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Prólogo

La convexidad es una noción básica en geometría que aparece en más ramas de las matemáticas.
Una de la ramas en las que aparece es en el análisis funcional. Esta relación se debe a que la bola unidad
cerrada de cualquier norma en Rn define un cuerpo convexo simétrico, es decir, un conjunto convexo si-
métrico de interior no vacío y, recíprocamente, todo cuerpo convexo simétrico es la bola unidad cerrada
de una norma en Rn.

Además, un cuerpo convexo simétrico K puede ser incluido dentro de algunas clases de funciones
integrables vía su función característica χK o vía la función e−‖·‖K , donde ‖ · ‖K denota la norma cuya
bola unidad es K. De esta manera el volumen n-dimensional de K está determinado por la integral de
estas funciones, hecho que provoca que ciertas desigualdades funcionales proporcionen desigualdades
geométricas y, recíprocamente, algunas desigualdades geométricas tengan una versión funcional.

En el año 1976, Brascamp y Lieb demostraron una desigualdad funcional que afirma que, para unos
vectores (u j)

m
j=1 ⊆ Rn y unos escalares (p j)

m
j=1 ⊆ [1,∞) que cumplen ciertas condiciones, se puede en-

contrar una constante D, que depende únicamente de los vectores y de los escalares, tal que la integral
de Rn del producto de funciones f j ∈ Lp j(R), evaluadas en los productos escalares de la variable contra
los vectores está acotada por D veces el producto de las normas ‖ f j‖p j . Esta desigualdad extiende, en
cierto sentido, el teorema de Fubini, que nos proporciona el valor de dicha integral cuando los vectores
forman una base ortonormal de Rn y los escalares son 1.

La finalidad de este trabajo es demostrar la desigualdad de Brascamp-Lieb y estudiar alguna de sus
aplicaciones para las estimaciones de volúmenes de cuerpos convexos en una posición particular, que
es la posición de John.

El teorema de John afirma, para cualquier cuerpo convexo, la existencia de un único elipsoide de
máximo volumen contenido en él. En caso de que dicho elipsoide sea la bola Eculídea se dice que di-
cho cuerpo convexo está en posición de John. Esta posición viene caracterizada por la existencia de
unos vectores y unos escalares que proporcionan una descomposición de la identidad. La desigualdad
de Brascamp-Lieb resulta especialmente conveniente en esta situación ya que para unos vectores y unos
escalares que proporcionan una descomposición de la identidad es posible calcular el valor de la cons-
tante en la desigualdad de Brascamp-Lieb.

Como principal aplicación de la desigualdad de Brascamp-Lieb para el estudio de volúmenes de
cuerpos en posición de John, en este trabajo demostraremos que, entre todos los cuerpos convexos si-
métricos en posición de John, el cubo n-dimensional es el de mayor volumen y, entre todos los cuerpos
convexos no necesariamente simétricos en posición de John, el símplex regular n-dimensional (conve-
nientemente reescalado) es el de mayor volumen.
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Abstract

The aim of this work is the study of Brascamp-Lieb inequality and its applications in convex geo-
metry. We will focus on its aplications related to the obtention of volume inequalities for convex bodies
in the so-called John’s position.

In the first chapter we are going to introduce some basic general concepts in convex geometry, which
will be needed in the rest of the work. A special role will be played by two particular convex bodies,
which will be the n-dimensional cube, Bn

∞, and the regular simplex ∆n, which will be introduced in this
chapter and whose volume will be computed.

In the second chapter we will prove Brascamp-Lieb inequality, which can be expressed in the fo-
llowing way: Given (u j)

m
j=1 ⊂ Rn a generating system and (c j)

m
j=1 ⊆ (0,1] such that c1 + · · ·+ cm = n,

let

F = ı́nf

{
det(∑m

j=1 c jλ ju jut
j)

∏
m
j=1 λ

c j
j

,λ j > 0

}
.

Then, for every integrable functions ( f j)
m
j=1 : R→ [0,∞) we have

∫
Rn

m

∏
j=1

f c j
j (〈x,u j〉)dx≤ 1√

F

m

∏
j=1

(∫
R

f j(x)dx
)c j

.

A reverse version of this inequality will also be proved, showing that the constant that appears in both
Brascamp-Lieb inequality and its reverse version is the constant that appears when only Gaussian fun-
ctions are considered.

In the third chapter, we will focus on the study of convex bodies in John’s position, which are those
whose maximum volume ellipsoid contained in them is the Euclidean ball. Such convex bodies have
some vectors and some scalars associated to them, for which we will prove that the constant F that
appears in Brascamp-Lieb inequality is F = 1. We will also show in this chapter that the n-dimensional
cube and the (appropriately rescalated) regular simplex are in John’s position.

Finally, in the last chapter, we will make use of Brascamp-Lieb inequality to show that among all
convex bodies in John’s position, the (appropriately rescalated) regular simplex is the one with maxi-
mum volume and, among all symmetric convex bodies, the n-dimensional cube is the one with maximum
volume.
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Capítulo 1

Cuerpos convexos. Generalidades.

Un cuerpo convexo es un conjunto K ⊆ Rn que es convexo, compacto y tiene interior no vacío.
Decimos que un cuerpo convexo es simétrico si para cualquier x ∈ Rn se tiene que x ∈ K si y solo si
−x ∈ K. Por ejemplo, dada una norma ‖ · ‖ en Rn, su bola unidad cerrada K = {x ∈ Rn : ‖x‖ ≤ 1} es
un cuerpo convexo simétrico.
Dado un cuerpo convexo K ⊆ Rn que contiene a 0 en su interior, se define el funcional de Minkowski
asociado a K como

‖x‖K = ı́nf{λ > 0 : x ∈ λK} ∀x ∈ Rn.

Si K es un cuerpo convexo simétrico este funcional de Minkowski define una norma en Rn tal que su
bola unidad cerrada es K. Observamos que para cualquier transformación lineal de determinante no nulo
T ∈ GL(n) se tiene que si K contiene a 0 en su interior entonces T K contiene a 0 en su interior y para
cualquier x ∈ Rn

‖x‖T K = ı́nf{λ > 0 : x ∈ λT K}= ı́nf{λ > 0 : x ∈ T (λK)}
= ı́nf

{
λ > 0 : T T−1x ∈ T (λK)

}
= ı́nf

{
λ > 0 : T−1x ∈ λK

}
= ‖T−1x‖K .

Dado un cuerpo convexo K ⊆ Rn que contiene a 0 en su interior, se define su cuerpo polar como

K◦ = {x ∈ Rn : 〈x,y〉 ≤ 1, ∀y ∈ K} ,

donde 〈·, ·〉 denota el producto escalar en Rn. K◦ es un cuerpo convexo que contiene a 0 en su interior
tal que para todo x ∈ Rn

‖x‖K◦ = ı́nf{λ > 0 : x ∈ λK◦}= ı́nf{λ > 0 :
x
λ
∈ K◦}

= ı́nf{λ > 0 : máx
y∈K

〈 x
λ
,y
〉
≤ 1}= ı́nf{λ > 0 : máx

y∈K
〈x,y〉 ≤ λ}

= máx
y∈K
〈x,y〉.

