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Abstract

The interplay between gravitational and hydrodynamical forces in shaping the structure of
the Universe is complex and still largely unknown. Gravitational forces are dominant on large
scales, where the density perturbations are small and thus describable by linear-order solutions
of the Boltzmann equations. However, on small scales, non-linearities arise, and therefore
analytical approaches break down. The gas is furthermore perturbed by hydrodynamical
forces, and several astrophysical processes take place. Galaxy formation triggers supernovae
explosions and energy injection from accreting supermassive black holes, perturbing themass
distribution and reshaping the gravitational potential, causing subsequently a back-reaction
on the collision-less dark matter. The lack of accurate modelling of such baryonic processes
is one of the main sources of uncertainties in Large Scale Structure analyses, and its impact
is expected to dramatically increase in the next observational campaigns planned.

In this thesis, we develop a framework to consistently model the spatial distribution
and time evolution of dark matter, gas, and galaxies, in the Large Scale Structure of the
universe. The core of our framework is given by large, high-resolution N -body simulations,
which ensure robust modelling of non-linearities on small scales, and accurate predictions
on large scales. In a post-processing phase, we displace the particles in our simulations
to explore different cosmological and baryonic scenarios, by combining two state-of-the-art
algorithms: cosmology-rescaling and baryon correction model. We implement extended and
optimised versions of these algorithms, to reach the accuracy required by next-generation
surveys, and we systematically test them, both separately and jointly. Finally, we use modern
machine learning techniques, and specifically artificial neural networks, trained to learn
the connections between cosmological and astrophysical parameters and relevant summary
statistics of the cosmic matter field, as measured in our simulations. In this way, our
predictions can be delivered at a negligible computational cost, and the linear, nonlinear
and baryonic contributions can be computed separately. Our neural network emulators are
publicly available and can be easily incorporated into a weak lensing pipeline. By using
our framework, the modelling of the cosmic matter field can be extended to unprecedentedly
small scales, in a highly accurate and flexible fashion, and additionally with a consistent
speeding-up in the computational time. We expect that the techniques developed and the
results presented here will be useful for a broad range of applications in Large Scale Structure
analyses, and in particular in the exploitation of weak lensing and galaxy surveys.
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Resumen

La interacción entre las fuerzas gravitatorias e hidrodinámicas en la formación de la estructura
del Universo es compleja y aún se desconoce en gran medida. Las fuerzas gravitatorias son
dominantes a gran escala, donde las perturbaciones de la densidad son pequeñas y, por tanto,
se pueden describir mediante una teoría lineal. Sin embargo, en las escalas pequeñas surgen
no linealidades y, por lo tanto, la teoría analítica no es suficiente. El gas es perturbado tanto por
las fuerzas hidrodinámicas como por la gravedad, y tienen lugar varios procesos astrofísicos.
La formación de galaxias desencadena explosiones de supernovas y la inyección de energía
de los agujeros negros supermasivos que se acrecientan, perturbando la distribución de la
masa y remodelando el potencial gravitatorio, lo que provoca posteriormente una reacción
inversa en la materia oscura.

La falta de unamodelización precisa de estos procesos bariónicos es una de las principales
fuentes de incertidumbre en los actuales estudios de lentes gravitatorias débiles, y se espera
que su impacto aumente drásticamente en las próximas campañas de observación previstas.

En esta tesis, queremos desarrollar un marco para modelar de forma consistente la
distribución espacial y la evolución temporal de la materia oscura, el gas y las galaxias,
en la Estructura a Gran Escala del Universo. Utilizamos un enfoque basado en simulaciones,
variando simultáneamente la cosmología y los procesos astrofísicos. El núcleo de nuestro
marco está dado por grandes simulaciones de alta resolución, que garantizan unamodelización
robusta de las no linealidades a pequeñas escalas, y predicciones precisas a grandes escalas.
En una fase de posprocesamiento, desplazamos las partículas en nuestras simulaciones para
explorar diferentes escenarios cosmológicos y bariónicos, mediante la combinación de dos
algoritmos de última generación: el modelo de escalado cosmológico y el de corrección
bariónica. Implementamos versiones extendidas y optimizadas de ambos algoritmos, para
alcanzar la precisión requerida por los estudios de próxima generación, y los probamos
sistemáticamente por separado y en combinación. Por último, utilizamos técnicas modernas
de aprendizaje automático, y en concreto redes neuronales artificiales, entrenadas para
aprender las conexiones entre los parámetros cosmológicos y astrofísicos y las estadísticas
relevantes del campo de materia cósmica, tal y como se miden en nuestras simulaciones. De
estemodo, nuestras predicciones pueden realizarse con un coste computacional insignificante,
y la contribución lineal, no lineal y bariónica puede calcularse por separado. Nuestros
emuladores de redes neuronales están disponibles públicamente y pueden incorporarse
fácilmente a una analisis de lentes gravitatorias débiles. Utilizando nuestro marco de trabajo,
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la modelización de la densidad cosmica puede extenderse a escalas pequeñas sin precedentes,
de forma muy precisa y con una aceleración consistente en el tiempo de cálculo. Esperamos
que las técnicas desarrolladas y los resultados presentados aquí sean útiles para una amplia
gama de aplicaciones en los análisis de estructuras a gran escala, y en particular en studios
de lentes gravitatorias débiles y galaxias.

IV



Acronyms

ΛCDM Λ Cold Dark Matter. 1, 2, 137, 143

AGN Active Galactic Nuceli. 47, 48, 52, 54–56, 67, 70, 77, 141, 148, 188

AIC Akaike Information Creterion. 129, 132–134, 140, 147

BAO Baryonic Acoustic Oscillations. 140, 147

BCM Baryon Correction Model. XI–XIII, XV, 4, 49–51, 53–59, 61–63, 65, 67–70, 72–74,
76, 79, 81–83, 98–100, 103, 107, 108, 119, 137, 138, 141, 144, 148, 187, 188, 193

CDM Cold Dark Matter. 2

CMB Cosmic Microwave Background. 1, 2, 23, 24, 34

DES Dark Energy Survey. 3

EoS Equation of State. 2, 3

EPT Eulerian Perturbation Theory. 3

GrO Gravity Only. XI, 48–50, 52, 53, 55, 56, 58, 59, 61–65, 91, 99, 119, 188, 201

HSC Subaru Hyper Suprime-Cam Lensing Survey. 3

KiDS Kilo-Degree Survey. 3

LPT Lagrangian Perturbation Theory. 3

LSS Lage Scale Structure. 2, 3, 5, 141, 142

LSST Legacy Survey of Space and Time. 2, 3, 140, 147

MCMC Monte Carlo Markov Chain. 5, 139, 145

V



NFW Navarro-Frenk-White. 55, 58, 63, 91, 187, 188

PSF Point Spread Function. 3

SHAM Sub-Halo Abundance Matching. 141, 148

VI



Index

List of Figures XI

List of Tables XV

Introduction 1
0.1 Cosmological context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 On LSS surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Accelerating Boltzmann solvers and perturbation theory with emulators 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Linear matter power spectrum emulator . . . . . . . . . . . . . . . . . . . 10

1.2.1 Parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Training and validation sets . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Neural network setup . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Validation of the emulator . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Lagrangian perturbation theory emulator . . . . . . . . . . . . . . . . . . . 15
1.3.1 Lagrangian bias expansion . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 LPT emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Parameter constraints from mock cosmic shear power spectra . . . . . . . . 18
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 The BACCO Simulation Project: rescaling the cosmology of simulations 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 The BACCO Simulations . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 The simulation code . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Nonlinear mass power spectrum Emulator . . . . . . . . . . . . . . . . . . 33
2.3.1 Building the emulator . . . . . . . . . . . . . . . . . . . . . . . . 33

VII



2.3.2 Testing the emulator . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Baryonification: exploring astrophysical scenarios 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Gravity-Only Simulations . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Hydrodynamical Simulations . . . . . . . . . . . . . . . . . . . . 51

3.3 Modified Baryon Correction Model . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Overwiew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . 58
3.3.4 Impact of baryons on the power spectrum . . . . . . . . . . . . . . 59

3.4 Cosmology scaling of gravity-only simulations . . . . . . . . . . . . . . . 61
3.5 Fitting the state-of-the-art hydrodynamical simulations . . . . . . . . . . . 63

3.5.1 Simulation data & BCM parameter sampling . . . . . . . . . . . . 64
3.5.2 Best-fitting parameters . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Relation to the baryon fraction in clusters . . . . . . . . . . . . . . 67
3.5.4 Redshift evolution of baryonic parameters . . . . . . . . . . . . . . 70

3.6 Information analysis: baryon-cosmology degeneracies . . . . . . . . . . . . 72
3.6.1 Fisher Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Information in the mass power spectrum . . . . . . . . . . . . . . . 77

3.7 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Baryonification and bispectrum: going to higher orders 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Measurement of power spectra and bispectra . . . . . . . . . . . . 88
4.3 Modelling of the density field . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Updates of the baryon correction model . . . . . . . . . . . . . . . 91
4.3.2 Accuracy of cosmology rescaling and baryonification in the bispectrum 98

4.4 Impact of baryons on the bispectrum . . . . . . . . . . . . . . . . . . . . . 98
4.5 Fitting the hydrodynamical simulations . . . . . . . . . . . . . . . . . . . 100

4.5.1 Redshift dependence of the baryon parameters . . . . . . . . . . . 104
4.5.2 Baryonic effects on the squeezed bispectrum . . . . . . . . . . . . 104
4.5.3 Baryon fractions in haloes . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII



5 Cosmology and baryons: a neural network emulator 111
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2.2 Baryonification algorithm . . . . . . . . . . . . . . . . . . . . . . 117
5.2.3 Cosmology Rescaling . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.4 Power Spectrum Measurements . . . . . . . . . . . . . . . . . . . 118
5.2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Baryonification Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.1 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.2 Power Spectrum Data . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.3 Neural Network Emulator . . . . . . . . . . . . . . . . . . . . . . 123
5.3.4 Performance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 The cosmology dependence of baryonic effects on the power spectrum . . . 127
5.5 Constraints on the baryon parameter space . . . . . . . . . . . . . . . . . . 128

5.5.1 Baryonification Parameter Constraints . . . . . . . . . . . . . . . . 130
5.5.2 A minimal parameterisation for baryonification . . . . . . . . . . . 131

5.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Summary and Conclusions 137

Resumen y conclusiones 143

Acknowledgements 153

Bibliography 155

Appendices 183

A Class setup 185

B Analytical profiles of baryons and dark matter 187

C Subsampling of components particles 191

D Convergence of the baryon simulation 193

E Convergence test 195

F Folding of the particle distribution 199

IX



G Impact of cosmic variance 203

H Joint accuracy of cosmology rescaling and baryonification 205

X



List of Figures

1.1 Mean absolute fractional error of the neural network. . . . . . . . . . . . . 12
1.2 The accuracy of our neural network predictions for the linear matter power

spectrum for multiple cosmologies and redshifts. . . . . . . . . . . . . . . 12
1.3 Validation of the predictions of our neural-network emulator for the linear

matter power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 The accuracy of our emulators for the cross-spectrum of linear fields in

Eulerian coordinates predicted by Lagrangian Perturbation Theory. . . . . . 16
1.5 The marginalised posterior distributions on cosmological parameters

obtained from mock weak lensing data. . . . . . . . . . . . . . . . . . . . 19

2.1 The projectedmass density field in nenya, one of our sixBACCOsimulations,
at z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The impact of numerical parameters in our simulated nonlinear mass power
spectra at z = 0 and z = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The nonlinear mass power spectrum at z = 0 of the “Euclid code comparison
project”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Predictions from the BACCO simulations, vilya, nenya, and narya, at z = 0. 31
2.5 Distribution of cosmologies employed to build BACCO non-linear emulator. 34
2.6 Nonlinear power spectra at z = 0 and z = 1 over the linear theory expectations. 38
2.7 Amplitude of principal components of power spectrum data. . . . . . . . . 39
2.8 Comparison between a full N -body simulation and our BACCO emulator. . 39
2.9 Comparison between Q ≡ log(P/Plinear) predicted by our emulator and that

computed directly by scaling our BACCO simulations to the desired cosmology. 41
2.10 Comparison between nonlinear power spectrum predicted by our emulator

and by four other methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11 The ratio between the cold matter power spectra in massive neutrino

cosmologies, P ν
c , and the case without any massive neutrino, P ν=0

c . . . . . 42

3.1 Density profiles of a GrO and BCM halo. . . . . . . . . . . . . . . . . . . 54
3.2 Mass profiles for a GrO and BCM halo. . . . . . . . . . . . . . . . . . . . 57

XI



3.3 Baryonic effects on the matter power spectrum component by component. . 57
3.4 Modifications to the matter power spectrum varying each parameter. . . . . 60
3.5 Accuracy of cosmology scaling with baryonification . . . . . . . . . . . . . 62
3.6 Best-fitting models to hydrodynamical simulations. . . . . . . . . . . . . . 64
3.7 1σ credibility levels of the BCM parameters. . . . . . . . . . . . . . . . . . 66
3.8 Correlation between halo gas fraction and matter clustering. . . . . . . . . 68
3.9 Redshift dependence of the impact of baryons. . . . . . . . . . . . . . . . . 71
3.10 BCM best-fitting parameter as a function of redshift. . . . . . . . . . . . . 73
3.11 Derivatives of the matter power spectrum with different models. . . . . . . 75
3.12 Derivatives of the matter power spectrum with respect to different

cosmological parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.13 Fisher forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.14 Comparison between Fisher information of different models. . . . . . . . . 80
3.15 Expected accuracy in cosmological parameters constraints. . . . . . . . . . 80

4.1 Baryonic effects at z = 0 on the power spectrum, equilateral bispectrum and
reduced bispectrum, measured in hydrodynamical simulations. . . . . . . . 88

