000110591 001__ 110591 000110591 005__ 20230519145612.0 000110591 0247_ $$2doi$$a10.3390/foods10030617 000110591 0248_ $$2sideral$$a127295 000110591 037__ $$aART-2021-127295 000110591 041__ $$aeng 000110591 100__ $$0(orcid)0000-0002-4027-5637$$aGuillén Morer, S.$$uUniversidad de Zaragoza 000110591 245__ $$aImpact of the resistance responses to stress conditions encountered in food and food processing environments on the virulence and growth fitness of non-typhoidal salmonellae 000110591 260__ $$c2021 000110591 5060_ $$aAccess copy available to the general public$$fUnrestricted 000110591 5203_ $$aThe success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. 000110591 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000110591 590__ $$a5.561$$b2021 000110591 592__ $$a0.726$$b2021 000110591 594__ $$a4.1$$b2021 000110591 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b35 / 144 = 0.243$$c2021$$dQ1$$eT1 000110591 593__ $$aFood Science$$c2021$$dQ1 000110591 593__ $$aPlant Science$$c2021$$dQ1 000110591 593__ $$aMicrobiology$$c2021$$dQ1 000110591 593__ $$aHealth Professions (miscellaneous)$$c2021$$dQ1 000110591 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000110591 700__ $$aNadal Calvo, lL.$$uUniversidad de Zaragoza 000110591 700__ $$0(orcid)0000-0003-2430-858X$$aÁlvarez Lanzarote, I.$$uUniversidad de Zaragoza 000110591 700__ $$0(orcid)0000-0002-7971-4828$$aMañas Pérez, P.$$uUniversidad de Zaragoza 000110591 700__ $$0(orcid)0000-0002-5049-3646$$aCebrián Asín, G.$$uUniversidad de Zaragoza 000110591 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos 000110591 773__ $$g10, 3 (2021), 10030617[30 pp]$$pFoods$$tFoods$$x2304-8158 000110591 8564_ $$s1424991$$uhttps://zaguan.unizar.es/record/110591/files/texto_completo.pdf$$yVersión publicada 000110591 8564_ $$s2901339$$uhttps://zaguan.unizar.es/record/110591/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000110591 909CO $$ooai:zaguan.unizar.es:110591$$particulos$$pdriver 000110591 951__ $$a2023-05-18-16:08:42 000110591 980__ $$aARTICLE