Además, si K es un cuerpo convexo simétrico se tiene que K◦ es un cuerpo convexo simétrico. Observa-
mos que para cualquier transformación lineal T ∈ GL(n), denotando T t su matriz traspuesta y por T−t

la matriz traspuesta de su inversa,

(T K)◦ = {x ∈ Rn : 〈x,y〉 ≤ 1, ∀y ∈ T K}= {x ∈ Rn : 〈x,Ty〉 ≤ 1, ∀y ∈ K}
=

{
x ∈ Rn : 〈T tx,y〉 ≤ 1, ∀y ∈ K

}
=
{

T−tx ∈ Rn : 〈x,y〉 ≤ 1, ∀y ∈ K
}

= T−tK◦.

Además, si Bn
2 denota la bola Euclídea Bn

2 = {x ∈ Rn : ‖x‖2 ≤ 1}, se tiene que (Bn
2)
◦ = Bn

2.
Dado un cuerpo convexo K⊆Rn, su volumen, o medida de Lebesgue, se denotará por |K|. La frontera de
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2 Capítulo 1. Cuerpos convexos. Generalidades.

K la denotaremos por ∂K. La frontera de la bola Euclídea Bn
2 se denotará por Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.

Denotaremos al cubo n-dimensional Bn
∞ = {x ∈ Rn : ‖x‖∞ ≤ 1}, que es un cuerpo convexo simétrico y

cuyo volumen es |Bn
∞|= 2n.

Se define el símplex regular n-dimensional como

∆
n =

{
x ∈ Rn+1 :

n+1

∑
i=1

xi = 1, xi ≥ 0 ∀i = 1, . . . ,n+1

}
.

Según esta definición ∆n está contenido en el hiperplano afín H ⊆ Rn+1 dado por

H =

{
x ∈ Rn+1 :

n+1

∑
i=1

xi = 1

}
=

{
x ∈ Rn+1 : 〈x,v〉= 1√

n+1

}
,

donde v = ( 1√
n+1

, . . . , 1√
n+1

) ∈ Sn. Identificando H con Rn y c = ( 1
n+1 , . . . ,

1
n+1) con 0 ∈ Rn considera-

mos ∆n como un cuerpo convexo en Rn.

e2

en+1

e1

∆
n ⊆ H ∼ Rn

A continuación, calcularemos el volumen del símplex regular n-dimensional, ∆n ⊆ Rn.

Teorema 1.1. Sea ∆n ⊆ Rn el símplex regular n-dimensional. Entonces,

|∆n|=
√

n+1
n!

.

Demostración. Para calcular el volumen de ∆n, calcularemos la siguiente integral en (Rn+1)+= [0,∞)n+1:∫
(Rn+1)+

e−〈x,v〉dx,

donde v = ( 1√
n+1

, . . . , 1√
n+1

) ∈ Sn. Por un lado, aplicando el teorema de Fubini, tenemos,∫
(Rn+1)+

e−〈x,v〉dx =
∫
(Rn+1)+

n+1

∏
i=1

e
−xi√
n+1 dx =

(∫
∞

0
e
−t√
n+1 dt

)n+1

=

(√
n+1

∫
∞

0
e−sds

)n+1

= (
√

n+1)n+1.

Por otra parte, observando que para cada t > 0 se tiene que{
x ∈ (Rn+1)+ : 〈x,v〉= t

}
= t
√

n+1∆
n ⊆

{
x ∈ Rn+1 : 〈x,v〉= t

}
,

donde en la última ecuación hemos considerado ∆n ⊆H en vez de su identificación con un subconjunto
de Rn, se tiene por el teorema de Fubini que∫

(Rn+1)+
e−〈x,v〉dx =

∫
∞

0
e−t
∫

t
√

n+1∆n
dxdt =

∫
∞

0
tn(
√

n+1)n|∆n|e−tdt

= (
√

n+1)n|∆n|Γ(n+1).

Luego, igualando las dos integrales calculadas, obtenemos que

(
√

n+1)n+1 = (
√

n+1)n|∆n|Γ(n+1)⇔ |∆n|=
√

n+1
n!

.



Capítulo 2

La desigualdad de Brascamp-Lieb.

2.1. Introducción

Como consecuencia del teorema de Fubini, para cualquier n ∈ N se cumple que dadas n funciones
( fi)

n
i=1 : R→ [0,∞) integrables en R se tiene que∫

Rn
f1(x1) f2(x2) . . . fn(xn)dx =

n

∏
i=1

∫
R

fi(xi)dxi.

Equivalentemente, si denotamos por (ei)
n
i=1 una base ortonormal de Rn se tiene que∫

Rn

n

∏
i=1

fi(〈x,ei〉)dx =
n

∏
i=1

∫
R

fi(x)dx.

Cuando el vector x se enfrenta a un sistema generador de vectores (u j)
m
j=1, que no es base ortonor-

mal, no siempre se da esta igualdad.
En este contexto más general se plantea la siguiente cuestión:
Dado m ≥ n, (u j)

m
j=1 ⊆ Rn un sistema generador de Rn y (p j)

m
j=1 con p j ≥ 1 para todo 1 ≤ j ≤ m y

1
p1
+ · · ·+ 1

pm
= n, ¿Cuál es la mejor constante D, dependiente únicamente de los vectores (u j)

m
j=1 y de

los números (p j)
m
j=1 tal que para cualesquiera ( f j)

m
j=1 : R→ [0,∞) con f j ∈ Lp j(R) se cumple que

∫
Rn

m

∏
j=1

f j(〈x,u j〉)dx≤ D
m

∏
j=1

(∫
R

f p j
j (x)dx

) 1
p j

?

Equivalentemente, llamando c j =
1
p j

y considerando que para 1 ≤ j ≤ m se tiene que f j ∈ Lp j(R) si y

solo si f p j
j = f

1
c j
j es integrable en R, la cuestión es equivalente a la siguiente:

Dado m≥ n, (u j)
m
j=1 ⊆ R un sistema generador de Rn y (c j)

m
j=1 con 0≤ c j ≤ 1 para todo 1≤ j ≤ m y

c1 + · · ·+ cm = n , ¿Cuál es la mejor constante D, dependiente únicamente de los vectores (u j)
m
j=1 y de

los números (c j)
m
j=1 tal que para cualesquiera ( f j)

m
j=1 : R→ [0,∞) integrables se cumple que∫

Rn

m

∏
j=1

f c j
j (〈x,u j〉)dx≤ D

m

∏
j=1

(∫
R

f j(x)dx
)c j

?

Brascamp y Lieb demostraron en [5] que D = 1√
F

, siendo

F = ı́nf

{
det(∑m

j=1 c jλ ju juT
j )

∏
m
j=1 λ

c j
j

,λ j > 0

}
, (2.1)

era la mejor constante y dicha constante aparece como la mejor constante que se puede poner cuando se
consideran únicamente funciones Gaussianas.
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4 Capítulo 2. La desigualdad de Brascamp-Lieb.

Además, Barthe planteó en [4] la siguiente desigualdad inversa:
Dado m ≥ n, (u j)

m
j=1 ⊆ Rn un sistema generador de Rn y (c j)

m
j=1 con 0 ≤ c j ≤ 1 y c1 + · · ·+ cm = n,

¿Cuál es la mejor constante D̃, dependiente únicamente de los vectores (u j)
m
j=1 y de los números (c j)

m
j=1

tal que para cualesquiera (h j)
m
j=1 : R→ [0,∞) integrables y h : Rn→ [0,∞) integrable tales que

h(x)≥
m

∏
j=1

hc j
j (θ j) si x =

m

∑
j=1

θ jc ju j

se cumple que ∫
Rn

h(x)dx≥ D̃
m

∏
j=1

(∫
R

h j(x)dx
)c j

?