4.2 Density profiles of gas and stars as measured in the Illustris TNG simulation. 89
4.3 Accuracy of the cosmology-rescaling algorithm when used with a

baryonification procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Bispectra of hydrodynamical simulations. . . . . . . . . . . . . . . . . . . 93
4.5 Dependence of the BCM on halo masses. . . . . . . . . . . . . . . . . . . 95
4.6 Bispectra dependence on BCM parameters. . . . . . . . . . . . . . . . . . 97
4.7 Best-fitting BCM bispectra to hydrodynamical simulations. . . . . . . . . . 101
4.8 Best-fitting model to Illustris TNG-300 power spectrum and bispectrum, at

z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Impact of the redshifts evolution in the BCM parameters . . . . . . . . . . 102
4.10 Best-fitting models for reduced squeezed bispectra at z = 0. . . . . . . . . 105
4.11 Relation between the baryonic impact on the clustering and the halo baryon

fraction in haloes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 Accuracy of the cosmology rescaling algorithm with baryonification. . . . . 115
5.2 Principal Analysis Decomposition of our set of baryonified power spectra . 122
5.3 Ratio between the predictions of our Neural Network emulator over the

corresponding measurement on our baryonified simulations. . . . . . . . . 123
5.4 Dependence of the accuracy of our Neural Network emulator on the number

of training points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

XII



5.5 Cosmology dependence of the baryonic effects on the non-linear mass power
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 Cosmology dependence of the baryonic effects on the non-linear mass power
spectrum with fixed cosmic baryon fraction. . . . . . . . . . . . . . . . . . 125

5.7 Best-fitting models to hydrodynamical simulations obtained with our
emulator at z = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.8 Best-fitting models to hydrodynamical simulations obtained with our
emulator at z = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.9 Best-fitting parameters obtained by fitting the hydrodynamical simulations. 129
5.10 AIC computed using from 0 to 7 free baryonic parameters . . . . . . . . . 129
5.11 Number of hydrodynamical simulations which prefer a model with a given

number of free parameters according to the Akaike Information Criterion . 132

A.1 Comparison of the linear power spectrum provided by two independent
Bolztmann solvers CLASS and CAMB . . . . . . . . . . . . . . . . . . . . . . 186

D.1 Convergence of BCM power spectrum with simulation box size. . . . . . . 194

E.1 Convergence of BCM with simulation box size. . . . . . . . . . . . . . . . 196
E.2 Convergence of BCM with simulation resolution. . . . . . . . . . . . . . . 197

F.1 Measurements of folded power spectra and bispectra. . . . . . . . . . . . . 200
F.2 Measurements of folded BCM suppressions. . . . . . . . . . . . . . . . . . 201

G.1 Impact of cosmic variance. . . . . . . . . . . . . . . . . . . . . . . . . . . 204

H.1 Accuracy of cosmology rescaling and baryonification. . . . . . . . . . . . . 206

XIII



XIV



List of Tables

1.1 The range of cosmological parameter values of our linear emulator. . . . . . 10

2.1 The cosmological parameters of the three “BACCO” simulations: Vilya,
Nenya and Narya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Fiducial BCM parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Best-fitting BCM parameters for each hydrodynamical simulation. . . . . . 68
3.3 Parameter intervals used to compute numerically the derivatives of the power

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Cosmological parameters set used in the BACCO simulation project. . . . . 116

XV



XVI



Introduction

From ancient times, humans have speculated on the nature of the Universe and its origins.
For millennia, our representation of the Universe was shaped by myths and legends, inspired
by the natural events that were observed. In the last century, cosmology has finally turned
into a quantitative science.

0.1 Cosmological context

The development of special and general relativity, the discovery of the expansion of the
Universe, and the Cosmic Microwave Background (CMB), have provided a strong theoretical
and observational ground for the hot Big Bang model. In the last decades, cosmology has
entered its precision era. The exquisite observations made by satellites and large ground
telescopes, the progress of theoretical models, and the increasing power of computers have
allowed the transition from s of magnitudes to percent errors. The inflationary theory, first
proposed by Alan Guth in 1979, solved some of the long-standing theoretical problems in
cosmology (Guth, 1981). The discovery of the anisotropy in the CMB, and the following
experiments to measure them (COBE,WMAP, Planck), have provided us a precise estimation
of the energy content and geometry of the Universe (Mather et al., 1994; Komatsu et al.,
2011; Planck Collaboration et al., 2018). Moreover, from the light of distant supernovae,
it was discovered the late acceleration in the expansion of the Universe (Riess et al., 1998).
All these probes led to the establishment of the current standard cosmological model, the
geometrically-flatΛColdDarkMatter (ΛCDM). In the standardmodel, the common baryonic
matter makes up only 20% of the total matter in the Universe, being the rest unknown “cold
dark matter”. The energy budget today is dominated by an unknown source of energy, the
“dark energy”, which is driving the actual acceleration of the Universe. Even if the Universe
expands, the dark energy density stays constant: from here the name “cosmological constant”,
Λ, was introduced by Einstein a century ago.

Despite being able to accurately reproduce a very large set of different observations,
from the power spectrum of the CMB to the galaxy distribution today, ΛCDM lacks a solid
theoretical justification. If we assume Λ to be the zero-point energy of the quantum vacuum,
its observed energy differs from the theoretically expected one by ∼120 s of magnitude.
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We do not know the physical nature of the Cold Dark Matter (CDM) and we lack empirical
evidence for inflation. Moreover, the latest and most accurate observations highlight a tension
between cosmological parameters inferred at high redshifts, with CMB experiments, and low
redshifts Lage Scale Structure (LSS) surveys (see e.g. Verde et al., 2019; Perivolaropoulos
and Skara, 2021). These tensions could reflect an improper account of systematic errors,
which become increasingly important given the accuracy of the experiments, but could also
be the hint of an unknown underlying physics, e.g. a breakdown of general relativity, new
fundamental particles, scalar fields, etc. Several models beyond ΛCDM have been explored.
One of the most explored extensions of the ΛCDM includes massive neutrinos. This scenario
is robustly supported by experiments detecting the solar neutrinos oscillations in lepton
flavor. Considering massive neutrinos affects the expansion and the growth of Structures in
the Universe, but does not solve the aforementioned tensions. Another popular generalisation
of the ΛCDM is obtained by allowing the EoS of dark energy to evolve with cosmic time,
i.e. dropping the cosmological constant paradigm. Other models have been proposed, for
instance “modified-gravity” f(R) models, where a generic dependence on the Ricci scalar
(R) is introduced in the Einstein-Hilbert action yielding Einstein’s field equations for gravity,
or models where it is considered an interaction between dark matter and dark energy.

0.2 On LSS surveys

Current data do not allow to distinguish between the different cosmological models proposed,
and it is not clear if by refining the precision and robustness of future experiments the current
tension between the parameters will increase (pointing therefore to a model break-down) or
be alleviated (suggesting some data systematics issues). The next generation “stage IV” LSS
surveys will have potentially a constraining power close to CMB experiments. Additionally,
LSS observations are intrinsically more sensitive to dark energy, which kick-in at late times,
comparing to the CMB. Stage IV surveys, e.g. Euclid and Legacy Survey of Space and Time
(LSST), should constrain the dark energy EoS at 1% level (Amendola et al., 2018; LSST
Science Collaboration et al., 2009).

The full exploitation of the data from the forthcoming observational campaigns poses
serious theoretical and computational challenges. The sheer amount of expected data is
striking, being in some cases tens of Terabytes collected per night, with all the difficulties
of transfer, storage, and analysis that this implies. The handling of systematic errors will be
critical, given the expected precision of these surveys.

Among them, weak lensing surveys are particularly complex to model. These surveys
measure the cosmic shear, that is the spatial correlation of the shapes of distant, background
galaxies, caused by the foreground LSS gravitational field which acts as a lens (see e.g.
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Hoekstra and Jain, 2008; Mandelbaum, 2018, for a review). Cosmic shear is sensitive to
the total cosmic matter interposed between the source galaxies and the observer, measuring
directly the projected matter power spectrum, convolved by a geometrical lensing kernel. In
this way, it is possible to probe the growth of structure in the Universe, as well as dark matter
and dark energy.

Unfortunately, the signal is very small (about 1%), and the extraction of the cosmological
information is complicated by the need of modelling the Point Spread Function (PSF),
ellipticities, photometric redshifts, and intrinsic alignment of galaxies.

The poor knowledge of the baryonic physics in the LSS is arguably the main source of
uncertainty of the ongoing weak lensing surveys, and it is expected to have even a more
dramatic impact in upcoming stage IV surveys, e.g. Euclid (Laureĳs et al., 2011), the Nancy
Grace Roman Space Telescope (Spergel et al., 2015), and the Vera Rubin Observatory LSST
(Ivezić et al., 2019). Present-day Stage III surveys such as Dark Energy Survey (DES)
(Troxel et al., 2018), Kilo-Degree Survey (KiDS) (Asgari et al., 2020a), and the Subaru
Hyper Suprime-Cam Lensing Survey (HSC) (Hikage et al., 2019), by directly probing the
evolution of the cosmic matter distribution are already providing competitive constraints on
the total cosmic matter content, the growth of structures in the Universe, and the dark energy
EoS. Nevertheless, much of the information encoded in the data is currently not used. In fact,
the analyses must be limited to large scales, where the baryonic contribution is expected to
be negligible, because of the lack of reliable modelling on small scales.

Last but not least, the huge volumes covered by the next surveys, combined with the
high resolution of the observations, require theoretical modelling of the statistical signal over
an unprecedented dynamical range. This implies the need to model simultaneously several
physical processes on very different scales.

0.3 About this thesis

The aim of this thesis is to develop a framework that models the relevant physical processes
at the level of precision required for stage IV weak-lensing surveys. In practice, we are
interested in knowing how the matter density field, including dark matter, gas, and galaxies,
evolves as a function of scale and redshift.

Analytical models, such as Lagrangian and Eulerian Perturbation Theory (LPT and EPT),
can deliver accurate predictions of the matter density field at large scales. However, on small
scales, where over-densities are large, perturbation theory breaks down due to non-linearities.
Moreover, on relatively small scales, hydrodynamical interactions and astrophysical processes
cannot be neglected. Additionally, a poorly understood bias function links the galaxy
distribution to the underlying matter field.
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Currently, numerical simulations are themost accuratemethod to study the evolution of the
cosmic matter density field. Gravity-onlyN -body simulations deliver accurate predictions of
matter and halo distributions across a wide dynamical range of scales, taking advantage of the
power of modern supercomputers and the high parallelisation of recent algorithms. Different
algorithms have been shown to converge at 1% level (Schneider et al., 2016; Angulo et al.,
2020), and the simulated volumes approach the ones of forthcoming surveys. Nevertheless,
the computational cost of these simulations does not allow direct use in cosmological analysis,
where a fast exploration of the parameter space is required.

Magneto-hydrodynamical simulations attempt to evolve simultaneously the gravity
and hydrodynamical forces evolution, included various astrophysical processes. Due to
their complexity, these kinds of simulations are computationally more expensive than the
gravity-only ones. This means that these simulations have typically smaller volumes,
which are statistically not representative of the next-generation surveys. Moreover, relevant
astrophysical processes at small scales cannot be resolved, and consequently are“manually”
added as sub-grid processes using ad-hoc analytical prescriptions. Different implementations
of sub-grid physics may cause a substantial discrepancy between the predictions of different
codes.

The approach followed in this thesis has been developed within the bacco simulation
project2 (Angulo et al., 2020). This project seeks to provide highly accurate predictions
of dark matter, gas, and galaxy distributions as a function of cosmological parameters,
by running only a few high-resolution gravity-only simulations. In this framework, the
cosmological space is explored with the aid of “cosmology-rescaling” algorithms (Angulo
and White, 2010). These algorithms look for the transformation in time and space which
minimises the variance of the amplitude of linear fluctuations between the original cosmology
of a simulation and a desired target one. Then, the output of the simulation is manipulated,
and by rescaling the box length at the appropriate time (snapshot), the final density field
will be remarkably close to the one expected if the simulation was run within the target
cosmology. Keeping the nonlinear properties of the original simulation, this method can
potentially reduce the computational cost of a target simulation from millions of CPU hours
to CPU minutes.

The central part of the thesis is devoted to adding in post-processing baryons to
gravity-only simulations. This is accomplished by designing a Baryon Correction Model
(BCM), a.k.a. baryonification algorithm (Schneider and Teyssier, 2015a; Schneider et al.,
2019; Aricò et al., 2020b, 2021a), which displaces the particles inside the simulations to
mimic the dynamical effects of different baryonic components. In this way, it is possible
to model the gas accretion and ejection, and the condensation of gas in central and satellite

2http://www.dipc.org/bacco/
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galaxies, in an accurate and fast fashion. Also, the back-reaction on the dark matter caused
by the baryonic gravitational potential is estimated and taken into account.

This approach has several advantages: it has only a few physically-motivated free
parameters, and the non-linearities are fully accounted due to the underlying N-body
simulation. Moreover, the free parameters can be constrained by using both observations and
hydrodynamical simulations. On the other hand, it is more flexible and not as computational
expensive comparing to hydrodynamical simulations.

Both the cosmology scaling and baryonification algorithm have been highly optimised,
so that a full simulation with an arbitrary cosmology and baryonic physics can be obtained
in a time scale of few seconds - few minutes, depending on the size of the original N -body
simulation used. Nevertheless, the direct use of these simulations for parameter inference
would be computationally prohibiting. In fact, typically a Monte Carlo Markov Chain
(MCMC) analysis requires an order of 105 evaluations to be carried out. To overcome
this problem, we build emulators of the relevant summary statistics. Emulators are
multidimensional interpolators of a computationally expensive function, originally proposed
in cosmology by Heitmann et al. (2014). In our case, we tried both Gaussian Processes
and artificial neural networks, finding the latter ones more suited for large training sets.
Thus, we train our machine on different power spectra, including the linear, the non-linear,
and one featuring baryonic effects. Using these emulators, we can provide highly accurate
predictions of e.g. the cosmic shear correlation function, allowing the modelling of scales
usually inaccessible, and speeding up the cosmological analysis by a factor of 100 with
respect to traditional methodologies.

