000110728 001__ 110728 000110728 005__ 20240319080958.0 000110728 0247_ $$2doi$$a10.1002/joc.7241 000110728 0248_ $$2sideral$$a127363 000110728 037__ $$aART-2022-127363 000110728 041__ $$aeng 000110728 100__ $$aJaagus, J. 000110728 245__ $$aLong-term changes in drought indices in eastern and central Europe 000110728 260__ $$c2022 000110728 5060_ $$aAccess copy available to the general public$$fUnrestricted 000110728 5203_ $$aThis study analyses long-term changes in drought indices (Standardised Precipitation Index—SPI, Standardised Precipitation–Evapotranspiration Index—SPEI) at 1 and 3 months scales at 182 stations in 11 central and eastern European countries during 1949–2018. For comparative purposes, the necessary atmospheric evaporative demand (AED) to obtain SPEI was calculated using two methods, Hargreaves-Samani (SPEIH) and Penman-Monteith (SPEIP). The results show some relevant changes and tendencies in the drought indices. Statistically significant increase in SPI and SPEI during the cold season (November–March), reflecting precipitation increase, was found in the northern part of the study region, in Estonia, Latvia, Lithuania, northern Belarus and northern Poland. In the rest of study domain, a weak and mostly insignificant decrease prevailed in winter. Summer season (June–August) is characterized by changes in the opposite sign. An increase was observed in the north, while a clear decrease in SPEI, reflecting a drying trend, was typical for the southern regions: the Czech Republic, Slovakia, Hungary, Romania, Moldova and southern Poland. A general drying tendency revealed also in April, which was statistically significant over a wide area in the Czech Republic and Poland. Increasing trends in SPI and SPEI for September and October were detected in Romania, Moldova and Hungary. The use of SPEI instead of SPI generally enhances drying trends. 000110728 536__ $$9info:eu-repo/grantAgreement/EC/H2020/689271/EU/Water Works 2016-2020 in Support of the Water JPI (WaterWorks2015) - Sustainable water use in agriculture, to increase water use efficiency and reduce soil and water pollution/WaterWorks2015$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 689271-WaterWorks2015 000110728 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000110728 590__ $$a3.9$$b2022 000110728 591__ $$aMETEOROLOGY & ATMOSPHERIC SCIENCES$$b35 / 94 = 0.372$$c2022$$dQ2$$eT2 000110728 594__ $$a6.7$$b2022 000110728 592__ $$a1.178$$b2022 000110728 593__ $$aAtmospheric Science$$c2022$$dQ1 000110728 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000110728 700__ $$aAasa, A. 000110728 700__ $$aAniskevich, S. 000110728 700__ $$aBoincean, B. 000110728 700__ $$aBojariu, R. 000110728 700__ $$aBriede, A. 000110728 700__ $$aDanilovich, I. 000110728 700__ $$0(orcid)0000-0003-3085-7040$$aDomínguez Castro, F. 000110728 700__ $$aDumitrescu, A. 000110728 700__ $$aLabuda, M. 000110728 700__ $$aLabudová, L. 000110728 700__ $$aLõhmus, K. 000110728 700__ $$aMelnik, V. 000110728 700__ $$aMõisja, K. 000110728 700__ $$aPongracz, R. 000110728 700__ $$aPotopová, V. 000110728 700__ $$aReznícková, L. 000110728 700__ $$aRimkus, E. 000110728 700__ $$aSemenova, I. 000110728 700__ $$aStonevicius, E. 000110728 700__ $$aŠtepánek, P. 000110728 700__ $$aTrnka, M. 000110728 700__ $$aVicente-Serrano, S. M. 000110728 700__ $$aWibig, J. 000110728 700__ $$aZahradnícek, P. 000110728 773__ $$g42, 1 (2022), 225-249$$pInt. j. climatol.$$tInternational Journal of Climatology$$x0899-8418 000110728 8564_ $$s1379430$$uhttps://zaguan.unizar.es/record/110728/files/texto_completo.pdf$$yVersión publicada 000110728 8564_ $$s2033759$$uhttps://zaguan.unizar.es/record/110728/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000110728 909CO $$ooai:zaguan.unizar.es:110728$$particulos$$pdriver 000110728 951__ $$a2024-03-18-13:49:03 000110728 980__ $$aARTICLE