Barthe demostró que D̃ =
√

F , siendo la constante F definida en (2.1).
Estos dos resultados, de Brascamp-Lieb y de Barthe quedan recogidos en el siguiente teorema, que
demostraremos en este capítulo:

Teorema 2.1 (Desigualdad de Brascamp-Lieb y Desigualdad de Brascamp-Lieb inversa). Sean 1≤ n≤
m. Dados (u j)

m
j=1 un sistema generador de Rn y (c j)

m
j=1 con 0≤ c j ≤ 1 y c1 + · · ·+ cm = n definimos

F = ı́nf

{
det(∑m

j=1 c jλ ju jut
j)

∏
m
j=1 λ

c j
j

,λ j > 0

}
.

Entonces

1. Para cualesquiera ( f j)
m
j=1 : R→ [0,∞) integrables se cumple que

∫
Rn

m

∏
j=1

f c j
j (〈x,u j〉)dx≤ 1√

F

m

∏
j=1

(∫
R

f j(x)dx
)c j

.

2. Para cualesquiera (h j)
m
j=1 : R→ [0,∞) integrables y h : Rn→ [0,∞) integrable tales que

h(x)≥
m

∏
j=1

hc j
j (θ j) si x =

m

∑
j=1

θ jc ju j

se cumple que ∫
Rn

h(x)dx≥
√

F
m

∏
j=1

(∫
R

h j(x)dx
)c j

.

2.2. La desigualdad de Brascamp-Lieb

En esta sección vamos a demostrar el Teorema 2.1. Primero fijaremos alguna notación que iremos
utilizando durante esta sección. Sean ( f j)

m
j=1, (h j)

m
j=1 : R→ [0,∞) integrables definimos:

- I( f1, . . . , fm) =
∫
Rn

m

∏
j=1

f c j
j (〈x,u j〉)dx,

- K(h1, . . . ,hm) = ı́nf

{∫
Rn

h(x)dx : h(x)≥
m

∏
j=1

hc j
j (θ j) si x =

m

∑
j=1

θ jc ju j ,θ j ∈ R

}
.

Además, observamos que

- sup

{
I( f1, . . . , fm)

∏
m
j=1 ‖ f j‖

c j
1
, f j ∈ L1(R)

}
= sup

{
I( f1, . . . , fm) : ‖ f j‖1 = 1

}
,
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- ı́nf

{
K(h1, . . . ,hm)

∏
m
j=1 ‖h j‖

c j
1

, h j ∈ L1(R)

}
= ı́nf

{
K(h1, . . . ,hm) : ‖h j‖1 = 1

}
.

Demostraremos el Teorema 2.1 siguiendo la idea de Barthe, tal y como está expuesta en [6], demos-
trando las siguientes desigualdades:

1√
F
≤ sup

{
I( f1, . . . , fm) : ‖ f j‖1 = 1

}
≤ 1

F
ı́nf
{

K(h1, . . . ,hm) : ‖h j‖1 = 1
}
≤ 1√

F
.

Así, demostraremos que todas las desigualdades son igualdades y tendremos que:

- sup

{
I( f1, . . . , fm)

∏
m
j=1 ‖ f j‖

c j
1
, f j ∈ L1(R), j = 1, . . . ,m

}
=

1√
F

- ı́nf

{
K(h1, . . . ,hm)

∏
m
j=1 ‖h j‖

c j
1

, h j ∈ L1(R), j = 1, . . . ,m

}
=
√

F .

Lema 2.2. Sean 1 ≤ n ≤ m. Dados (u j)
m
j=1 un sistema generador de Rn y (c j)

m
j=1 con 0 ≤ c j ≤ 1 y

c1 + · · ·+ cm = n, se tiene que

1√
F
≤ sup

{
I( f1, . . . , fm) : ‖ f j‖1 = 1, j = 1, . . . ,m

}
,

donde el supremo se toma en las funciones integrables ( f j)
m
j=1 : R→ [0,∞).

Demostración. En esta demostración vamos a ver que si consideramos funciones gaussianas g j : R→
[0,∞) de la forma g j(t) = e−λ jt2

con λ j > 0, j = 1, . . . ,m, entonces

1√
F

= sup
g1,...,gm

I(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
.

De esta forma tendremos que

1√
F

= sup
g1,...,gm

I(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
≤ sup

f1,..., fm

I( f1, . . . , fm)

∏
m
j=1 ‖ f j‖

c j
1
,

donde el segundo supremo se toma entre todas las funciones ( f j)
n
j=1 : R→ [0,∞) integrables.

Dadas g j(t) = e−λ jt2
con λ j > 0 para todo 1≤ j ≤ m tenemos entonces que

I(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1

=

∫
Rn e−∑

m
j=1 c jλ j〈x,u j〉2dx

∏
m
j=1
(∫

R e−λ jt2dt
)c j .

Calculamos las integrales del denominador utilizando el cambio de variable t = 1√
2λ j

u:

∫
R

e−λ jt2
dt =

∫
R

e
−u2

2 du√
2λ j

=

√
2π√
2λ j

=

√
π√
λ j

.

Por tanto, el denominador queda:

m

∏
j=1

( √
π√
λ j

)c j

=
∏

m
j=1(
√

π)c j

∏
m
j=1(
√

λ j)c j
=

π
1
2 ∑

m
j=1 c j

∏
m
j=1 λ

c j
2

j

=
π

n
2√

∏
m
j=1 λ

c j
j

.

Calculemos ahora el numerador. Definimos la matriz A como A = ∑
m
j=1 c jλ ju jut

j. Esta matriz A es
simétrica y semidefinida positiva ya que si 1≤ i,k ≤ n

Ai,k = et
iAek =

m

∑
j=1

c jλ jet
iu jut

jek =
m

∑
j=1

c jλ j〈u j,ei〉〈u j,ek〉
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=
m

∑
j=1

c jλ j〈u j,ek〉〈u j,ei〉=
m

∑
j=1

c jλ jet
ku jut

jei = et
kAei = Ak,i

y para cualquier x ∈ Rn

〈Ax,x〉= xtAx =
m

∑
j=1

c jλ jxtu jut
jx =

m

∑
j=1

c jλ j〈x,u j〉2 ≥ 0.

Por lo tanto, existen una matriz ortogonal U y una matriz diagonal D =

(
µ1 0

. . .
0 µn

)
con µi ≥ 0 para

todo 1≤ i≤ n tales que A =U tDU .
Además, se tiene que para todo x ∈ Rn

m

∑
j=1

λ jc j〈x,u j〉2 = 〈Ax,x〉= 〈U tDUx,x〉= 〈DUx,Ux〉

y entonces la intregal del numerador es∫
Rn

e−〈Ax,x〉dx =
∫
Rn

e−〈DUx,Ux〉dx =
∫
Rn

e−〈Dy,y〉dy =
∫
Rn

e−∑
n
i=1 µiy2

i dy

=
n

∏
i=1

∫
R

e−µiy2
dy =

n

∏
i=1

√
π

µi
=

π
n
2√

det(∑m
j=1 c jλ ju jut

j)
,

donde hemos utilizado que detA = detD =
n

∏
i=1

µi.