Each of the chapters of this thesis is adapted from a different paper, thus it is self-contained
and could in principle be read independently from the others. The outline is the following:

• In §1 (adapted from Aricò et al., 2021b), we describe how we compute the linear
and perturbation theory for LSS, and how we speed the calculations up using neural
network emulators;

• In §2 (adapted from Angulo et al., 2020), we introduce the simulations employed,
and the rescaling algorithm used to explore different cosmological scenarios. Finally,
we describe the non-linear boost emulator built by rescaling the cosmologies of our
simulations;

• In §3 (adapted from Aricò et al., 2020b), we describe the implementation of the
baryonification algorithm, and test its accuracy in the power spectrum against full
hydrodynamical simulations. We also quantify the cosmological information contained
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in the matter power spectrum at different scales, and the possible loss of information
due to uncertainties in baryonic physics;

• In §4 (adapted from Aricò et al., 2021a), we extend the baryonification algorithm to
include satellite galaxies and re-accreted gas. We test this implementation against
hydrodynamical simulations, going to higher-order statistics, considering both the
matter power spectrum and bispectrum;

• In §5 (adapted from Aricò et al., 2020a), we combine the cosmology rescaling with
the baryonification to build a neural network emulator of the baryonic boost factor,
which depends from both cosmology and astrophysics. We apply the emulator to test
the cosmological dependencies of astrophysical processes, and to look for a minimal
parametrisation of the baryonic physics;

• We summarise and give our conclusions in §5.6.
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Chapter 1

Accelerating Boltzmann solvers and
perturbation theory with emulators

The linear matter power spectrum is an essential ingredient in all theoretical models for
interpreting large-scale-structure observables. Although Boltzmann codes such as CLASS or
CAMB are very efficient at computing the linear spectrum, the analysis of data usually requires
104-106 evaluations, which means this task can be the most computationally expensive aspect
of data analysis. In this chapter, adapted from “Accelerating Large-Scale-Structure data
analyses by emulating Boltzmann solvers and Lagrangian Perturbation Theory” (Aricò et al.,
2021b), we address this problemby building a neural network emulator that provides the linear
theory matter power spectrum in about one millisecond with 0.3% accuracy over 10−3 ≤
k[hMpc−1] < 30. We train this emulator with more than 150,000 measurements, spanning
a broad cosmological parameter space that includes massive neutrinos and dynamical dark
energy. We show that the parameter range and accuracy of our emulator is enough to
get unbiased cosmological constraints in the analysis of a Euclid-like weak lensing survey.
Complementing this emulator, we train 15 other emulators for the cross-spectra of various
linear fields in Eulerian space, as predicted by 2nd-order Lagrangian Perturbation theory,
which can be used to accelerate perturbative bias descriptions of galaxy clustering. Our
emulators are especially designed to be used in combination with emulators for the nonlinear
matter power spectrum and for baryonic effects, all of which are publicly available at http:
//www.dipc.org/bacco.

1.1 Introduction

The optimal exploitation of Large Scale Structure (LSS) data is one of the most important
challenges in modern cosmology. For this, multiple theoretical models have been developed
based on perturbation theory, the halo model, excursion set theory, or N -body simulations.
Regardless of the nature of the modelling, essentially all approaches rely on predictions of
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the linear matter power spectrum as a function of cosmological parameters.
The linear matter power spectrum can be accurately computed by taking moments of the

Bolztmann equation describing the co-evolution of all species (neutrinos, cold dark matter,
radiation, etc.) in the Universe. This truncated Bolztmann hierarchy can be solved very
efficiently by publicly available codes such as CMBFast (Seljak and Zaldarriaga, 1996), CAMB
(Lewis et al., 2000), and CLASS (Lesgourgues, 2011a), which can provide the matter power
spectrum in 1-10 seconds of computing, depending on the desired accuracy.

Estimating cosmological parameters from LSS observations typically requires 104 - 106

evaluations of the relevant theoretical model. Thus, the computational cost of estimating the
linear power spectrum can reach thousands of CPU hours. Traditionally, this has not been
an issue because other aspects of the modelling (e.g. the calculation of loops in perturbation
theory) were significantly more expensive. This situation, however, in changing with the use
of emulators.

Emulators are a mathematical tool that allow for an efficient multidimensional
interpolation of a given function. Popular choices in the field of LSS are Gaussian Processes
(e.g. Heitmann et al., 2014; McClintock and Rozo, 2019; Bocquet et al., 2020), polynomial
chaos expansions (e.g. Knabenhans et al., 2019; Euclid Collaboration et al., 2020) and neural
networks (e.g. Kobayashi et al., 2020; Aricò et al., 2020a; Zennaro et al., 2021). In all cases, a
small number of (computationally expensive) predictions at different locations of a parameter
space are used to build the emulator which can then be evaluated in any other point of the
parameter space.

Multiple emulators have been built for LSS summary statistics (usually based on the
results of N -body simulations), which include the nonlinear matter power spectrum, halo
mass function, halo bias, and the effect of baryons (e.g. Heitmann et al., 2014; Knabenhans
et al., 2019; Winther et al., 2019; McClintock et al., 2019; Zhai et al., 2019; Bird et al., 2019;
Bocquet et al., 2020; Schneider et al., 2020; Angulo et al., 2020; Euclid Collaboration et al.,
2020; Aricò et al., 2020a; Zennaro et al., 2021).

Regardless the technique, the emulated quantity is usually the ratio with respect to the
linear theory expectation (e.g. the nonlinear over the linear power spectrum). This reduces the
dynamical range of the function and removes some of the cosmology-dependence, allowing
a more robust and accurate emulation. Since the evaluation of an emulator takes a negligible
amount of CPU time, the calculation of the linear power spectrum becomes the bottleneck
of the analysis. A possible way to tackle this is to reduce the number of evaluations needed
in parameter constraints. Specifically, one technique proposed by several authors is to
directly emulate the likelihood function (e.g. McClintock and Rozo, 2019; Leclercq, 2018;
Pellejero-Ibañez et al., 2020).

Even for efficient parameter samplers, reducing the computational cost of Boltzmann
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solvers at fixed precision would be of great benefit. This would allow a more accurate
determination of the respective likelihood functions and a faster exploration of different
models and data. An option for speeding up these calculations was proposed by Albers et al.
(2019) who trained a neural network to replace the most time consuming parts of the code
CLASS . Another alternative is to directly build an emulator for the linear power spectrum.
This has been attempted by PICO (Fendt and Wandelt, 2007) using a fifth-order polynomial
expansion to interpolate between pre-computed CMB temperature power spectra, and by
CosmoNET (Auld et al., 2007, 2008) using neural networks to emulate CMB fluctuations and
the matter power spectrum. Having been developed over a decade ago, these works were
limited by the size of their training sets which contained of the order of 1,000 measurements
and by the computational cost of the training itself.

Here we take advantage of all the recent development in neural networks and computer
architecture to develop a new emulator for the linear matter power spectrum with a focus on
the analysis of forthcoming LSS experiments. Our emulator covers a 8-dimensional ΛCDM
parameter space including massive neutrinos and dynamical dark energy: σ8, Ωc, Ωb, ns,
h, Mν , w0 and wa, where we reach about 0.3% precision for 10−3 ≤ k[hMpc−1] < 30

in a region around the parameter values preferred by current data analyses. The accuracy
somewhat degrades to 1% when going to extreme cosmological models. Additionally, we
build an emulator for the 15 different cross-spectra that enter a 2nd order Lagrangian bias
expansion of galaxy clustering, which we compute using 2nd-order Lagrangian perturbation
theory.

Our neural networks provide predictions in about one millisecond on a single CPU core
and have negligible memory requirements. Furthermore, they are designed to be employed
together with our emulators for the nonlinear matter power spectrum (Angulo et al., 2020),
baryonic effects (Aricò et al., 2020a), and galaxy bias expansion (Zennaro et al., 2021). All
these emulators are part of the baccoemu project, and they are publicly available1 and updated
continuously to improve their accuracy.

The outline of this paper is the following: in §1.2 we present our linear matter power
spectrum and quantify its accuracy; in §1.3 we introduce our Lagrangian Perturbation Theory
spectra emulators; in §1.4 we employ the linear matter power spectrum emulator to show
that it provides unbiased results for the analysis of a mock stage-IV cosmic shear survey; we
provide our conclusions in §1.5.

1http://www.dipc.org/bacco
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Cosmology σ8 Ωc Ωb ns h Mν [eV] w0 wa

Standard [0.73, 0.9] [0.23, 0.4] [0.04, 0.06] [0.92, 1.01] [0.6, 0.8] [0.0, 0.4] [-1.15, -0.85] [-0.3, 0.3]
Extended [0.6, 1.] [0.15, 0.6] [0.03, 0.07] [0.9, 1.1] [0.5, 0.9] [0.0, 0.5] [-1.3, -0.7] [-0.5, 0.5]

Table 1.1: The range of cosmological parameter values defining the two hyperspaces over which we
train our neural network emulator. σ8 is the cold mass linear mass variance in 8h−1Mpc spheres; Ωc

and Ωb are the density of cold matter and baryons in units of the critical density of the Universe; ns is
the primordial spectral index; h is the dimensionless Hubble parameter h = H0/(100 km s−1Mpc−1);
Mν is the sum of neutrinos masses in eV; and w0 and wa are parameters describing the time-evolving
dark energy equation of state via w(z) = w0 + (1− a)wa.

1.2 Linear matter power spectrum emulator

In this section, we describe our emulator for the linear cold matter power spectrum. We start
by defining our parameter space (§1.2.1), then we describe our training and validation sets
(§1.2.2), as well as our neural network setup (§1.2.3). We finish by validating our predictions
for the growth function, baryonic acoustic oscillations, and the neutrino-induced suppression
on the power spectrum (§1.2.4).

1.2.1 Parameter space

We consider 8 cosmological parameters: the cold mass linear variance in 8h−1Mpc

spheres, σ8; the density of cold matter and baryons in units of the critical density of
the universe, Ωc and Ωb; the primordial spectral index, ns; the dimensionless Hubble
parameter, h ≡ H0/(100 km s−1Mpc−1); the sum of neutrinos masses in units of eV, Mν ;
and a time-evolving dark energy equation of state defined through a CPL parameterisation
(Chevallier and Polarski, 2001; Linder, 2003), w(z) = w0 + (1− a)wa.

We define two separate cosmological hyperspaces. The first one, hereafter dubbed
as standard, spans values roughly 10σ around Planck best-fitting parameters (Planck
Collaboration et al., 2018). We note that this hyper-volume is identical to that adopted
in the nonlinear, baryonic, and bias emulators of Angulo et al. (2020); Aricò et al. (2020a);
Zennaro et al. (2021), respectively. The second cosmological parameter space, dubbed as
extended, is defined by parameter ranges roughly twice as large, with which we aim at
expanding the possible usage of the emulator to different kind of analyses and applications.
For both cases, we consider a redshift range z ∈ [0, 3]. The cosmological parameters and the
respective ranges of both hyperspaces are provided in Table 1.1.

1.2.2 Training and validation sets

We define our training set by evenly sampling the parameter space with a Latin-Hypercube
(LH) algorithm, a statistical method which maximise the distance between the sampling
points. Specifically, our neural networks will be trained with the co-addition of various LH
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samples. The first one is a 20,000-point LH defined in the standard cosmological space. The
second one is a LH of 100,000 points, defined in the extended cosmological space. We note
that the standard space is more densely sampled, and thus we expect our emulator to be more
accurate in this region.

As a validation set, we build a 2,000-point LH defined in the standard hyper-space. To
this, we add 10,000 points distributed according to a LH in the region of the extended space
not included in the standard space, hereafter dubbed outer space.

We build 4 additional LHs, of 10,000-points each, defined on the Mν = 0 and on the
z = 0 subspaces for both the standard and extended spaces. We use 90% of the points in
each LH in the training set, and add the remaining 10% to the validation set. In this way,
we improve our predictions for cases with massless neutrinos and at z = 0, both of which of
particular cosmological interest but that might display degraded performances since they are
located on the edge of the parameter hyperspace.

Overall, our training set is made of 156,000 models, whereas our validation set contains
16,000. We employ the Boltzmann solver CLASS to compute the cold-matter power spectrum
in each of the 172,000 points. We make our predictions on a fixed grid in wavenumber,
with 200 k−bins between 10−3 ≤ k[hMpc−1] ≤ 30, and at the redshift indicated by the LH
sampling. In Appendix A we provide details of our specific CLASS setup and a comparison
with CAMB . We highlight that we will emulate the power spectrum of cold dark matter plus
baryons (i.e. cold matter), which differs from the total mass case for massive neutrinos.
We made this choice since the cold matter power spectrum has been shown to be a better
prediction for the various LSS statistics (e.g. Castorina et al., 2015; Zennaro et al., 2019).

Before the training, we take the logarithm of the power spectra, normalising them by their
mean in each k-bin. We find that, for the size of our training set, this is sufficient to reduce
the variance of the data, and that using the ratio of the power spectra with some approximated
method, e.g. Eisenstein and Hu (1999), does not improve sensibly the emulation. We have
also tried to split the training set in two different components and emulating them separately,
e.g. power spectrum at z = 0 and growth function, or smooth power spectrum and BAO
oscillations, but we did not find any obvious advantage in any of these strategies.

Finally, we perform a Principal Component Analysis (PCA) decomposition and retain
the first 32 eigenvectors, which combined are enough to reproduce the power spectrum at
the 0.03% level; this effectively filters out small scale noise, which aids the neural network
training.
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Figure 1.1: The mean absolute fractional error of our neural network, λ =
〈
|PNN−PCLASS|

PCLASS

〉
, as a

function of the number of epochs employed for its training. Black circles and red diamonds show the
results when λ is evaluated on the training and the validation set, respectively. The vertical blue line
marks the minimum of λ in the validation set and thus the training we will adopt thereafter in this
paper.
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Figure 1.2: The accuracy of our neural network predictions for the linear matter power spectrum
for multiple cosmologies and redshifts. We display the ratio of the power spectra computed by our
emulator, PNN, to that of the Boltzmann solver CLASS , PCLASS, in the standard (left panel) and in
the outer (right panel) cosmological parameter spaces (c.f. Table 1.1). In the outer space, all the
cosmological parameters have values not included in the standard space. The shaded regions enclose
68% and 95% of the cosmologies in our validation set, and the mean is shown as a thick grey line. As
an example, thin coloured lines show the results for 100 randomly selected cosmologies.
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1.2.3 Neural network setup

We build our emulator using a feed-forward neural network trained with 156,000 power
spectrum measurements. Compared to Gaussian Processes, neural networks have the
advantage of significantly lower computational and memory requirements, especially for
large training sets. We employ the publicly-available libraries Keras and TensorFlow

(Chollet et al., 2015; Abadi et al., 2016) to build a relatively simple architecture with two
hidden layers of 400 neurons each, and a Rectified Linear Unit as an activation function. We
use an Adam optimiser with a batch size of 750, and define as loss function the mean absolute
fractional error. This quantity, to be minimised during the training procedure, is defined as

λ =

〈 |PNN − PCLASS|
PCLASS

〉
, (1.1)

where PNN is the power spectrum predicted by the neural network, PCLASS is the CLASS power
spectrum, and the mean 〈...〉 runs over the training points.

