000110739 001__ 110739
000110739 005__ 20230519145623.0
000110739 0247_ $$2doi$$a10.3390/app112210741
000110739 0248_ $$2sideral$$a127212
000110739 037__ $$aART-2021-127212
000110739 041__ $$aeng
000110739 100__ $$aEsteban, Mario
000110739 245__ $$aTechno-economics optimization of H2 and CO2 compression for renewable energy storage and power-to-gas applications
000110739 260__ $$c2021
000110739 5060_ $$aAccess copy available to the general public$$fUnrestricted
000110739 5203_ $$aThe decarbonization of the industrial sector is imperative to achieve a sustainable future. Carbon capture and storage technologies are the leading options, but lately the use of CO2 is also being considered as a very attractive alternative that approaches a circular economy. In this regard, power to gas is a promising option to take advantage of renewable H2 by converting it, together with the captured CO2, into renewable gases, in particular renewable methane. As renewable energy production, or the mismatch between renewable production and consumption, is not constant, it is essential to store renewable H2 or CO2 to properly run a methanation installation and produce renewable gas. This work analyses and optimizes the system layout and storage pressure and presents an annual cost (including CAPEX and OPEX) minimization. Results show the proper compression stages need to achieve the storage pressure that minimizes the system cost. This pressure is just below the supercritical pressure for CO2 and at lower pressures for H2, around 67 bar. This last quantity is in agreement with the usual pressures to store and distribute natural gas. Moreover, the H2 storage costs are higher than that of CO2, even with lower mass quantities; this is due to the lower H2 density compared with CO2 . Finally, it is concluded that the compressor costs are the most relevant costs for CO2 compression, but the storage tank costs are the most relevant in the case of H2
000110739 536__ $$9info:eu-repo/grantAgreement/ES/UZ/UZ2020-TEC-06
000110739 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000110739 590__ $$a2.838$$b2021
000110739 592__ $$a0.507$$b2021
000110739 594__ $$a3.7$$b2021
000110739 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b39 / 92 = 0.424$$c2021$$dQ2$$eT2
000110739 591__ $$aPHYSICS, APPLIED$$b76 / 161 = 0.472$$c2021$$dQ2$$eT2
000110739 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b218 / 345 = 0.632$$c2021$$dQ3$$eT2
000110739 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b100 / 180 = 0.556$$c2021$$dQ3$$eT2
000110739 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000110739 593__ $$aComputer Science Applications$$c2021$$dQ2
000110739 593__ $$aProcess Chemistry and Technology$$c2021$$dQ2
000110739 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000110739 593__ $$aFluid Flow and Transfer Processes$$c2021$$dQ2
000110739 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000110739 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000110739 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000110739 773__ $$g11, 22 (2021), 10741 [14 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000110739 8564_ $$s575878$$uhttps://zaguan.unizar.es/record/110739/files/texto_completo.pdf$$yVersión publicada
000110739 8564_ $$s2761391$$uhttps://zaguan.unizar.es/record/110739/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000110739 909CO $$ooai:zaguan.unizar.es:110739$$particulos$$pdriver
000110739 951__ $$a2023-05-18-16:17:45
000110739 980__ $$aARTICLE