Entonces, ya calculados numerador y denominador, tenemos que, para las funciones de la forma g j =

e−λ jt2
, con λ j > 0 para todo j = 1, . . . ,m:

I(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1

=

π
n
2√

det(∑m
j=1 c jλ ju juT

j )

π
n
2√

∏
m
j=1 λ

c j
j

=

√√√√ ∏
m
j=1 λ

c j
j

det(∑m
j=1 c jλ ju jut

j)
.

Tomando supremos para estas funciones g j, se tiene que:

sup
f1,... fm

I( f1, . . . , fm)

∏
m
j=1 ‖ f j‖

c j
1
≥ sup

g1,...gm

I(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1

=
1

ı́nf
{√

det(∑m
j=1 c jλ ju jut

j)

∏
m
j=1 λ

c j
j

: λ j > 0
} =

1√
F
.

Lema 2.3. Sean 1 ≤ n ≤ m. Dados (u j)
m
j=1 un sistema generador de Rn y (c j)

m
j=1 con 0 ≤ c j ≤ 1 y

c1 + · · ·+ cm = n, se tiene que

ı́nf
{

K(h1, . . . ,hm) : ‖h j‖1 = 1, j = 1, . . . ,m
}
≤
√

F ,

donde el ínfimo se toma en las funciones integrables (h j)
m
j=1 : R→ [0,∞).

Demostración. Para esta demostración vamos a considerar las funciones gaussianas g j : R→ [0,∞) de

la forma g j = e
− 1

λ j
t2

con λ j > 0, j = 1, . . . ,m. Vamos a ver entonces que

ı́nf
g1,...,gm

K(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
≤
√

F .
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De esta forma, tendremos que:

ı́nf
h1,...,hm

K(h1, . . . ,hm)

∏
m
j=1 ‖h j‖

c j
1
≤ ı́nf

g1,...,gm

K(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
≤
√

F .

Para calcular las integrales del denominador, aplicamos el cambio de variable t =
√

λ j
2 u:

∫
R

e
− 1

λ j
t2

dt =
∫
R

e
−u2

2

√
λ j

2
du =

√
2π

√
λ j

2
=
√

πλ j.

Entonces, sustituyendo el valor de esta integral en el denominador, este queda:

m

∏
j=1

(√
πλ j

)c j

= π
1
2 ∑

m
j=1 c j

√
m

∏
j=1

λ
c j
j = π

n
2

√
m

∏
j=1

λ
c j
j .

Calculamos ahora el numerador para estas funciones g j con j = 1, . . . ,m. Recordamos que

K(g1, . . . ,gm) = ı́nf

{∫
Rn

g(x)dx : g(x)≥
m

∏
j=1

e
−

c j
λ j

θ 2
j si x =

m

∑
j=1

c jθ ju j ,θ j ∈ R

}

= ı́nf

{∫
Rn

g(x)dx : g(x)≥ e
−∑

m
j=1

c j
λ j

θ 2
j si x =

m

∑
j=1

c jθ ju j ,θ j ∈ R

}
.

Buscamos una función g integrable en Rn tal que si descomponemos x como x = ∑
m
j=1 c jθ ju j entonces

se cumple la desigualdad g(x) ≥ e
−∑

m
j=1

c j
λ j

θ 2
j . De esta manera K(g1, . . . ,gm) será menor o igual que la

integral de la función g.
Definimos el elipsoide E = {x ∈ Rn : 〈Ax,x〉 ≤ 1} donde A es, como en el Lema 2.2, la matriz simétrica

definida positiva A =
m

∑
j=1

c jλ ju jut
j .

Sea x ∈ Rn con x = ∑
m
j=1 c jθ ju j para algunos θ j ∈ R y sea y ∈ E . Luego se tiene que 〈Ay,y〉 ≤ 1.

Entonces aplicando la desigualdad de Cauchy-Schwarz al producto escalar 〈x,y〉 se tiene lo siguiente:

〈x,y〉 = 〈
m

∑
j=1

c jθ ju j,y〉=
m

∑
j=1

c jθ j〈u j,y〉=
m

∑
j=1

√c j√
λ j

θ j

√
c jλ j〈u j,y〉

≤

(
m

∑
j=1

c j

λ j
θ

2
j

) 1
2
(

m

∑
j=1

c jλ j〈u j,y〉2
) 1

2

=

(
m

∑
j=1

c j

λ j
θ

2
j

) 1
2

〈Ay,y〉
1
2

≤

(
m

∑
j=1

c j

λ j
θ

2
j

) 1
2

.

Así, teniendo en cuenta que E es simétrico se tiene que ‖x‖2
E o = máx

y∈E
〈x,y〉2 ≤

m

∑
j=1

c j

λ j
θ

2
j . De manera

obvia, esto implica que si x = ∑
m
j=1 c jθ ju j entonces

e−‖x‖
2
εo ≥ e

−∑
m
j=1

c j
λ j

θ 2
j .

Por lo tanto,

ı́nf

{∫
Rn

g(x)dx : g(x)≥ e
−∑

m
j=1

c j
λ j

θ 2
j si x =

m

∑
j=1

c jθ ju j ,θ j ∈ R

}
≤
∫
Rn

e−‖x‖
2
E o dx. (2.2)
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Por otra parte, como existen U matriz ortogonal y una matriz diagonal D =

(
µ1 0

. . .
0 µn

)
con µi ≥ 0 para

todo 1≤ i≤ n tales que A =U tDU , el elipsoide E se puede escribir como

E = {x ∈ Rn : 〈Ax,x〉 ≤ 1}= {x ∈ Rn : 〈DUx,Ux〉 ≤ 1}=
=

{
U tz ∈ Rn : 〈Dz,z〉 ≤ 1

}
=U t {z ∈ Rn : 〈Dz,z〉 ≤ 1}=U tE1, (2.3)

con

E1 = {z ∈ Rn : 〈Dz,z〉 ≤ 1}=
{

z ∈ Rn : 〈D
1
2 z,D

1
2 z〉 ≤ 1

}
=

=
{

D−
1
2 z ∈ Rn : 〈z,z〉 ≤ 1

}
= D−

1
2 {z ∈ Rn : ‖z‖2 ≤ 1}= D−

1
2 Bn

2,

donde D
1
2 es la matriz diagonal cuyos elementos de la diagonal son µ

1
2

i y D−
1
2 la matriz diagonal cuyos

elementos de la diagonal son µ
− 1

2
i para todo 1≤ i≤ n.

Por lo tanto,

E ◦ = (U tE1)
◦ =U t(E1)

◦ =U t(D−
1
2 Bn

2)
◦ =U tD

1
2 (Bn

2)
◦ =U tD

1
2 Bn

2. (2.4)

Así, teniendo en cuenta (2.4), se tiene que ‖x‖E ◦ = ‖x‖U t D
1
2 Bn

2
= ‖Ux‖

D
1
2 Bn

2
= ‖D−

1
2 Ux‖Bn

2
.