To avoid overfitting, we monitor the loss function λ computed over both the training
and the validation datasets. We stop the training when the loss function evaluated on the
validation set does not decrease for more than 10,000 epochs (to avoid being stuck in local
minima). This resulted into a training of approximately 105 epochs, being the final loss
function of the order of 1.5× 10−3. The whole training took approximately 24 hours.

In Fig. 1.1 we display the loss function λ computed in the training and validation sets,
as a function of the number of epochs employed in the training. We see that the neural
network return progressively more accurate results, with the loss function decreasing roughly
asN−0.2

epoch. We can also see that the accuracy is roughly identical in the training and validation
sets, which suggests the network has learnt relevant features in the power spectrum data, rather
than any specific source of noise. We note that it appears that further training could yield to an
even more accurate neural network without overfitting. However, as the improvement scales
slowly with Nepochs, it becomes impractical to train for much longer (i.e. the computational
cost of the training becomes prohibitively high).

1.2.4 Validation of the emulator

We test the accuracy of our emulator using the validation set described in §1.2.2. We recall
that this sample contains roughly 10% of the training data, distributed between the standard
and outer cosmological spaces.

In Fig. 1.2 we display the ratio of the power spectrum computed with our emulator to
that of CLASS . Shaded regions contain 68 and 95% of the measurements in the standard and
outer space (left and right panel, respectively). We display 100 randomly-selected ratios for
comparison.
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Figure 1.3: Validation of the predictions of our neural-network emulator for the linear matter power
spectrum. Left panel: Growth factor at k = 0.2hMpc−1 as a function of expansion factor. Middle
panel: The ratio of the linear power spectrum over its smooth (or de-wiggled) counterpart which
isolates the contribution of baryonic acoustic oscillations to the power spectrum. In both of these
panels we show 10 randomly-selected cosmological models. Right panel: The ratio of the power
spectrum computed including neutrinos of a variousmass, as specified in the legend, over its respective
neutrino massless case. In all three cases, we show the results obtained with CLASS as solid lines, and
with our emulator as dashed lines. In the bottom panels, we display the compare these predictions
indicating differences of 0.1 and 0.2% as shaded regions.

We can see that, in the standard cosmological space, our emulator is unbiased at the
0.01% level, and 68% of the validation set lies within 0.1%, while 95% within 0.3%. In
the outer cosmological space, the accuracy is about ≈ 1% for most of the scales, although
it tends to degrade toward very large scales, k < 0.002hMpc−1. Nevetheless, we highlight
the standard cosmological space is expected to contain the full range of currently allowed
cosmologies. In any case, even in the outer space, our emulator accuracy is significantly
higher than that of current predictions for the nonlinear matter power spectrum for which
state-of-the-art N -body codes agree at ∼ 2% for k ∼ 10hMpc−1 (Schneider et al., 2016;
Angulo et al., 2020; Springel et al., 2020). Moreover, in general we expect in the extended
space an accuracy in-between the one found in the standard and outer space, being the latter
a very particular case when all the parameters simultaneously have very extreme values.
Therefore, any uncertainty of our emulator is arguably subdominant for LSS data analyses.

We further test our emulator in Fig. 1.3 by examining its predictions for the redshift
dependence of growth factor, the baryonic acoustic oscillations, and the neutrino-induced
suppression of the matter power spectrum. In each case we illustrate the accuracy by
displaying the emulator and CLASS predictions for a small number of selected cosmologies
within our standard space.

In the left panel of Fig. 1.3 we show the linear growth factor, D(k) ≡√
P (k, z)/P (k, z = 0) over the Einstein-de-Sitter solution, D ∝ a, computed using our

emulator and CLASS at 10 different cosmologicalmodels. We see that the emulator predictions
are very accurate, within 0.1%, as expected from the performance shown previously. Also,
the accuracy does not depend on the expansion factor, which indicates that the performance
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of our emulator is the same at all redshifts.
Given their importance for LSS analyses, we explicitly check how well the Baryonic

Acoustic Oscillation (BAO) feature is recovered. In the middle panel of Fig. 1.3 we display
the ratio between linear power spectrum and its de-wiggled counterpart, P/Pno−wiggle, which
highlights the contribution of the BAO to the power spectrum. We compute Pno−wiggle by
performing a discrete sine transform of the linear theory power spectrum, smoothing the
result, and returning to Fourier space with an inverse sine transform (e.g Baumann et al.,
2018). We can see how each oscillation is remarkably well reproduced by our emulator, with
small in-phase deviations of the order of 0.3%. This suggests the accuracy of our emulator is
also high enough for BAO analyses.

To close this section, we examine the dependency of the power spectrum on massive
neutrinos. The rightmost panel of Fig. 1.3 shows the ratio of the power spectrum computed
with increasingly massive neutrinos, Mν = [0.06, 0.1, 0.2, 0.3] eV, over the massless case,
Mν = 0 eV, keeping fixed the primordial spectral amplitude As and the matter density Ωm.
As with our previous tests, we find that the distortion caused by neutrinos – a suppression
at small scales proportional to the neutrino mass fraction – is accurately recovered by our
emulator at 0.2% level.

1.3 Lagrangian perturbation theory emulator

Besides predicting the clustering ofmatter, another challenge for present-day and forthcoming
cosmological surveys is to predict the clustering of galaxies. In this sectionwe build emulators
for several matter statistics as predicted by Lagrangian Perturbation Theory (LPT) that are
typically employed in models for the power spectrum of galaxies.

1.3.1 Lagrangian bias expansion

Among the many possible models to describe the clustering of galaxies, a particularly
promising one is a perturbative Lagrangian bias expansion (Matsubara, 2008). In this
formalism, the power spectrum of galaxies, Pgg, and the matter-galaxy cross-power spectrum,
Pgm, at second order are given as:

Pgg =
∑

i,j∈{1,δ,δ2,s2,∇2δ}

(2− δij)bibj Pij,

Pgm =
∑

i∈{1,δ,δ2,s2,∇2δ}

bi Pi1,
(1.2)

where, b1, b2, bs2 , and b∇2δ are free “bias” parameters; δ is the linear density field, s2 is the
shear field defined as s2 ≡ sijsij where sij ≡ ∂i∂j∇−2δ − δD,ijδ(q), and ∇2δ the Laplacian
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Figure 1.4: The accuracy of our emulators for the cross-spectrumof linear fields inEulerian coordinates
predicted by Lagrangian Perturbation Theory. The two fields defining the cross-spectra are indicated
in the legend of each panel, where 1 is an homogeneous Lagrangian field; δ and δ2 are the linear
density field and its square, respectively; s2 is the shear field; and ∇2δ is the Laplacian of the linear
density field. In each panel we display the ratio of the emulator prediction over the same quantity
computed by directly solving the relevant LPT expression. Shaded regions enclose 68% and 95%
of the measurements in our validation set, and the mean is is marked by the thick black line. For
comparison we show a randomly-selected set of cosmologies as coloured lines.
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of the linear density; and Pij = 〈|δi(k)δ∗j (k)|〉 (see Zennaro et al., 2021, for details).
In other words, the clustering of galaxies is given as a weighted sum of 15 cross-spectra

of five Lagrangian fields, δL ∈ {1, δ, δ2, s2,∇2δ}, advected to Eulerian coordinates:

1 + δE(x) =

∫
d3q δL(q)δD(x− q −Ψ(q)) (1.3)

where δD is a Dirac’s delta. The displacement field Ψ(q) (and thus the cross-spectra) can be
computed perturbatively at a given order, or, as proposed recently, measured directly from
N -body simulations. The latter can accurately describe the power spectrum of galaxies down
to much smaller scales than using perturbative solutions, which opens up the possibility of
an accurate modelling of galaxy clustering (Modi et al., 2020).

In fact, Zennaro et al. (2021) and Kokron et al. (2021) have built emulators for these
spectra as a function of cosmology from simulation suites. However, even in this case, large
scales are described with perturbation theory owing to the noise (cosmic variance) in the
N -body displacements. Additionally, the emulation is performed for the ratio of theN -body
spectra over the perturbative solution, which, as for the matter power spectrum, improves the
quality of the emulation.

The LPT terms can be computed with publicly available codes (such as velocileptors,
Chen et al., 2020) or, as in Zennaro et al. (2021), by solving the three dimensional LPT
integrals with a adaptive quadrature algorithm. Both implementations are very efficient and
produce the LPT spectra in around 1 second of computing time, depending on accuracy
parameters and machine architecture. However, this can become the most costly step in the
context of obtaining the galaxy model from an emulator.

In this section, we build an emulator for each of the 15 terms to speed up this process.
Specifically, we emulate the terms P11, P1δ, and Pδδ where we expand δ at first order in
Lagrangian perturbation theory; this is enough for the applications mentioned. All remaining
terms are computed expanding densities at second order in Lagrangian perturbation theory,
retaining only contributions of order (11) and (22). We refer the reader to Zennaro et al.
(2021) for the explicit expression of each of these spectra in LPT. It is important to note that
we assume the linear power spectrum entering our LPT calculations to be smoothed on a
scale ks = 0.75hMpc−1.

1.3.2 LPT emulator

We build the LPT emulators in the standard hyper-parameter space (c.f. Table 1.1) and over
the expansion factor range: a ∈ [0.4, 1.] (note that this redshift range is slightly smaller
than that employed in § 1.2.1). We note that the cosmological parameter space matches
the ones used by Zennaro et al. (2021), where we presented non-linear boost-factors for
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these spectra. We then compute the LPT predictions in 91 logarithmic bins over the range
10−2 < k[hMpc−1] < 0.75.

We sample the parameter space with a single LH with 18,000 points. In each of these
points, we compute the 15 Lagrangian cross power spectra as described above. As noted by
Zennaro et al. (2021), some of these spectra can be negative. In these cases, we emulate the
quantity:

P̂ij = Pij + |min(Pij)|+ 0.1. (1.4)

so that the spectra are always positive. As in the case of the linear matter power spectrum,
prior to the training we take the logarithm of the power spectra, and subtract the mean in
each k-bin. We then perform a PCA decomposition prior to the training, retaining for each
spectrum a number of PC sufficient to recover the power spectrum at 0.01%, which ranges
from 5 to 20 PCA vectors.

We use 90% of the sample as our training dataset and the remaining 10% as our validation
set. The architecture of the neural network used to emulate the LPT power spectra is the
same as that described in § 1.2.3, i.e. 2 hidden layers with 400 neurons each.

We quantify the accuracy of our emulators in Fig. 1.4, which shows the ratio of the
emulation prediction in the validation set over the spectra computed with LPT. Overall, the
accuracy of the 15 spectra is around better than 1%. In particular, we best recover the terms
11, 1s2, δ2∇2δ, s2s2, and s2∇2δ, with an accuracy of 0.5% or better. On the contrary,
the terms 1δ2, and δδ2 are emulated at better than 2%. This accuracy is higher than that
of the nonlinear emulators, thus the LPT emulation uncertainty should add a subdominant
contribution to the global modelling error. Nevertheless, as with our linear emulator, it is
straightforward to add further points to the training set, if higher accuracy is required.

1.4 Parameter constraints from mock cosmic shear power
spectra

In this section, we illustrate the use of our linear power spectrum emulator with a simple
application: we infer cosmological parameters from a mock lensing power spectrum using
either our linear emulator or directly the output of CLASS . In this way, we will confirm that
the accuracy of our emulator is adequate in the context of LSS data analysis.

Our mock data corresponds to the auto and cross power spectra of weak lensing shear
measurements for 10 equi-populated redshift bins zi ∈ [0.1, 2.5]. We adopt the specifics of a
stage-IV survey, and in particular those of the Euclid mission (Amendola et al., 2018). The
cross-spectrum of cosmic shear is given by:
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Figure 1.5: The marginalised posterior distributions on cosmological parameters obtained from mock
weak lensing data. Our mock data is comprised by the shear power spectrum and cross-spectra using
10 tomographic bins over z ∈ [0., 2.5], and a redshift distribution of background galaxies, shape noise,
and cosmic variance expected for a stage-IV Euclid-like survey. The contours in each panel show 1,2,
and 3 σ levels obtained by performing an MCMC analysis using the linear matter power spectrum
directly provided by the Boltzmann solver CLASS (black lines and contours) or by our emulator (red
lines and contours). Blue lines indicate the cosmological parameters adopted in our mock data,
whereas black and red lines show the best-fitting values obtained by our analysis.
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Cγi,γj(`) =

∫ χH

0

gi(χ)gj(χ)

χ2
P

(
`

χ
, z(χ)

)
dχ, (1.5)

where P (k, z) is the linear matter power spectrum (given by CLASS for our mock data), and
gi(χ) is the the lensing kernel of the i-th redshift bin:

gi(χ) =
3

2
Ωm

(
H0

c

)2
χ

a

∫ zH

z(χ)

dz′ ni(z)
χ(z′)− χ(z)

χ(z′)
, (1.6)

where c is the light speed and χ(z) is the comoving distance to z. We assume a redshift
distribution of galaxies in the i-th bin ni(z) ∝ z2 exp

(
− z
√

2
zi

)
, with zi roughly setting the

redshift where the galaxy number density peaks. The galaxy distribution in each bin is
normalised such that

∫∞
0

dz ni(z) = 1.
For simplicity, we only consider the Gaussian contribution of the covariance:

CovG
γi,γj ,γm,γn

(`1, `2) =
δ`1,`2
N`

[(
Cγi,γm + δim

σ2
e

2n̄ieff

)(
Cγj ,γn + δjn

σ2
e

2n̄jeff

)
+

(
Cγi,γn + δin

σ2
e

2n̄ieff

)(
Cγj ,γm + δjm

σ2
e

2n̄jeff

)]
(1.7)

whereN` = (2`+ 1)∆`fsky is the number of independent multipoles falling in a bin centered
in ` with width ∆`, fsky is the fraction of the sky covered by the survey, σe and n̄ieff are the
RMS ellipticity and the effective projected number density of the source galaxies in the i bin,
respectively (Barreira et al., 2018). The presence of the Kronecker deltas δ`i,`j forces the
Gaussian term to be diagonal, and δij to have shape noise terms only for matching redshift
bins. We adopt a fiducial setup of fsky = 0.36, σe = 0.37, n̄ieff = 30 arcmin−2.

