000110665 001__ 110665
000110665 005__ 20240319080948.0
000110665 0247_ $$2doi$$a10.1109/TPEL.2021.3118319
000110665 0248_ $$2sideral$$a125897
000110665 037__ $$aART-2022-125897
000110665 041__ $$aeng
000110665 100__ $$0(orcid)0000-0003-0379-4347$$aVilla, Jorge
000110665 245__ $$aConductance control for electromagnetic-compatible induction heating appliances
000110665 260__ $$c2022
000110665 5060_ $$aAccess copy available to the general public$$fUnrestricted
000110665 5203_ $$aThe design requirements of induction hobs are strongly restricted by efficiency, heating performance, cost, the generation of acoustic noise, and electromagnetic compatibility (EMC). These two latter topics, cost and EMC, motivated the research presented in this article. The different levels at which the equivalent load of the induction hob is excited generate a variation of the equivalent impedance throughout the grid period even if all the other parameters are kept constant. This can cause a nonsinusoidal consumption of the grid current which goes against the compliance with EMC standards. This article proposes an online controller which controls the conductance seen by the inverter by only modifying the switching frequency throughout the bus period. This greatly reduces the harmonic distortion of the grid current, no matter what is the type of the vessel used. Moreover, it requires neither power-factor correction rectifiers nor any additional circuitry and it has a faster dynamic response with respect to the traditional solutions used in induction hobs due to its higher bandwidth.
000110665 536__ $$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2019-103939RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PTQ-17-09045
000110665 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000110665 590__ $$a6.7$$b2022
000110665 592__ $$a3.341$$b2022
000110665 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b42 / 274 = 0.153$$c2022$$dQ1$$eT1
000110665 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000110665 594__ $$a14.1$$b2022
000110665 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000110665 700__ $$0(orcid)0000-0001-5832-1163$$aDominguez, Alberto
000110665 700__ $$0(orcid)0000-0003-4633-4551$$aBarragan, Luis A.$$uUniversidad de Zaragoza
000110665 700__ $$0(orcid)0000-0002-8007-5613$$aArtigas, Jose I.$$uUniversidad de Zaragoza
000110665 700__ $$aEspañol, Jorge
000110665 700__ $$0(orcid)0000-0002-0795-8743$$aNavarro, Denis$$uUniversidad de Zaragoza
000110665 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000110665 773__ $$g37, 3 (2022), 2909-2920$$pIEEE trans. power electron.$$tIEEE Transactions on Power Electronics$$x0885-8993
000110665 8564_ $$s4741380$$uhttps://zaguan.unizar.es/record/110665/files/texto_completo.pdf$$yPostprint
000110665 8564_ $$s3182019$$uhttps://zaguan.unizar.es/record/110665/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000110665 909CO $$ooai:zaguan.unizar.es:110665$$particulos$$pdriver
000110665 951__ $$a2024-03-18-12:49:28
000110665 980__ $$aARTICLE