Visto esto y volviendo a la desigualdad (2.2) se obtiene

∫
Rn

e−‖x‖
2
E ◦dx =

∫
Rn

e−‖D
− 1

2 Ux‖2
2dx =

∫
Rn

e−‖D
− 1

2 y‖2
2dy =

∫
Rn

e−∑
n
i=1

y2
i

µi dy =

=
n

∏
i=1

∫
Rn

e−
y2
i

µi dy =
n

∏
i=1

√
µiπ = π

n
2

√√√√det

(
n

∑
i=1

c jλ ju jut
j

)
.

Una vez calculados numerador y denominador tenemos que:

K(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
≤

π
n
2

√
det
(

∑
n
i=1 c jλ ju jut

j

)
π

n
2

√
∏

m
j=1 λ

c j
j

=

√√√√det
(

∑
n
i=1 c jλ ju jut

j

)
∏

m
j=1 λ

c j
j

.

Por tanto,

ı́nf
g1,...,gm

K(g1, . . . ,gm)

∏
m
j=1 ‖g j‖

c j
1
≤ ı́nf


√√√√det

(
∑

n
i=1 c jλ ju jut

j

)
∏

m
j=1 λ

c j
j

, λ j > 0

=
√

F .

Teorema 2.4. Sean 1 ≤ n ≤ m, (u j)
m
j=1 un sistema generador de Rn y (c j)

m
j=1 con 0 ≤ c j ≤ 1 y c1 +

· · ·+ cm = 1. Sean ( f j)
m
j=1 : R→ [0,∞) y (h j)

m
j=1 : R→ [0,∞) funciones integrables tales que

∫
R

f j(t)dt =
∫
R

h j(t)dt = 1, j = 1, . . . ,m.

Entonces, se tiene:
F · I( f1, . . . , fm)≤ K(h1 . . . ,hm).
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Demostración. Supongamos primero que las funciones ( f j)
m
j=1 y (h j)

m
j=1 son estrictamentes positivas y

continuas. Suponemos que la constante F es positiva y finita, ya que si F = 0 el enunciado es trivial y,
claramente, de la definición de F tenemos que F es finita.
Definimos, para cada 1≤ j ≤ m, la aplicación Tj : R→ R tal que∫ Tj(t)

−∞

h j(s)ds =
∫ t

−∞

f j(s)ds.

Como hemos supuesto f j y h j son continuas y estrictamente positivas para todo j = 1, . . . ,m con
‖ f j‖1 = ‖h j‖1 = 1, la aplicación Tj está bien definida para todo j = 1, . . . ,m y además es estricta-
mente creciente. Esta aplicación también es inyectiva, pues para t,r ∈ R, suponiendo que Tj(t) = Tj(r)

en R, se tiene que
∫ t

−∞

f j(s)ds =
∫ Tj(t)

−∞

h j(s)ds =
∫ Tj(r)

−∞

h j(s)ds =
∫ r

−∞

f j(s)ds, y entonces t = r ya

que estamos suponiendo f j estrictamente positiva. La aplicación Tj es sobreyectiva, pues para cada

t ′ ∈ R se tiene que
∫ t ′

−∞

h j(s)ds es un número en el intervalo (0,1), ya que por el teroema funda-

mental del cálculo integral H j(t) =
∫ t

−∞

h j(s)ds es una función continua y estrictamente creciente en

R que cumple que lı́m
t→−∞

H j(t) = 0 y lı́m
t→∞

H j(t) = 1. Como por el teorema fundamental del cálculo

integral Fj(t) =
∫ t

−∞

f j(s)ds es una función continua y estrictamente creciente en R que cumple que

lı́m
t→−∞

Fj(t) = 0 y lı́m
t→∞

Fj(t) = 1, se tiene que existe un único t ∈ R tal que Fj(t) = H j(t ′) y así Tj(t) = t ′.

Además, por el teorema fundamental del cálculo integral y por el teorema de derivación de la función
inversa se tiene que Tj es derivable en R y

T ′j (t)h j(Tj(t)) = f j(t), ∀t ∈ R.

Definimos W : Rn→ Rn dada por

W (y) =
m

∑
j=1

c jTj(〈y,u j〉)u j, ∀y ∈ Rn.

Podemos calcular la matriz jacobiana de W y obtenemos que JW (y) =
m

∑
j=1

c jT ′j (〈y,u j〉)u jut
j. Además,

por la definición de F se tiene que

det

(
m

∑
j=1

c jT ′j (〈y,u j〉)u jut
j

)
≥ F ·

m

∏
j=1

(T ′j (〈y,u j〉))c j > 0.

Consideramos h : Rn→ [0,∞) una función integrable que cumple que

h(x)≥
m

∏
j=1

hc j
j (θ j) si x =

m

∑
j=1

θ jc ju j.

Por tanto, se tiene que

h(W (y))≥
m

∏
j=1

hc j
j (Tj(〈y,u j〉)), ∀y ∈ Rn,

y así: ∫
Rn

h(x)dx ≥
∫

W (Rn)
h(x)dx =

∫
Rn

h(W (y))|detJW (y)|dy

≥
∫
Rn

m

∏
j=1

hc j
j (Tj(〈y,u j〉))det

(
m

∑
j=1

c jT ′j (〈y,u j〉)u jut
j

)
dy
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≥ F ·
∫
Rn

m

∏
j=1

hc j
j (Tj(〈y,u j〉))(T ′j (〈y,u j〉))c j dy

= F ·
∫
Rn

m

∏
j=1

f c j
j (〈y,u j〉)dy = F · I( f1, . . . fm).

Por tanto, tomando ínfimo en h, tenemos que F · I( f1, . . . , fm)≤ K(h1 . . . ,hm), como queríamos probar.
Por un proceso de aproximación se puede demostrar este teorema para funciones integrables en general,
tal y como está enunciado.



Capítulo 3

Cuerpos convexos en posición de John.

3.1. La posición de John y descomposición de la identidad

Sea K un cuerpo convexo en Rn. El teorema de John [7] afirma que existe un único elipsoide E de
máximo volumen contenido en K . A dicho elipsoide se le denomina elipsoide de John de K.
Si tomamos una transformación lineal, T ∈ GL(n), es claro que aplicando esta transformación al elip-
soide y a K se tiene que T (E ) ⊆ T K. Por otra parte, si existiese un elipsoide E1 ⊆ T K con volumen
mayor que T (E ) entonces |T−1(E )| > |T−1T (E )| = |E | y T−1(E1)⊆ T−1T K = K, lo que cual es una
contradicción. Por tanto, T (E ) es el elipsoide de John de T K.
Decimos que un cuerpo K ⊆ Rn está en posición de John si su elipsoide de John es la bola Euclídea Bn

2.
Es decir, si Bn

2 ⊆ K y para cualquier elipsoide E contenido en K se tiene que |E | ≤ |Bn
2|.

El siguiente teorema, que no vamos a demostrar en este trabajo, caracteriza el hecho de que un cuerpo
convexo se encuentre en posición de John:

Teorema 3.1. Sea K un cuerpo convexo en Rn. K está en posición de John si y solo si Bn
2 ⊆ K y además

existen (u j)
m
j=1 ⊆ ∂K∩Sn−1 y (c j)

m
j=1 ⊆ (0,∞) tales que

m

∑
j=1

c ju j = 0

y

In =
m

∑
j=1

c ju jut
j,

donde In denota la matriz identidad.