We fit the mock data over 20 logarithmically-spaced multipoles between ` ∈ [20, 5000],
using the affine invariant MCMC sampler emcee (Foreman-Mackey et al., 2013) and
employing 10 walkers of 10,000 steps each, considering a burn-in phase of 1,000 steps.
Our data model is given by Eq. 1.5 computed with a linear power spectrum provided by either
CLASS or by our emulator, and letting free the cosmological parameters Ωc, σ8, h, w0, and
wa. Using 1 CPU, a single call to CLASS takes ≈ 0.5 seconds (≈ 7 seconds when having
massive neutrinos), whereas the emulator evaluation takes ≈ 1 milliseconds.

In Fig. 1.5, we display the posterior distributions estimated with theMCMC analysis using
CLASS and the emulator (black and red lines, respectively). We see that by using the linear
emulator, we recover unbiased parameters at less than 0.05σ. Moreover, the 1D marginalised
PDFs, the parameters degeneracy, and the contours are all almost indistinguishable from
those using directly CLASS . Overall, the results show a remarkable agreement between both
approaches, which suggests that the accuracy of our linear emulator is sufficient for the
analyses of forthcoming LSS surveys.
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1.5 Summary

In this chapter, we have presented and validated a set of fast and accurate emulators aimed
at speeding up the analysis of forthcoming LSS data. These emulators can provide their
predictions in about one millisecond of computing time and cover a broad 8-dimensional
cosmological parameter space that includes massive neutrinos and dynamical dark energy.

First, we have built and validated an emulator for the linear cold matter power spectrum,
which is faster than a typical Boltzmann solver by a factor of 1000. The accuracy of the
emulator is subpercent over 10−3 < k < 30 (Fig. 1.2) and it also accurately predicts the
growth of fluctuations, the baryonic acoustic oscillations, and the suppression of clustering
induced by massive neutrinos (Fig. 1.3). Our second set of emulators predict multiple
cross-spectra of Lagrangian fields relevant for a 2nd-order perturbative model of galaxy bias.
We compute these fields with 1 and 2-order Lagrangian perturbation theory which can then
be emulated with percent accuracy (Fig. 1.4). Finally, we have shown that the accuracy of the
linear emulator can be used to provide unbiased cosmological constraints for a tomographic
analysis of a Euclid-like weak lensing survey (Fig. 1.5).

The emulators presented in this work are part of the baccoemu project2, and have been
specifically designed to be used with those we have previously built for the nonlinear matter
power spectrum (Angulo et al., 2020), the modifications induced by baryonic physics (Aricò
et al., 2020a), and galaxy bias (Zennaro et al., 2021). All together, they can contribute towards
a comprehensive, fast, and accurate cosmological exploitation of LSS data.

2http://bacco.dipc.org/emulator.html.
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Chapter 2

The BACCO Simulation Project:
rescaling the cosmology of simulations

In this chapter, adapted from “The BACCO Simulation Project: Exploiting the full power of
large-scale structure for cosmology” Angulo et al. (2020), we present the BACCO project,
a simulation framework specially designed to provide highly-accurate predictions for the
distribution of mass, galaxies, and gas as a function of cosmological parameters. We describe
our main suite of simulations (L ∼ 2Gpc and 43203 particles) and present various validation
tests. Using a cosmology-rescaling technique, we predict the nonlinear mass power spectrum
over the redshift range 0 < z < 1.5 and over scales 10−2 < k/(hMpc−1) < 5 for 800

points in an 8-dimensional cosmological parameter space. For an efficient interpolation of
the results, we build a Gaussian Process emulator which we test against other widely-used
methods. Over the whole range of scales considered, we expect our predictions to be accurate
at the 2% level for parameters in the minimal ΛCDM model and to 3% when extended to
dynamical dark energy and massive neutrinos. We make our emulator publicly available
under http://www.dipc.org/bacco.

2.1 Introduction

Over the last two decades, our understanding of the Universe has grown tremendously: the
accelerated expansion of the Universe and the existence of dark matter are becoming firmly
established. Furthermore, there are strong constraints on the micro-physical properties of
dark matter and neutrinos, and on the statistics of the primordial cosmic fluctuations (e.g.
Alam et al., 2017; Planck Collaboration et al., 2018; Gilman et al., 2020).

Despite the progress, there are several tensions among current data when interpreted
within the context of the ΛCDM model. For instance, the value of the Hubble parameter
inferred from local supernovae is significantly larger than that inferred from the analysis of
the CMB (e.g. Riess, 2019; Freedman et al., 2019). Another example is that the amplitude
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of fluctuations, S8 =
√

Ωm/0.3σ8, as determined from low-redshift lensing measurements,
appears smaller than that inferred from CMB (e.g. Asgari et al., 2020b).

In the current era of precision cosmology, the large amount of available large-scale
structure (LSS) data promises accurate measurements of cosmological parameters with
small systematic errors. These future measurements could shed light on the aforementioned
tensions, confirming or ruling out the ΛCDM paradigm (e.g. Weinberg et al., 2013). Many
observational campaigns that seek to obtain this data are under construction or with an
imminent start (e.g. Euclid, DESI, J-PAS).

To fully exploit the upcoming LSS data and obtain these cosmological constraints,
extremely accurate theoretical models are required. This is an active area of research with
different approaches being adopted in the literature. On the one hand, recent advances
in perturbation theory have increased considerably the range of scales that can be treated
analytically (e.g. Desjacques et al., 2018). These scales are, however, still in the quasi-linear
regime. On the other hand, cosmological numerical simulations are by far the most accurate
method to model smaller and non-linear scales (where, in principle, much more additional
constraining power resides). As with analytical models, simulations have also steadily
increased their robustness and accuracy (e.g. Kuhlen et al., 2012).

Traditionally, numerical simulations were very expensive computationally and suffered
from large cosmic-variance errors, thus they were only used to calibrate fitting functions or
combined with perturbation theory to provide predictions for nonlinear structure as a function
of cosmology (e.g. Smith et al., 2003; Takahashi et al., 2012). This has changed recently, as
the available computational power keeps increasing and so-called emulators become more
popular. In this approach, a suite of simulations of different cosmologies are interpolated to
provide predictions in the nonlinear regime and for biased tracers of the LSS (e.g. Heitmann
et al., 2014; Nishimichi et al., 2018; Liu et al., 2018; DeRose et al., 2019; Giblin et al., 2019;
Wibking et al., 2019).

To keep computational cost under control, traditional emulators are typically restricted
to a small region in parameter space which is sampled with a small number of simulations
(∼ 50− 100), and the individual simulations are low resolution or simulate a relatively small
cosmic volume. This limits their usability in actual data analyses and/or add a significant
source of uncertainty.

Here we take advantage of several recent advances to solve these limitations. First, we
employ a very efficient N -body code to carry out a suite of 6 large-volume high-resolution
simulations, which allows to resolve all halos and subhalos with mass > 5 × 1010h−1M�,
together with their merger histories. We employ initial conditions with suppressed variance,
which allows to predict robustly even scales comparable to our simulated volume. These
simulations are combined with cosmology-rescaling algorithms, so that predictions can be
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obtained for any arbitrary set of cosmological parameters. Overall, this approach allows us
to make highly accurate predictions for the large-scale phase-space structure of dark matter,
galaxies, and baryons.

Our approach has many advantages over others in the literature. Firstly, we can predict
the matter distribution over a broad range of scales, with high force accuracy and over a
large cosmic volume. This allows for detailed modellings of the distribution of gas and
the impact of “baryonic effects” (Schneider et al., 2019; Chisari et al., 2019; Aricò et al.,
2020b). We can also resolve collapsed dark matter structures and their formation history,
which enables sophisticated modelling of the galaxies that they are expected to host (e.g.
Henriques et al., 2020; Moster et al., 2018; Chaves-Montero et al., 2016). In addition, the
cosmological parameter space is large and densely sampled, so that emulator uncertainties
are kept under a desired level. Finally, the parameter space includes non-standard ΛCDM
parameters, dynamical dark energy and massive neutrinos.

As an initial application of our framework, we have used our suite of specially-designed
simulations to predict the nonlinear mass power spectrum over the range 0 < z < 1.5 for 800

different cosmologies within an 8-dimensional parameter space defined by a ∼ 10σ volume
around Planck’s best-fit values. From these, we construct and present a Gaussian emulator
so that these predictions are easily accessible to other researchers. Overall, we reach a few
percent accuracy over the whole range of parameters considered.

This chapter is structured as follows. Section 2.2 is devoted to presenting our numerical
simulations and to the description and validation of numerical methods. In Section 2.3 we
describe the construction of an emulator for the nonlinear power spectrum. In particular,
Section 2.3.1 discusses our strategy for selecting training cosmologies, Section 2.3.1 discusses
our power spectra measurements. Finally, in Section 2.3.2 we compare our predictions with
other approaches. We summarise our results and discuss the implications of our work in
Section 2.4.

2.2 Numerical methods

2.2.1 The BACCO Simulations

The “BACCO simulations" is a suite of 6N -body simulations that follow the nonlinear growth
of darkmatter structurewithin a cubic region of L=1440h−1Mpc on a side. These calculations
are performed for three different sets of cosmological parameters with two realizations each.
The matter distribution is represented by 43203 (∼ 80 billion) particles.

The three cosmologies adopted by our BACCO simulations are provided in Table 2.1. We
dub these cosmologies narya, nenya, and vilya1. These sets are inconsistent with the latest

1narya, vilya, and nenya are the most powerful rings after Sauron’s “One Ring” in “The Lord of the
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Figure 2.1: The projected mass density field in nenya, one of our six BACCO simulations, at
z = 0. Each image corresponds to a 25 h−1Mpc deep projection employing a tri-cubic Lagrangian
interpolation method. Top, middle, and bottom panels progressively zoom into a 1440h−1Mpc,
360h−1Mpc, and 90h−1Mpc-wide region of the simulation.

observational constraints, but they were intentionally chosen to so that they can be efficiently
combined with cosmology-rescaling algorithms (Angulo and White, 2010). Specifically,
Contreras et al. (2020a) showed that these 3 cosmologies are optimal, in terms of accuracy
and computational cost, to cover all the cosmologies within a region of∼ 10σ around the best
values found by a recent analysis of the Planck satellite (Planck Collaboration et al., 2014b).

For narya and vilya we stored 50 snapshots, equally log-spaced in expansion factor,
a, and adopt a Plummer-equivalent softening length of ε = 6.7h−1kpc. As pointed out
by Contreras et al. (2020a), most of the cosmological parameter volume is covered by
rescaling nenya, thus we have increased the force resolution and frequency of its outputs to
ε = 5h−1kpc and 100 snapshots, respectively. All simulations were started at a = 0.02 using
2nd-order Lagrangian Perturbation theory, and were evolved up to a = 1.25 so that they can
be accurately scaled to cosmologies with large amplitude of fluctuations.

For each of the three cosmologies, we carry out two realizations with an initial mode
amplitude fixed to the ensemble mean, and opposite Fourier phases (Angulo and Pontzen,
2016; Pontzen et al., 2016). These “Paired-&-Fixed” initial conditions allow for a significant
reduction of cosmic variance in the resulting power spectrum in the linear and quasi-linear
scales (which are the most affected by cosmic variance), as it has been tested extensively in
recent works (Chuang et al., 2019; Villaescusa-Navarro et al., 2018; Klypin et al., 2020).

The BACCO simulations were carried out in the Summer of 2019 at Marenostrum-IV
at the Barcelona Supercomputing Center (BSC) in Spain. We ran our N -body code in a
hybrid distributed/shared memory setup employing 8192 cores using 4096 MPI tasks. The

Rings” mythology.
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run time was 7.2 million CPU hours, equivalent of 35 days of wall-clock time. The total
storage required for all data products is about 80 TB.

To compare against recent emulator projects, we notice these simulations have 10 times
better mass resolution, 4 times better force resolution, and 2× 3 the volume of those used by
the AEMULUS project (DeRose et al., 2019); 50 times the volume and 3 times better mass
resolution than MassiveNuS (Liu et al., 2018); 6 times better mass resolution, 50% larger
volume, and twice the spatial resolution than those in the EUCLID emulator project (Euclid
Collaboration et al., 2019); 10 times more particles and slightly better force resolution than
the runs of the DarkEmulator (Nishimichi et al., 2018); 2 times better mass resolution and
similar force resolution and volume to the simulations in the Mira-Titan Universe project
(Heitmann et al., 2014).

In Fig. 2.1 we display the projected matter density field of nenya at z = 0. Each panel
shows a region of the simulated volume, the top panel a region 1440h−1Mpc wide – the
full simulation side-length –, whereas middle and bottom panels zoom in regions 960 and
360h−1Mpc wide, respectively. We display the density field as estimated via a tri-cubic
Lagrangian tessellation using only 10803 particles. Note that thanks to this interpolation, no
particle discreteness is visible and filaments and voids become easily distinguishable.

2.2.2 The simulation code

The N -body code we employ is an updated version of L-Gadget3 (Springel, 2005; Angulo
et al., 2012). This code was originally developed for the Millennium-XXL project and was
successfully executed with more than 10,000 CPUs employing 30Tb of RAM. Compared
with previous versions of Gadget, L-Gadget3 features an hybrid OpenMP/P-thread/MPI
parallelisation strategy and improved domain decomposition algorithms.

