L. 11 (e {Cost),ve™@040) ” drax
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Por la desigualdad de Brascamp-Lieb (Teorema 2.1) y, teniendo en cuenta (4.1) y que por el Lema 3.4
se tiene que la constante de Brascamp-Lieb es F' = 1, esta integral es menor o igual que el siguiente
producto de integrales,

m dj m . d; m
I1 (/ X(0. (f)etdt> =11 </ e’dt) =[[1% =1
=1 VR j=1\0 =1

Por lo tanto, como K C Ly, se tiene por el Teorema 1.1

n)" n n+1 n
K| < || < V2 )F<(;++1>” — (VA )" S = (VD) I =I5
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