Demostración. La demostración se debe a John y a Ball. Se puede ver en [1] .

El teorema anterior nos dice que todo cuerpo convexo en posición de John tiene asociados unos
escalares y unos vectores. El siguiente lema nos muestra que dichos escalares satisfacen las condiciones
que se han considerado en el Capítulo 2:

Lema 3.2. Sean (u j)
m
j=1 ∈ Sn−1 y (c j)

m
j=1 ⊆ (0,∞) y que satisfacen In =

m

∑
j=1

c ju jut
j entonces:

1) 0 < c j ≤ 1 para todo j = 1, . . . ,m

2)
m

∑
j=1

c j = n

Demostración. Vamos a demostrar ambos puntos:

11
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1) Como estamos suponiendo que los c j son mayores que cero, probaremos que cada c j es menor o
igual que 1 para todo j = 1, . . . ,m.

Como se satisface que In =
m

∑
j=1

c ju jut
j, entonces para todo x ∈ Rn se tiene:

x = Inx =
m

∑
j=1

c ju jut
jx =

m

∑
j=1

c j〈u j,x〉u j.

Esto implica que

‖x‖2
2 = 〈x,x〉= 〈

m

∑
j=1

c j〈u j,x〉u j,x〉=
m

∑
j=1

c j〈x,u j〉2.

En particular, como u j ∈ Sn−1 para todo j = 1, . . . ,m, entonces:

1 = ‖u j‖2
2 =

m

∑
k=1

c j〈u j,uk〉2 = c j‖u j‖2
2 + ∑

k 6= j
ck〈u j,uk〉2 ≥ c j.

Luego c j ≤ 1 para todo 1≤ j ≤ m.

2) Para demostrar la igualdad utilizaremos que la traza de la matriz identidad es n. Antes de eso
calculamos la traza de la matriz u jut

j para cada 1≤ j ≤ m:

Tr(u jut
j) =

m

∑
i=1

(u j)
2
i = 〈u j,u j〉= 1.

Por lo tanto,

n = Tr(In) = Tr(
m

∑
j=1

c ju jut
j) =

m

∑
j=1

c jTr(u jut
j) =

m

∑
j=1

c j ·1 =
m

∑
j=1

c j.

A continuación, en el siguiente lema, enunciaremos y demostraremos la fórmula de Cauchy-Binet,
la cual utilizaremos más adelante:

Lema 3.3 (Fórmula de Cauchy-Binet). Sea A matriz n×m y B matriz m× n con m ≥ n y n,m ∈ N.
Si I ⊆ {1, . . . ,m} con |I| = n, donde |I| denota el cardinal de I, denotamos por AI la matriz cuadrada
formada por las i-ésimas columnas de A, con i ∈ I y BI la matriz cuadrada formada por las i-ésimas
filas de B, con i ∈ I. Entonces:

det(AB) = ∑
|I|=n

detAI detBI.

Demostración. La columna i-ésima de AB es b1iA1 + · · ·+bmiAm donde A j es la columna j-ésima de la
matriz A con j = 1, . . . ,m.
Entonces, aplicando la multilinealidad del determinante, se tiene:

det(AB) = det(b11A1 + · · ·+bm1Am, . . . ,b1nA1 + · · ·+bmnAm) = ∑
|I|=n

detAI detBI.

Después de haber visto esto, podemos plantearnos cuál será la constante F de la desigualdad de
Brascamp-Lieb con las condiciones del Lema 3.2. En el siguiente lema veremos cuál es. Necesitaremos
la fórmula de Cauchy-Binet para demostrar el lema.
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Lema 3.4. Sean (u j)
m
j=1 ∈ Sn−1 y (c j)

m
j=1 ⊆ (0,∞) y que satisfacen In =

m

∑
j=1

c ju jut
j. Entonces,

F = ı́nf

{
det(∑m

j=1 c jλ ju juT
j )

∏
m
j=1 λ

c j
j

,λ j > 0

}
= 1.

Demostración. Sean λ j > 0, j = 1, . . . ,m. Para todo I ⊆ {1, . . . ,m} cuyo cardinal es |I|= n, definimos:

λI = ∏
j∈I

λ j y UI =

(
det

(
∑
j∈I

c ju jut
j

))2

.

Aplicamos la fórmula de Cauchy-Binet a A=(
√

c1λ1u1| . . . |
√

cmλmum) y B=(
√

c1λ1u1| . . . |
√

cmλmum)
t

y obtenemos:

det

(
m

∑
j=1

c jλ ju jut
j

)
= det

(
m

∑
j=1

√
c jλ ju j(

√
c jλ ju j)

t

)
= ∑
|I|=n

λIUI. (3.1)

Tomando los λ j = 1 tenemos que ∑
|I|=n

UI = 1. Por la desigualdad aritmogeométrica de medias,

∑
|I|=n

λIUI ≥ ∏
|I|=n

λ
UI
I =

m

∏
j=1

λ
∑{I: j∈I}UI
j . (3.2)

Volvemos a aplicar la fórmula de Cauchy-Binet al exponente de la desigualdad anterior:

∑
{I: j∈I}

UI = ∑
|I|=n

UI− ∑
{I: j/∈I}

UI = 1−det(In−
√

c ju j
√

c jut
j)

= 1−det(UU t − c jUe1et
1U t) = 1−det(U(In− c je1et

1)U
t)

= 1−det(U)det(In− c je1et
1)det(U t) = 1− (1− c j) = c j,

donde U ∈ O(n) es tal que u j =Ue1 con e1 el primer vector de la base canónica.
Observamos que, volviendo a las ecuaciones (3.1) y (3.2), obtenemos

det

(
m

∑
j=1

c jλ ju jut
j

)
≥

m

∏
j=1

λ
c j
j

y esto implica

F = ı́nf

{
det(∑m

j=1 c jλ ju juT
j )

∏
m
j=1 λ

c j
j

,λ j > 0

}
≥ 1.

La igualdad se da en esta última igualdad por la elección de los λ j = 1. Con esto terminamos la demos-
tración del lema.

3.2. El cubo y el símplex regular

En esta sección demostraremos que el cubo n-dimensional y un dilatado del símplex regular n-
dimensional están en posición de John.
Primero demostremos que el cubo lo está.

Teorema 3.5. El cubo n-dimensional Bn
∞ se encuentra en posición de John.
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Demostración. Para esta demostración utilizaremos la caracterización de un cuerpo en posción de John
del Teorema 3.1.
Tenemos que Bn

2 ⊆ Bn
∞. Además, cualquier punto x ∈ Rn podemos escribirlo de la forma

x =
n

∑
i=1
〈x,ei〉ei =

n

∑
i=1

1
2
〈x,ei〉ei +

n

∑
i=1

1
2
〈x,(−ei)〉(−ei),

donde (ei)
n
i=1 son los vectores de la base canónica.

Se cumple que
n

∑
i=1

1
2

ei +
n

∑
i=1

1
2
(−ei) = 0

y

In =
n

∑
i=1

1
2

eiet
i +

n

∑
i=1

1
2
(−ei)(−ei)

t .