In addition to these improvements, our updated L-Gadget3 version stores all outputs
in the HDF5 format, implements the possibility of simulating massive neutrinos via the
linear response approach (Ali-Haïmoud and Bird, 2013), and features an improvement in the
Tree-PM force split and in Kick-Drift operators. The output data structure is such to allow
a straightforward reconstruction of the full phase-space distribution via tri-cubic Lagrangian
interpolation (Hahn and Angulo, 2016; Stücker et al., 2019).

Table 2.1: The cosmological parameters of the three “BACCO” simulations presented in this chapter:
Vilya, Nenya and Narya. All the simulations have been run with a ΛCDM cosmology with σ8 = 0.9,
Mν = 0, w0 = −1 and wa = 0, and have a box side of 1440 h−1Mpc and 43203 particles.

Ωm Ωb ns h mp [h−1M�] ε [h−1kpc]
Vilya 0.27 0.06 0.92 0.65 2.77× 109 6.7
Nenya 0.315 0.05 1.01 0.60 3.2× 109 5
Narya 0.36 0.05 1.01 0.70 3.7× 109 6.7
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The code carries out a large fraction of the required post-processing on the fly. Specifically,
this includes the 2LPT initial conditions generator, group finding via Friends-of-Friends
algorithms and an improved version of SUBFIND (Springel et al., 2001) that is also able to
track tidally-disrupted structures, and a descendant finder and merger tree construction (c.f.
§2.2.2).

Thanks to the in-lining of these tools, it is not necessary to store the full particle load at
every snapshot, which significantly reduces the I/O and long-term storage requirements. The
dark matter distribution is, however, very useful in many applications, thus L-Gadget3 is able
to store a subset of particles sampling homogeneously the initial Lagrangian distribution.

SubFind and Group finders

The identification of bound structures is a key aspect ofN -body simulations, thus L-Gadget3
features a version of the SUBFIND algorithm with several improvements.

The first improvement is the ability to track subhalos on-the-fly across snapshots –
defining progenitor and descendants –, computing various additional quantities such as peak
halo mass, peak maximum circular velocity, infall subhalo mass, and mass accretion rate,
among others. These properties become useful when modelling galaxy formation within
gravity-only simulations (e.g. Chaves-Montero et al., 2016; Moster et al., 2018).

The second improvement of our updated version of SUBFIND is the use of the subhalo
catalogue in the previous snapshot to better identify structures. In the original algorithm,
particles are first sorted according to the local density, then when a saddle point is detected,
themost massive group at that point is considered as the primary structure. This, however, can
cause inconsistencies across time, as small changes can lead to fluctuations in the structure
considered as primary. In our version of SUBFIND instead, when a saddle point is detected,
we consider as primary the substructure whose main progenitor is the most massive. This
has proven to return more stable merger trees and quantities that are not local in time (e.g.
peak maximum circular velocity).

Finally, during their evolution, substructures can disappear from a simulation due to
artifacts in the structure finder, finite numerical resolution, or because its mass falls below
the resolution limit owing to tidal stripping. The last of our improvements to SUBFIND is
the ability to track all subhalos with no recognizable descendant, keeping the position and
velocity of their most bound particle. This is a indispensable feature to correctly model the
small-scale galaxy clustering in dark matter simulations (Guo and White, 2014).

At every output time, we store FoF groups and SUBFIND subhalos with more than 10
particles. In total, there are approximately 129 billion groups and 214 billion subhalos in our
outputs. This means our simulations are able to resolve halos with mass 5×1010h−1M�, and
subhalos with a number density of 0.1h3Mpc−3 at z = 0.
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2.2.3 Validation

Time and force resolution

In order to quantify the accuracy of our results, we have carried out a suite of small, L =

64h−1Mpc box, simulations where we systematically vary the numerical parameters around
those adopted in the BACCO simulations. Specifically, we consider the time-integration
accuracy, force calculation accuracy, softening length, and mass resolution.

In Fig. 2.2 we compare the nonlinear power spectrum between these test runs and one that
adopts the same numerical parameters and mean interparticle separation as our main BACCO
simulations. Solid and dashed lines denote the results at z = 0 and z = 1, respectively. In
all panels the grey shaded region indicates ±1% agreement.

In the top panelwe display simulationswith differentmass resolutions,N1/3/L = [2, 3, 4].
The main effect of mass resolution is how well small non-linear structures are resolved. We
see no significant effect up to k ∼ 5hMpc−1 and a mild increase, of about 1% in the power
at k ∼ 10hMpc−1 when improving the mass resolution.

The main source of inaccuracies in the force calculation are the terms neglected in the
oct-tree multipole expansion. Specifically, Gadget considers only the monopole contribution
down to tree-nodes of mass M and size ` that fulfill GM2

r2

(
`
r

)
> α|~a| for a particle at a

distance r and acceleration |~a|. Thus, the accuracy in the force calculation is controlled by
the parameter α. In the second panel we vary this parameter and see that with exception
of α = 0.01, i.e. twice poorer force resolution than that in BACCO, the power spectrum is
converged at a sub-percent level.

As in previous versions of Gadget, time-steps in L-Gadget3 are computed individually
for each particle as

√
2ηε/|~a|, where ε is the softening and |~a| is the magnitude of the

acceleration in the previous timestep. The parameter η therefore controls how accurately
orbits are integrated. In the third panel we vary this parameter increasing/decreasing it by a
factor of 4/2 with respect to our fiducial value, η = 0.05. We see that the power spectrum
varies almost negligibly with less than a 0.5% impact up to k ∼ 10hMpc−1.

Perhaps the most important degree of freedom in a numerical simulation is the softening
length, ε, a parameter that smooths two-body gravitational interactions (note that in Gadget,
forces become Newtonian at a distance 2.7ε). In the fourth panel we compare three
simulations with 50% higher and lower values of ε to values equal to 1/140 and 1/35 − th
of the mean interparticle separation. On small scales we see that the amount of power
increases systematically the lower the value of the softening length. In particular, our fiducial
configuration underestimates the power by 1(2.5)% at k ∼ 5(10)hMpc−1.

In summary, our results appear converged to better than 1% up to k ∼ 5hMpc−1, and to
∼ 3% up to k ∼ 10hMpc−1. The main numerical parameter preventing better convergence
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Figure 2.2: The impact of numerical parameters in our simulated nonlinear mass power spectra at
z = 0 and z = 1. We display fractional differences with respect to the measurements in a simulation
that adopts the same accuracy parameters as our main BACCO simulations. The grey bands indicate
a region of ±1%.

is the softening length. To mitigate its impact, we have adopted the following empirical
correction to our power spectrum results

P (k)→ P (k)
[
1 + 1.62× 10−2(erfc(ln(k/ε)− 3.1)− 2)

]
(2.1)

where ε is the softening length in units of hMpc−1, and erfc is the complementary error
function. Wewe found this expression by fitting the effect seen in the bottom panel of Fig. 2.2.
We will apply this correction by default which brings the expected nominal accuracy of our
power spectrum predictions to ∼ 1% on all scales considered.

The EUCLID comparison project

To further validate ourN -body code and quantify the accuracy of our numerical simulations,
we have carried out themain simulation of the “Euclid code comparison project”, presented in
Schneider et al. (2016). This simulation consists of 20483 particles of mass 1.2×109 h−1M�

in a 500h−1Mpc box, and has been carried out with severalN -body codes: RAMSES (Teyssier,
2002), PkdGrav3 (Potter et al., 2017), Gagdet3 , and recently with ABACUS by Garrison et al.
(2019).

Our realisation of this simulation adopts the same force and time-integration accuracy
parameters as of main BACCO simulations, and the same softening lenght as nenya, ε =
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Figure 2.3: The nonlinear mass power spectrum at z = 0 of the “Euclid code comparison project”.
Each coloured curve displays the predictions of a different N -body code, as indicated by the legend,
and we display ratios relative to our simulation result corrected by finite numerical resolution. Note
that all N -body codes agree to better than 1% precision up to k ∼ 10hMpc−1, with the exception of
the original Gadget3 run presented in Schneider et al (2016).

Figure 2.4: Predictions from the BACCO simulations, vilya, nenya, and narya, at z = 0. Left panel
shows the nonlinear mass power spectrum as solid lines, and linear perturbation theory as dotted lines.
The middle panel shows the redshift-space correlation function for subhalos with a number density
of 10−3 h3 Mpc−3, where solid and dashed lines show the results for each of the two opposite-phase
simulations. The right panel shows the Friends-of-Friends halo mass function, with vertical dashed
lines indicating the mass limit resolved with 10 and 100 particles.
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5h−1kpc. The full calculation required 6230 timesteps and took 3×105 CPUhours employing
1024 MPI Tasks.

In Fig. 2.3 we compare the resulting power spectra at z = 0. We display the ratio
with respect to our L-Gadget3 results including the correction provided in Eq. 2.1. For
comparison, we display the uncorrected measurement as a blue dashed line. Note the spikes
on large scales are caused by noise due to a slighly different k-binning in the spectra.

Our results, PkdGrav, RAMSES, and that of ABACUS agree to a remarkable level – they
differ by less than 1% up to k ∼ 10hMpc−1. This is an important verification of the absolute
accuracy of our results, but it is also an important cross-validation of all these 4N -body codes.
Interestingly, the Gadget3 result presented in Schneider et al. (2016) is clearly in tension
with the other 4 codes. Since the underlying core algorithms in our code and in Gadget3

are the same, the difference is likely a consequence of numerical parameters adopted by
Schneider et al. (2016) not being as accurate as those for the other runs. In the future, it will
be important to conduct code comparison projects were numerical parameters are chosen so
that each code provides results converged to a given degree.

The BACCO simulations

Having validated our numerical setup, we now present an overview of the results of our
BACCO simulations at z = 0 in Fig. 2.4.

In the left panel we show the nonlinear power spectrum in real space. Firstly, we see
the low level of random noise in our predictions owing to the “Paired-&-Fixed” method.
On large scales, we have checked that our results agree at the 0.5% level with respect to
the linear theory solution, which we compute for each cosmology using the Bolztmann code
CLASS (Lesgourgues, 2011a). Also on large scales, we see that the three simulations display
significantly different power spectra, despite the three of them having identical values for σ8.
This is mostly a consequence of their different primordial spectral index, ns. In contrast, on
scales smaller than k ∼ 0.2hMpc−1, the spectra become much more similar as their linear
spectra also do (shown by dotted lines).

In the middle panel we show the monopole of the redshift-space correlation functions
for subhalos with a spatial number density equal to 10−3 h3Mpc−3 selected according to
their peak maximum circular velocity. This is roughly analogous to a stellar mass selection
above 5 × 1010h−1M�. We see a significant difference in the correlation amplitude among
simulations. This hints at the potential constraining power of LSS if a predictive model for
the galaxy bias is available. We display each of the two “Paired-&-Fixed” simulations in each
cosmology as solid and dashed lines. Unlike in the power spectrum plot, the effect of pairing
the initial phase fields is visible.

Finally, in the right panel of Fig. 2.4 we display the mass function of halos identified by
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the FoF algorithm. As in previous cases, there are clear differences among cosmologies. The
minimum halo mass in our simulations is ∼ 3 − 4 × 1010 h−1M�, which should suffice to
model galaxies with star formation rates above 10h−1M�/year at z ∼ 1 (Orsi and Angulo,
2018), as expected to be observed by surveys like EUCLID, DESI, or J-PAS (Favole et al.,
2017).

In the next section we will employ our BACCO simulations to predict the nonlinear mass
power spectrum as a function of cosmology.

2.3 Nonlinear mass power spectrum Emulator

Our aim is to make fast predictions for the nonlinear power spectrum over the whole region
of currently-viable cosmologies. In this section we describe how we achieve this by building
(§2.3.1) and testing of a matter power spectrum emulator (§2.3.2).

Our basic strategy is the following:

• First, we define a target region in cosmological parameter space (§2.3.1) and iteratively
select a set of training points that minimise the emulator uncertainty (§2.3.1).

• Second, we use the cosmology-rescaling approach over the outputs of our BACCO
simulations (§2.3.1) to predict the power spectra in those training cosmologies (§2.3.1).

• Finally, we use Gaussian processes to build an emulator for the power spectra over the
linear expectation (§2.3.1).

We test the performance and accuracy of our emulator (§2.3.2) and compare it against
widely-used methods to predict the nonlinear power spectrum (§2.3.2).

2.3.1 Building the emulator

The parameter space

We aim to cover 8 parameters of the ΛCDM model extended with massive neutrinos and
dynamical dark energy. Specifically, we consider the parameter range:
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Figure 2.5: Distribution of cosmologies employed to build our BACCO emulator. Blue symbols
display the location of cosmologies in our initial training set, whereas orange and green symbols
display those subsequently selected by our iterative method. In each plot, the limits coincide with the
full range of values considered (c.f. Eq 2.2).

σ8 ∈ [0.73, 0.9]

Ωm ∈ [0.23, 0.4]

Ωb ∈ [0.04, 0.06]

ns ∈ [0.92, 1.01] (2.2)

h [100 km s−1Mpc−1] ∈ [0.6, 0.8]

Mν [eV] ∈ [0.0, 0.4]

w0 ∈ [−1.15,−0.85]

wa ∈ [−0.3, 0.3]

where Mν is the total mass in neutrinos, σ8 is the r.m.s. linear cold mass (dark matter plus
baryons) variance in 8h−1Mpc spheres, and w0 and wa define the time evolution of the dark
energy equation of state: w(z) = w0 + (1− a)wa. The parameter range we consider for (σ8,
Ωm, Ωb, ns) corresponds to a ∼ 10σ region around the best-fit parameters of the analysis of
Planck Collaboration et al. (2014a). For the dimensionless Hubble parameter, h, we expand
the range to cover a 4σ region around current low-redshift measurements from supernovae
data (Riess, 2019).

We assume a flat geometry, i.e. Ωk = 0 and Ωm + Ωw + Ων = 1. We keep fixed the
effective number of relativistic species to Neff = 3.046, and the temperature of the CMB
TCMB = 2.7255 K and neglect the impact of radiation (i.e. Ωr = 0). Note, however, that it is
relatively straightforward to relax these assumptions and include in our framework varying
curvature, relativistic degrees of freedom, or other ingredients.

