000110666 001__ 110666
000110666 005__ 20240319080949.0
000110666 0247_ $$2doi$$a10.3390/math10020278
000110666 0248_ $$2sideral$$a127613
000110666 037__ $$aART-2022-127613
000110666 041__ $$aeng
000110666 100__ $$0(orcid)0000-0003-3138-7597$$aAguarón, Juan$$uUniversidad de Zaragoza
000110666 245__ $$aGeometric Compatibility Indexes in a Local AHP-Group Decision Making Context: A Framework for Reducing Incompatibility
000110666 260__ $$c2022
000110666 5060_ $$aAccess copy available to the general public$$fUnrestricted
000110666 5203_ $$aThis paper deals with the measurement of the compatibility in a local AHP-Group Decision Making context. Compatibility between two individuals or decision makers is understood as the property that reflects the proximity between their positions or preferences, usually measured by a distance function. An acceptable level of incompatibility between the individual and the group positions will favour the acceptance of the collective position by the individuals. To facilitate the compatibility measurement, the paper utilises four indicators based on log quadratic distances between matrices or vectors which can be employed in accordance with the information that is available from the individual decision makers and from the group. The indicators make it possible to measure compatibility in decision problems, regardless of how the collective position and the priorities are obtained. The paper also presents a theoretical framework and a general, semi-automatic procedure for reducing the incompatibility measured by the four indicators. Using relative variations, the procedure identifies and slightly modifies the judgement of the collective matrix that further improves the indicator. This process is undertaken without modifying the initial information provided by the individuals. A numerical example illustrates the application of the theoretical framework and the procedure.
000110666 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/S35-20R
000110666 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000110666 590__ $$a2.4$$b2022
000110666 592__ $$a0.446$$b2022
000110666 591__ $$aMATHEMATICS$$b23 / 329 = 0.07$$c2022$$dQ1$$eT1
000110666 593__ $$aComputer Science (miscellaneous)$$c2022$$dQ2
000110666 593__ $$aMathematics (miscellaneous)$$c2022$$dQ2
000110666 593__ $$aEngineering (miscellaneous)$$c2022$$dQ2
000110666 594__ $$a3.5$$b2022
000110666 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000110666 700__ $$0(orcid)0000-0003-4419-1905$$aEscobar, María Teresa$$uUniversidad de Zaragoza
000110666 700__ $$0(orcid)0000-0002-5037-6976$$aMoreno-Jiménez, José María$$uUniversidad de Zaragoza
000110666 700__ $$0(orcid)0000-0002-8807-8958$$aTurón, Alberto$$uUniversidad de Zaragoza
000110666 7102_ $$14014$$2623$$aUniversidad de Zaragoza$$bDpto. Economía Aplicada$$cÁrea Métodos Cuant.Econ.Empres
000110666 773__ $$g10, 2 (2022), [20 pp.]$$pMathematics (Basel)$$tMathematics$$x2227-7390
000110666 8564_ $$s431271$$uhttps://zaguan.unizar.es/record/110666/files/texto_completo.pdf$$yVersión publicada
000110666 8564_ $$s2765212$$uhttps://zaguan.unizar.es/record/110666/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000110666 909CO $$ooai:zaguan.unizar.es:110666$$particulos$$pdriver
000110666 951__ $$a2024-03-18-12:50:27
000110666 980__ $$aARTICLE