También se cumple que (±ei)
n
i=1 ⊆ ∂Bn

∞∩Sn−1. Así se cumplen las condiciones del Teorema 3.1 y por
tanto el cubo n-dimensional está en posición de John.

e1

e2

−e1

−e2

A continuación demostraremos que un dilatado del símplex regular n-dimensional está en posición
de John.

Teorema 3.6. El símplex regular n-dimensional reescalado Sn =
√

n(n+1)∆n ⊆ Rn está en posición
de John.

Demostración. Sea ∆
n =

{
x ∈ Rn+1 :

n+1

∑
i=1

xi = 1, xi ≥ 0 ∀i = 1, . . . ,n+1

}
⊆ H donde H es el hiper-

plano afín en Rn+1 dado por

H =

{
x ∈ Rn+1 : 〈x,v〉= 1√

n+1

}
,

siendo v = ( 1√
n+1

, . . . , 1√
n+1

) ∈ Sn. Identificamos H con Rn y c = ( 1
n+1 , . . . ,

1
n+1) con 0 ∈ Rn.

Definimos el hiperplano lineal H0 ⊆ Rn+1 dado por

H0 =
{

x ∈ Rn+1 : 〈x,v〉= 0
}
,

que es paralelo a H y que cumple que PH0c = 0. De esta manera el símplex regular en Rn se identifica

con PH0∆n ⊆ H0. Vamos a demostrar que, identificando H0 con Rn, Sn =
PH0∆n

r(PH0∆n)
está en posición de

John, donde r(PH0∆n) denota el inradio de PH0∆n dentro de H0. Es decir,

r(PH0∆
n) = máx

{
r ≥ 0 : rBn+1

2 ∩H0 ⊆ PH0∆
n} .



La desigualdad de Brascamp-Lieb en geometría convexa - Javier Vicente Sabroso 15

Es claro que Bn+1
2 ∩H0 ⊆ Sn. Veamos que existen (u j)

m
j=1 ⊆ ∂Sn ∩ Sn−1 y (c j)

m
j=1 ⊆ (0,∞) que cum-

plan las condiciones del Teorema 3.1 para que Sn esté en posición de John. Visto en H0, tomaremos
u j los opuestos de las proyecciones de e j sobre H0 normalizadas para todo j = 1, . . . ,n+ 1, es decir,

u j =−
PH0e j

‖PH0e j‖2
∈ Sn∩H0 para todo j = 1, . . . ,n+1.

Queremos ver que existen (c j)
n+1
j=1 tales que para x ∈ H0 se verifica que

x =
n+1

∑
j=1

c j〈x,u j〉u j =
n+1

∑
j=1

c j〈x,
PH0e j

‖PH0e j‖2
〉

PH0e j

‖PH0e j‖2
.

Sea x ∈ H0, tenemos que

x =
n+1

∑
j=1
〈x,e j〉e j

y por tanto

x = PH0x =
n+1

∑
j=1
〈x,e j〉PH0e j =

n+1

∑
j=1
〈x,PH0e j〉PH0e j =

n+1

∑
j=1
‖PH0e j‖2

2

〈
x,

PH0e j

‖PH0e j‖2

〉
PH0e j

‖PH0e j‖2
;

tomando c j = ‖PH0e j‖2
2 para todo j = 1, . . . ,n+ 1. Hemos demostrado que, identificando Rn con H0,

In = ∑
n+1
j=1 c ju jut

j con In la matriz identidad.

Veamos ahora que se cumple que
n+1

∑
j=1

c ju j = 0. Antes de comprobarlo, veamos que ‖PH0e j‖2 es igual

para todo j = 1, . . . ,n+ 1. Sabemos que PH0e j = e j−〈e j,v〉v = e j−
1√

n+1
v, luego este vector tiene

todas sus coordenadas iguales a− 1
n+1 salvo una que será igual a 1− 1

n+1 . Así, para todo j = 1, . . . ,n+1,

‖PH0e j‖2 =

√
n

n+1
.

Así se tiene que

n+1

∑
j=1

c ju j =
n+1

∑
j=1
‖PH0e j‖2

2
−PH0e j

‖PH0e j‖2
=−‖PH0e1‖2

n+1

∑
j=1

PH0e j =−‖PH0e1‖2PH0(1, . . . ,1) = 0,

ya que (1, . . . ,1) es proporcional a v.
Falta comprobar que u j ∈ ∂Sn para todo j = 1, . . . ,n+1. Veamos que

r j = 〈PH0e j,u1〉=
〈

PH0e j,
−PH0e1

‖PH0e1‖2

〉
tiene el mismo valor r j para todo j = 2, . . . ,n+ 1. Si esto ocurre, tendremos que la cara del símplex
regular opuesta a PH0e1 tiene vector normal u1 y el punto más cercano de la cara es r ju1.
Calculamos r j. Sabemos que

PH0e1 = e1−〈e1,v〉v =
(

1− 1
n+1

,− 1
n+1

. . . ,− 1
n+1

)
,

luego su norma es:

‖PH0e1‖2 =

√
n

n+1
.

Por tanto, para todo j = 2, . . . ,n+1

r j =

〈
PH0e j,

−PH0e1

‖PH0e1‖2

〉
=

〈
e j,
−PH0e1

‖PH0e1‖2

〉
=

1
‖PH0e1‖2

〈
e j,−PH0e1

〉
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=
1

‖PH0e1‖2

〈
e j,

(
1

n+1
−1, . . . ,

1
n+1

)〉
=

1
‖PH0e1‖2

1
n+1

=
1√

n(n+1)
.

De manera análoga se obtendría que punto más cercano al origen de la cara opuesta a PH0ek de PH0∆n es
uk√

n(n+1)
. Por lo tanto r(∆n) =

1√
n(n+1)

y uk ∈ ∂ (
√

n(n+1)PH0)∆
n = ∂Sn.

u1u2

u3



Capítulo 4

Aplicaciones de la desigualdad de
Brascamp-Lieb en geometría convexa.

Según hemos visto en el Capítulo 3, K está en posición de John si y solo si K contiene a Bn
2 y existen

(u j)
m
j=1 ∈ ∂K ∩ Sn−1 y (c j)

m
j=1 ⊆ (0,1] tales que In =

m

∑
j=1

c ju jut
j y

m

∑
j=1

c ju j = 0. Además en tal caso la

constante en la desigualdad de Brascamp-Lieb para los vectores (u j)
m
j=1 y los escalares (c j)

m
j=1 es F = 1.

En este capítulo vamos a utilizar la desigualdad de Brascamp-Lieb para obtener propiedades geométri-
cas de cuerpos convexos en posición de John. Demostraremos que, entre todos los cuerpos convexos
simétricos en posición de John, el cubo n-dimensional Bn

∞ es el de mayor volumen y que, entre todos
los cuerpos (no necesariamente simétricos) en posición de John, el símplex regular en posición de John
Sn es el de mayor volumen. Estos reultados fueron demostrados por Ball en [2] y [3].

Teorema 4.1. Sea K ⊆ Rn un cuerpo convexo en posición de John. Entonces

|K| ≤ |Sn|.

Además, si K es simétrico entonces
|K| ≤ |Bn

∞|.