For comparison, we notice that the range of parameters covered by our emulator is
approximately twice as large as that of the Euclid emulator (with the exception of w0,
which is similar), which implies a parameter space volume ∼ 200 times larger, and that it
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covers cosmological parameters beyond the minimal ΛCDM: dynamical dark energy and
massive neutrinos. In contrast, our parameter space is similar to that considered by the
Mira-Titan Universe project (Heitmann et al., 2006; Lawrence et al., 2017), however, as we
will discuss next, we cover the space with approximately 20 times the number of sampling
points.

Training Cosmology Set

The next step is to define the cosmologies with which we will train our emulator. This is
usually done by sampling the desired space with a Latin-Hypercube (e.g. Heitmann et al.,
2006). We adopt a slightly different strategy based on the idea of iterative emulation of
Pellejero-Ibañez et al. (2020) (see also Rogers et al., 2019), where we preferentially select
training points in regions of high emulator uncertainty.

Let us first define the emulated quantity:

Q(k, z) ≡ log(P (k, z)/Plinear(k, z)) (2.3)

where Plinear is the linear theory power spectrum and P (k) is the measured nonlinear
power spectrum of cold matter (i.e. excluding neutrinos). Emulating this quantity, rather
than the full nonlinear power spectra, reduces significantly the dynamical range of the
emulation, simplifying the problem and thus delivering more accurate results (see e.g. Euclid
Collaboration et al., 2019).

To build our training set, we first construct a Latin-Hypercube with 400 points. We then
build an emulator for Q, which provides the expectation value and variance for the emulated
quantity (c.f. §2.3.1 for more details). We then evaluate the emulator over a Latin-Hypercube
built with 2,000 points, and select the 100 points expected to have the largest uncertainty
in their predictions. We add these points to our training set and re-build the emulator. We
repeat this procedure 4 times.

We display the final set of training cosmologies, comprised of 800 points, in Fig. 2.5. Blue
symbols indicate the initial training cosmologies, whereas orange and green symbols do so
for the 2nd and 4th iteration, respectively. We can appreciate that most points in the iterations
are located near the boundaries of the cosmological space, which minimise extrapolation.

It is worth mentioning that we sample our space significantly better than typical
emulators. For instance, the Mira-Titan and Euclid Emulator projects employ 36 and
100 simulations, respectively. This implies that we can keep the emulator errors under any
desired level, which could be problematic otherwise, as parameter-dependent uncertainties in
models, could in principle bias parameter estimates. On the other hand, sampling points can
be designed optimally so that emulation errors are much smaller than a naive Latin Hypercube
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(Heitmann et al., 2014; Rogers et al., 2019), however, this can be only be done optimally
for a single summary statistic: what could be optimal for the matter power spectrum, is not
necessarily the best for, e.g, the quadrupole of the galaxy power spectrum.

Cosmology rescaling

Our next step is to predict nonlinear structure for each of our training cosmologies. For this,
we employ the latest incarnation of the cosmology-rescaling algorithm, originally introduced
by Angulo and White (2010).

In short, the cosmology-rescaling algorithm seeks a coordinate and time transformation
such that the linear rms variance coincides in the original and target cosmologies. This
transformation is motivated by extended Press-Schechter arguments, and returns highly
accurate predictions for the mass function and properties of collapsed objects. On
large scales, the algorithm uses 2nd-order Lagrangian Perturbation Theory to modify
the amplitude of Fourier modes as consistent with the change of cosmology. On small
scales, the internal structure of halos is modified using physically-motivated models for the
concentration-mass-redshift relation (e.g. Ludlow et al., 2016).

The accuracy of the cosmology algorithm has been tested by multiple authors (Ruiz et al.,
2011; Angulo and Hilbert, 2015; Mead and Peacock, 2014a; Mead et al., 2015; Renneby
et al., 2018; Contreras et al., 2020a), and it has been recently extended to the case of massive
neutrinos by Zennaro et al. (2019). Specifically, by comparing against a suite of N -body
simulations, Contreras et al. (2020a) explicitly showed that the cosmology rescaling achieves
an accuracy of . 3% up to k = 5hMpc−1 over the same range of cosmological parameter
values we consider here (c.f. Eq. 2.2). The largest errors appear on small scales and for
dynamical dark energy parameters but, when restricted to the 6 parameters of the minimal
ΛCDMmodel, the rescaling returns 1% accurate predictions. Note that the level of accuracy
is set by the performance of current models for the concentration-mass-redshift relation
(which usually are not calibrated for beyond ΛCDM parameters), and future progress along
those lines should feedback into higher accuracy for our emulator.

For our task at hand, we first split the parameter space into three disjoint regions where
nenya, narya, or vilyawill be employed (Contreras et al., 2020b). Then, we load inmemory
a given snapshot of a given simulation and then rescale it to the corresponding subset of the
800 cosmologies. We employ 10 snapshots per simulation.

The full rescaling algorithm takes approximately 2 minutes (on 12 threads using OpenMP
parallelization) per cosmology and redshift. Thus, all the required computations for building
the emulator required approximately 10, 000 CPU hours – a negligible amount compared to
that employed to run a single state-of-the-art N -body simulation.
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Power Spectrum Measurements

We estimate the power spectrum in our rescaled simulation outputs using Fast Fourier
Transforms. We employ a cloud-in-cells assignment scheme over two interlaced grids
(Sefusatti et al., 2016) of N = 10243 points. To achieve efficient measurements at higher
wavenumbers, we repeat this procedure after folding the simulation box 4 times in each
dimension. We measure the power spectrum in 120 evenly-spaced bins in log k, from
k = 0.01 to 5hMpc−1, and transition from the full to the folded measurement at half
the Nyquist frequency. We have explicitly checked that this procedure returns sub-percent
accurate power spectrum measurements over the full range of scales considered.

Although our BACCO simulations have high mass resolution, for computational
efficiency, hereafter we will consider a subset of 10803 particles (uniformly selected in
Lagrangian space) as our dark matter catalogue. This catalogue, however, is affected by
discreteness noise. For a Poisson sampling of N points over a box of sidelength L, the
power spectrum receives a contribution equal to (L/N)3. However, this might not be an
accurate estimate for our discreteness noise since our sampling is homogeneous in Lagrangian
coordinates. We have estimated its actual contribution as a third-order polynomial by
comparing the spectra of the full and undiluted samples at different redshifts. We found
that the amplitude is proportional to ∼ 0.6 times the Poisson noise at z = 0, and that it
progressively decreases in amplitude at higher redshifts, to reach ∼ 0.2 times the Poisson
noise at z = 2.

All our power spectrum measurements will be corrected by discreteness noise by
subtracting the term described above, and further corrected for finite numerical accuracy
following section §2.2.3. However, this procedure is not perfect, and we still detect ∼ 2%
residuals at z ∼ 1 at k ∼ 5hMpc−1. This will contribute to uncertainties in our emulator,
which, however, are smaller than systematic uncertainties induced by the cosmology scaling.

Emulator Data

In total, we employ more than 16,000 power spectrum measurements; 400+400 training
cosmologies at approximately 10 different cosmic times for two paired simulations. Grey
shaded regions in Fig. 2.6 show the range covered by this data at z = 0 and z = 1, with the
inset focusing on the range of wavemodes where baryonic acoustic oscillations are found.
Blue and red lines show two randomly-chosen cosmologies.

On the largest scales, we can see that our rescaled simulations agree almost perfectly
with linear theory. Although expected, it provides further validation of the dataset. On
intermediate scales, we can see an oscillatory behaviour – better appreciated in the figure
insets. This is a consequence of the nonlinear smearing of baryonic acoustic oscillations
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Figure 2.6: Nonlinear power spectra at z = 0 and z = 1 over the linear theory expectations, as
predicted by rescaled BACCO simulations. Grey regions indicate the range covered by the training
set employed to construct our emulator. Blue and red lines display two particular, randomly-chosen,
measurements.

causedmostly by large-scale flows. At higher redshifts, the amplitude of this feature decreases
since BAO are better described by linear theory. On smaller highly nonlinear scales, we see
an increase of more than one order of magnitude with different cosmologies differing by even
factors of 3-4.

Principal Component Analysis

To reduce the dimensionality of our power spectrum measurements, we have performed a
principal components (PC) analysis over our whole dataset, after subtracting the mean. We
have kept the 8 k-vectors with the highest eigenvalues, which together can explain all but
10−3 of the data variance.

In the top panel of Fig. 2.7 we show the amplitude of these PCs, as indicated by the
legend. The most important vector is a smooth function of wavenumber and roughly captures
the overall impact of nonlinear evolution. Subsequent vectors describe the smearing of the
BAO and further nonlinear modifications. It is worth noting that only the 7th and 8th PC
vectors display any noticeable noise, owing to the highly precise input dataset.

In the bottom panel of the Fig. 2.7 we display the ratio of the fullQ ≡ log(P/Plinear) over
that reconstructed using the first PCs aforementioned. We show the results for a random 2%
of the power spectrum in our training data. We can see that almost all of them are recovered to
better than 0.5%. It is interesting to note that the residuals, although increase on intermediate
scales, aremostly devoid of structure, which suggests that including additional PCswill simply
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Figure 2.7: Top: The amplitude of the first 8 vectors of a principal component analysis of our power
spectrum data. Bottom: Ratio between the original and PCA-reconstructed Q ≡ log(P/Plinear) for a
random 2% of our data at z = 0. The grey band indicates a region of±0.5%, which can be considered
as an indication of the statistical noise in our data.

Figure 2.8: Comparison between the nonlinear power spectrum at z = 0 as predicted by a full
N -body simulation and our BACCO emulator for a set of cosmological parameters consistent with
recent analyses of the Planck satellite data. The left panel shows the full power spectrum, whereas
middle and rightmost panel show the same data relative to the expectations of linear theory or halofit,
respectively. The emulator and simulation predictions agree to better than ∼ 2% over the full range
of scales considered.
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recover more accurately the intrinsic noise in our dataset rather than systematic dependencies
on cosmology.

To confirm this idea, we have repeated our emulation but keeping twice as many PCs.
Although the description of the values of Q in our dataset gained accuracy (decreasing
the differences down to ∼ 0.25%), the performance of the emulator at predicting other
cosmologies did not increase. This supports the idea that PCs beyond the 8-th are simply
capturing particular statistical fluctuations in the training set, rather than cosmology-induced
features.

Gaussian processes

To interpolate between our training data, and thus predict Q(k, z) for any cosmology, we
will employ Gaussian Processes Regression. Note that other options are possible, such as
polynomial chaos expansion, or deep neural networks.

In short, Gaussian processes assume that every subset of points in a given space is jointly
Gaussian distributed with zero mean and covarianceK. The covariance is a priori unknown
but it can be estimated from a set of observations (e.g. our training set). Once the covariance is
specified, the Gaussian process can predict the full probability distribution function anywhere
in the parameter space.

In our case, we measure the amplitude associated to each PC in each training set. We then
build a separate Gaussian Process for each of our PCs, using the package GPy (GPy, 2012).
We assume the covariance kernel to be described by a squared exponential, with correlation
length and variance set to the values that best describe the correlation among our data, found
by maximising the marginal likelihood.

For a given target cosmology in our parameter space, we can predict the amplitude
associated to each PC and then reconstruct the full Q(k, z) vector. Any given evaluation
takes approximately 180 milliseconds.

2.3.2 Testing the emulator
A first example

We present a first look at our emulator results in Fig. 2.8, where we show the nonlinear
power spectrum at z = 0 for a cosmology consistent with a recent analysis of Planck data.
Specifically, we consider: σ8 = 0.8102, Ωm = 0.30964, Ωb = 0.04897, ns = 0.9665,
h = 0.6766,Mν = 0.0, w0 = −1.0, wa = 0.0. The left panel shows the full power spectrum,
the middle panel do so relative to linear theory, and the rightmost panel relative to HaloFit
calibrated by Takahashi et al. (2012).

For comparison, we include as orange circles, the results of a full N -body simulation
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Figure 2.9: Comparison between Q ≡ log(P/Plinear) predicted by our emulator and that computed
directly by scaling our BACCO simulations to the desired cosmology. Top and bottom panels display
results at z = 1 and z = 0, respectively, for 10 cosmologies that span our whole parameter space.

Figure 2.10: Comparison between nonlinear power spectrum predicted by our emulator and by four
other methods. From left to right, panels display a comparison against Halofit, Euclid Emulator,
NGenHaloFit, and MiraTitan. Top and bottom rows show results for z = 1 and z = 0, respectively.
Each coloured curve represents a different cosmology within the parameter space where the Euclid
Emulator has been calibrated. We highlight the “Euclid reference” cosmology as a thick line. Grey
bands indicate ±1 and ±2% regions.
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Figure 2.11: The ratio between the cold matter power spectra in massive neutrino cosmologies, P νc ,
and the case without any massive neutrino, P ν=0

c . We show the predictions of linear theory (dotted
line) and of three models: HaloFit, Mira-Titan emulator and our BACCO emulator.

with the same mass resolution and numerical parameters as those of our main BACCO suite,
but in a smaller box, L = 512h−1Mpc. Also as in our BACCO suite, the initial conditions
have been “Paired-&-Fixed” for this simulation.

Overall, we can see that the BACCO emulator and the N -body simulation agree to
a remarkable level, being indistinguishable by eye in the leftmost and middle panels. In
particular, on large scales, both agree with linear theory (which only can be appreciated
thanks to the “Paired-&-Fixed” initial conditions); on intermediate scales, both also predict
a BAO featured smeared out compared to linear theory.

In the rightmost panel we can see these aspects in more detail. Firstly, we note that
the simulation and emulator results agree to about 1% on all the scales considered. This is
consistent with the expected accuracy of the cosmology rescaling method, but also note that
due to its somewhat small volume, the cosmic variance in the N -body simulation results are
not negligible. It is also interesting to note the systematic disagreement with the predictions
from halofit. In following subsections we will explore these differences further.