Demostración. Supongamos primero que K ⊆ Rn es un cuerpo convexo simétrico en posición de John.
Entonces, por el Teorema 3.1 y el Lema 3.2 existen (u j)

m
j=1 ∈ ∂K ∩ Sn−1 y (c j)

m
j=1 ⊆ (0,1] tales que

In =
m

∑
j=1

c ju jut
j y

m

∑
j=1

c ju j = 0. Sea

L0 =
{

x ∈ Rn : |〈x,u j〉| ≤ 1 ∀1≤ j ≤ m
}
.

Se tiene entonces que, como K es simétrico, K ⊆ L0 y entonces

|K| ≤ |L0|=
∫
Rn

χL0(x)dx =
∫
Rn

m

∏
j=1

χ[−1,1](〈x,u j〉)dx =
∫
Rn

m

∏
j=1

χ
c j

[−1,1](〈x,u j〉)dx.

u1

u2

u3

u4

17
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Aplicando la desigualdad de Brascamp-Lieb (Teorema 2.1) y, teniendo en cuenta que por el Lema 3.4
se tiene que F = 1, obtenemos que

|K| ≤ |L0|=
∫
Rn

m

∏
j=1

χ
c j

[−1,1](〈x,u j〉)dx≤
m

∏
j=1

(∫
Rn

χ[−1,1](t)dt
)c j

.

Por tanto, por el Lema 3.4

|K| ≤ |L0| ≤
m

∏
j=1

(∫
Rn

χ[−1,1](t)dt
)c j

=
m

∏
j=1

2c j = 2∑
m
j=1 c j = 2n = |Bn

∞|.

Supongamos ahora que K ⊆Rn es un cuerpo convexo no necesariamente simétrico en posición de John.
De nuevo, por el Teorema 3.1 y el Lema 3.2 existen (u j)

m
j=1 ∈ ∂K ∩ Sn−1 y (c j)

m
j=1 ⊆ (0,1] tales que

In =
m

∑
j=1

c ju jut
j y

m

∑
j=1

c ju j = 0.

Definimos el cuerpo convexo L1 ⊆ Rn

L1 =
{

x ∈ Rn : 〈x,u j〉 ≤ 1 ∀1≤ j ≤ m
}
.

Tenemos que K ⊆ L1. Tomamos en Rn+1, para todo j = 1, . . . ,m,

- v j =

√
n

n+1

(
−u j,

1√
n

)
∈ Sn,

- d j =
n+1

n
c j.

u1

u2

u3

u4

v1v3
v4

v2

1√
n+1

Estos vectores y escalares cumplen las siguientes propiedades:
Dado (x, t) ∈ Rn×R, entonces

m

∑
j=1

d j〈(x, t),v j〉v j =
m

∑
j=1

d j
n

n+1

(
−〈−u j,x〉u j−

tu j√
n
,〈−u j,

x√
n
〉+ t

n

)
=

m

∑
j=1

(
−c j〈−u j,x〉u j−

tc ju j√
n
,c j〈−u j,

x√
n
〉+

tc j

n

)
= (x, t). (4.1)

Por tanto, In+1 = ∑
m
j=1 d jv jvt

j donde In+1 denota la matriz identidad en Rn+1. Además, también cumplen
que

m

∑
j=1

d jv j =
m

∑
j=1

√
n+1

n
c j

(
−u j,

1√
n

)
=

(
m

∑
j=1
−
√

n+1
n

c ju j,
m

∑
j=1

√
n+1
n

c j

)
= (0,

√
n+1). (4.2)
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Por último, como consecuencia directa de In+1 = ∑
m
j=1 d jv jvt

j y del Lema 3.2 se tiene que

m

∑
j=1

d j = n+1 y 0 < d j ≤ 1 ∀ j = 1, . . . ,m.

Denotamos como C al cono

C =
{
(x, t) ∈ Rn×R : 〈(x, t),v j〉 ≥ 0,∀1≤ j ≤ m

}
.

Observamos que

C =

{
(x, t) ∈ Rn×R : t ≥ 0,x ∈ t√

n
L1

}
. (4.3)

En efecto, sea (x, t) ∈ C. Supongamos que t < 0, entonces como 〈(x, t),v j〉 ≥ 0 para todo 1 ≤ j ≤ m
tenemos

〈(x, t),v j〉=−
√

n
n+1

〈x,u j〉+
t√

n+1
≥ 0 ∀1≤ j ≤ m

y obtenemos que 〈x,u j〉< 0 para todo 1≤ j≤m. Como consecuencia como c j ∈ (0,1] para todo 1≤ j≤

m ,
m

∑
j=1

c j〈x,u j〉< 0, que contradice la hipótesis
m

∑
j=1

c ju j = 0. Por lo tanto, si (x, t) ∈C necesariamente

debe ser t ≥ 0 y entonces tenemos que 〈(x, t),v j〉 ≥ 0 para todo 1≤ j ≤ m si y solo si 〈x,u j〉 ≤ t√
n para

todo 1≤ j ≤ m. La última condición se cumple si y solo si x ∈ t√
n

L1.

Por otra parte, si (x, t) verifica que t ≥ 0 y x ∈ t√
n L1, lo cual ocurre si y solo si 〈x,u j〉 ≤

t√
n

para todo

1≤ j ≤ m, entonces se tiene que

〈(x, t),v j〉=−
√

n
n+1

〈x,u j〉+
t√

n+1
≥ 0

para todo 1≤ j ≤ m y así (x, t) ∈C.
Definimos para todo 1≤ j ≤ m, f j : R→ [0,∞)

f j(s) =


e−s si s≥ 0

0 si s < 0

para todo 1≤ j ≤ m.
Calculamos la siguiente integral en Rn+1. Por (4.2) y por (4.3) se tiene que:

∫
Rn+1

m

∏
j=1

f j(〈(x, t),v j〉)d j dtdx =
∫

C
e−∑

m
j=1 d j〈(x,t),v j〉dtdx =

∫
C

e−
√

n+1tdtdx =
∫

∞

0

∫
t√
n L1

e−
√

n+1tdxdt

=
∫

∞

0
e−
√

n+1t
∣∣∣∣ t√

n
L1

∣∣∣∣dt = |L1|
∫

∞

0

(
t√
n

)n

e−
√

n+1tdt

= |L1|
∫

∞

0

sne−sds
(
√

n)n(
√

n+1)n+1
= |L1|

Γ(n+1)
(
√

n)n(
√

n+1)n+1
.

Por otro lado∫
Rn+1

m

∏
j=1

f j(〈(x, t),v j〉)d j dtdx =
∫
Rn+1

m

∏
j=1

(
χ[0,∞]〈(x, t),v j〉e−〈(x,t),v j〉

)d j
dtdx.
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Por la desigualdad de Brascamp-Lieb (Teorema 2.1) y, teniendo en cuenta (4.1) y que por el Lema 3.4
se tiene que la constante de Brascamp-Lieb es F = 1, esta integral es menor o igual que el siguiente
producto de integrales,

m

∏
j=1

(∫
R

χ[0,∞](t)e
−tdt

)d j

=
m

∏
j=1

(∫
∞

0
e−tdt

)d j

=
m

∏
j=1

1d j = 1.

Por lo tanto, como K ⊆ L1, se tiene por el Teorema 1.1

|K| ≤ |L1| ≤
(
√

n)n(
√

n+1)n+1

Γ(n+1)
= (
√

n(n+1))n
√

n+1
Γ(n+1)

= (
√

n(n+1))n|∆n|= |Sn|.
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