Accuracy

To start testing the accuracy of our emulator, we have defined 10 cosmologies distributed over
the target parameter space (c.f.§2.3.1) using a Latin hypercube. We then rescale our BACCO
outputs to those parameters and compare the results against our emulation predictions. This
essentially tests how accurate the PCA decomposition and emulation via Gaussian Process
Regression are.
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In Fig. 2.9 we show the ratio of the emulated to the rescaled nonlinear power spectrum
at z = 0 and z = 1 for the 10 cosmologies mentioned before (we recall that nor z = 0 nor
z = 1 were explicitly included in the emulator). We can see that on all scales our results are
better than ±2% percent, and that most of the cosmologies are predicted to better that 1% at
z = 0. Although this is already a high accuracy, we note that more and more rescaled results
can be added over time to progressively improve the quality of the emulation. We can also
appreciate oscillatory features around the wavenumbers where BAO are located, this suggest
that emulating more finely binned power spectra, could recover them more precisely.

We recall that this level of uncertainty is comparable to the accuracy expected by the
cosmology rescaling algorithm: 1% for parameters of the minimal ΛCDM and ∼ 3% when
considering massive neutrinos and dynamical dark energy.

Comparison with HaloFit, EuclidEmulator, and NgenHaloFit

We now compare our emulation results against four widely-used methods to predict the
nonlinear evolution: HaloFit (Takahashi et al., 2012), the Euclid Emulator (Euclid
Collaboration et al., 2019), NGenHalofit (Smith and Angulo, 2019), and Mira-Titan

(Lawrence et al., 2017). Since not all of them have been calibrated over the whole parameter
space covered by our emulator, we have restricted the comparison to the volume covered by
the Euclid Emulator. We note that of our 800 training cosmologies, only 2 of them fall
within this parameter volume.

In Fig. 2.10 we display the ratio of those predictions to that of our BACCO emulator.
Coloured lines show 10 cosmologies set by a latin hypercube inside the Euclid Emulator

parameter space. In addition, we show as a heavy line the Euclid reference cosmology:
Ωcdm = 0.26067, σ8 = 0.8102, Ωb = 0.04897, ns = 0.9665, h = 0.6766,Mν = 0, w0 = −1,
wa = 0, employed by (Euclid Collaboration et al., 2019).

On large scales, k < 0.08hMpc−1, our emulator agrees almost perfectly with
NGenHalofit and the Euclid Emulator. Halofit, on the other hand shows a small
constant power deficit, whereas the Mira-Titan displays a weakly scale-dependent offset.
Over this range of scales, Mira-Titan is given by TimeRG perturbation theory (Pietroni,
2008; Upadhye et al., 2014), which might indicate inaccuracies in that approach.

On intermediate scales, 0.08 < k/[hMpc−1] < 0.5, our results agree very well with those
of NGenHalofit; for almost all cosmologies the differences are within the expected accuracy
of our emulator. In contrast, we see that Halofit overestimates the amount of power by about
2% at z = 0 and it does not correctly captures the BAO nonlinear smearing (as was already
noted by Euclid Collaboration et al., 2019). On the other hand, MiraTitan underestimates
the power by up to 2.5% at z = 0, and displays a strong feature at k ∼ 0.2hMpc−1 at
z = 1. Over this range of scales MiraTitan employs a suite of low-resolution, large volume
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simulations, thus the disagreement could be due to an insufficient numerical accuracy in their
simulations.

On small scales, k > 0.5hMpc−1, we continue to see differences among the three
methods. For halofit, NGenHaloFit and Mira-Titan, they are systematic, roughly
independent of cosmology, and decrease at higher redshift. This suggests that the
origin is mostly caused by the different numerical accuracy in the underlying simulations.
Specifically, the simulations used by Smith and Angulo (2019) employ a softening length
ε = 8h−1kpc, which according to Eq. 2.1 is expected to produce an underestimation of 1.5% at
k = 5hMpc−1. In addition, the transition between their high and low-resolution runs occurs
at k ∼ 0.6hMpc−1 which might be related to the deficit we observe at k ∼ 0.7−0.7hMpc−1

at z = 0.
In contrast, the differences with respect to Euclid Emulator vary significantly for

different cosmologies. Specifically, for the Euclid Reference Cosmology, the agreement is
subpercent on all scales. However, for our other test cosmologies, differences have a spread
of ∼ 5%, even at k < 1hMpc−1. We do not see this behaviour with other methods, which
might suggest that there are significant uncertainties in the emulated power spectra of the
Euclid Emulator beyond their quoted precision.

Finally, we note that there is a 1% “bump” at k ∼ 3hMpc−1 in all z = 1 panels, which
is originated by our imperfect shotnoise correction.

The previous comparison was done in a rather restricted cosmological parameter volume,
which served as a strong test of our accuracy. However, one of the biggest advantages of
our method is the ability to predict much more extreme cosmologies even with non-standard
ingredients. We provide an example of this next.

In Fig. 2.11 we show the predictions for the effects of massive neutrinos on the z = 0

cold matter (baryons plus dark matter) power spectrum. We display the ratio between cases
with various neutrino masses, P ν

c , relative to that without massive neutrinos P ν
c . In all

cases we use As = 2.1 × 10−9 and fix all the other cosmological parameters to those of the
“Euclid reference cosmology”. We only display the predictions of HaloFit and Mira-Titan,
since NGenHaloFit nor the Euclid Emulator have been calibrated in the case of massive
neutrinos.

We can see that on large scales, our predictions agreewith both linear theory and HaloFit.
For very massive neutrino cases, there is also a good agreement with MiraTitan, but there
is a significant disagreement for Mν = 0.1, this might be caused by the scale-dependent
features on large scales seed in the previous figure. On intermediate scales, all predictions
also agree on the broadband shape of the neutrino-induced suppression, but our emulator is
also able to capture the slightly different BAO suppression expected when massive neutrinos
are present. On small scales, all three methods describe the well-known neutrino-induced
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spoon-like suppression, disagreeing slightly on the magnitude of the maximum suppression.
Note however, we expect our emulator to predict more precisely the full shape of the nonlinear
power spectrum, owing to the systematic uncertainties in HaloFit and Mira-Titan discussed
before.

2.4 Summary

In this chapter, we have presented the BACCO simulation project: a framework that aims at
delivering high-accuracy predictions for the distribution of dark matter, galaxies, and gas as
a function of cosmological parameters.

The basic idea consists in combining recent developments in numerical cosmology –
N -body simulations, initial conditions with suppressed variance, and cosmology-rescaling
methods – to quickly predict the nonlinear distribution of matter in a cosmological volume.
The main advantage of our approach is that it requires only a small number of N -body
simulations, thus they can be of high resolution and volume. This in turn allows sophisticated
modelling of the galaxy population (for instance in terms of subhalo abundance matching,
semi-empirical or semi-analytic galaxy formation model), and of baryons (including the
effects of cooling, star formation and feedback) in the mass distribution.

Themain suite of simulations of the BACCOproject consists in 3 sets of “Paired-&-Fixed”
simulations, each of them of a size L = 1440h−1Mpc and with 80 billion particles. Their
cosmologies were carefully chosen so that they maximise the accuracy of our predictions
(Fig. 2.1 and Table 2.1) while minimising computational resources. We have validated the
accuracy of our numerical setup with a suite of small N -body simulations (Fig. 2.2) and by
presenting a realization of the Euclid comparison project (Fig. 2.3). These tests indicate our
simulations have an accuracy of 1% up to k ∼ 5hMpc−1.

We have employed our BACCO simulations to predict more than 16,000 nonlinear power
spectra at various redshifts and for 800 different cosmologies (Figs. 2.5 and 2.6). These
cosmologies span essentially all the currently allowed region of parameter space of ΛCDM
extended to massive neutrinos and dynamical dark energy. Using these results, we built an
emulator for the 8 most important principal components of the ratio of the nonlinear power
spectrum over the linear expectation (Fig. 2.7). We show our emulation procedure to be
accurate at the 1− 2% level over 0 < z < 1.5 and 10−2 < k/(hMpc−1) < 5 (Figs. 2.8 and
2.9). Therefore, our accuracy is currently limited by that of cosmology rescaling methods.
We compared our predictions against four popular methods to quickly predict the power
spectrum in the minimal ΛCDM scenario (Fig. 2.10) and in the presence of massive neutrinos
(Fig. 2.11).

Since predicting a given cosmology requires an almost negligible amount of CPU time
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in our BACCO framework, we foresee the accuracy of our emulator to continuously improve
as we include more cosmologies in the training set. Extensions to more parameters should
also be possible, as, for instance, the number of relativistic degrees of freedom or curvature,
can be easily incorporated in cosmology-rescaling methods. Additionally, there are several
aspects of such methods that are likely to improve in the future, which should feedback into
more accurate predictions and emulated power spectra.

On the other hand, effects induced by baryons on the shape of the nonlinear mass power
spectrum can be of 10-30% (e.g. Chisari et al., 2019). Thus, they are much larger than current
uncertainties in our emulation, cosmology-rescaling, or even shotnoise. These effects of star
formation, gas cooling, and feedback from supermassive black holes are quite uncertain and
differ significantly between different hydrodynamical simulations. However, they can be
accurately modelled in post-processing using dark-matter only simulations (Schneider and
Teyssier, 2015b). Specifically, Aricò et al. (2020b) showed that the effects of 7 different
state-of-the-art hydrodynamical simulations could all be modelled to better than 1% within
simple but physically-motivatedmodels. In the next chapters, we will implement suchmodels
and extend our matter emulation to simultaneously include cosmological and astrophysical
parameters.
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Chapter 3

Baryonification: exploring astrophysical
scenarios

In this chapter, adapted from the paper “Modelling the large-scale mass density field of
the Universe as a function of cosmology and baryonic physics” (Aricò et al., 2020b), we
present and test a framework that models the three-dimensional distribution of mass in
the Universe as a function of cosmological and astrophysical parameters. Our approach
combines two different techniques: a rescaling algorithm that modifies the cosmology of
gravity-only N -body simulations, and a baryonification algorithm which mimics the effects
of astrophysical processes induced by baryons, such as star formation and AGN feedback.
We show how this approach can accurately reproduce the effects of baryons on the matter
power spectrum of various state-of-the-art hydrodynamical simulations (EAGLE, Illustris,
Illustris-TNG, Horizon-AGN, and OWLS, Cosmo-OWLS and BAHAMAS), to better than
1% from very large down to small, highly nonlinear, scales (k ∼ 5hMpc−1), and from z = 0

up to z ∼ 2. We highlight that, thanks to the heavy optimisation of our algorithms, we
can obtain these predictions for arbitrary baryonic models and cosmology (including massive
neutrinos and dynamical dark energymodels) with an almost negligible CPU cost. With these
tools in handwe explore the degeneracies between cosmological and astrophysical parameters
in the nonlinear mass power spectrum. Our findings suggest that after marginalising over
baryonic physics, cosmological constraints inferred from weak gravitational lensing should
be moderately degraded.

3.1 Introduction

Measuring the spatial distribution and growth of mass in the Universe is one of the main
probes of the cosmic acceleration and the nature of darkmatter (see e.g.Weinberg et al., 2013).
Consequently, weak gravitational lensing, which directly maps the cosmic gravitational
potential and thus the matter distribution, is among the primary targets of several current
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and future cosmological surveys (KIDS, DES, HSC SSP, Euclid, LSST).
One of the main advantages of weak lensing is that, since dark matter dominates the

mass budget in the Universe, its theory modelling should mostly rely on well-understood
physics such as General Relativity. However, although gravitational interactions dominate
the nonlinear evolution of mass in the Universe, processes induced by baryonic interactions
cannot be ignored. In fact, the accuracy of futuremeasurements will be such that, if neglected,
baryonic physics could easily induce a large bias on the cosmological constraints inferred
(Semboloni et al., 2011; Schneider et al., 2020).

Similarly, various other cosmological observables depend on the distribution of baryons
and dark matter on large scales and thus are affected by the same baryonic physics.
For instance, thermal and kinetic Sunyaev-Zeldovich effects can probe the cosmological
parameters and the law of gravity, but are also sensitive to the distribution and the (thermo-)
dynamical state of the gas in and around haloes (Sunyaev and Zeldovich, 1970; McCarthy
et al., 2014; Hojjati et al., 2017; Park et al., 2018). Therefore, in addition to quantifying the
impact of e.g. intrinsic alignment of galaxies, non-thermal pressure, or uncertainties in the
redshift distribution of background galaxies, the effects of baryons also need to be modelled
and understood to great precision in modern cosmology.

Currently, the most accurate way to predict the joint evolution of dark matter and baryons
is through cosmological hydrodynamical simulations. These simulations seek to follow the
relevant astrophysical processes for galaxy formation along with the nonlinear evolution of
the mass field. In general, they predict a suppression of the mass clustering at intermediate
scales (k ∼ 1 hMpc−1), and an enhancement on small scales (k > 10 hMpc−1) with respect
to the results from Gravity Only (GrO) simulations. The former effect is predominantly due
to feedback from AGN and supernovae, whereas the latter to the condensation of baryons
into stars (for a review, see Chisari et al., 2019).

Despite a broad agreement among different state-of-the-art simulations, there are
discrepancies on the amplitude, redshift evolution, and scales affected by baryonic effects.
This is likely a consequence of differences in the numerical scheme, and in the (uncertain
but necessary) implementation of various sub-grid recipes (Chisari et al., 2018; van Daalen
et al., 2020). Furthermore, since most astrophysical processes included in hydrodynamical
simulations cannot be predicted ab-initio, they have to be calibrated against observations – a
process which has an intrinsic uncertainty, involve many free parameters, and could moreover
depend on the assumed cosmology. All this suggests that we are far from a deterministic
modelling of astrophysical processes, and that the impact of baryons is still not understood
at a quantitative level. Therefore, the modifications predicted by simulations should not be
used at face value in cosmological parameter estimations, and more flexible methods should
be seeked.
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Different approaches have been adopted to incorporate baryonic effects into the data
analysis pipelines. For instance, marginalising over nuisance parameters (e.g Harnois-Déraps
et al., 2015); identifying the range of scales potentially affected by baryonic physics and
exclude them in data analyses (e.g. Troxel et al., 2018) (but at the expense of discarding a
potentially huge amount of cosmological information); or to perform a Principal Components
Analysis (PCA) and remove the first components (Eifler et al., 2015; Huang et al., 2019).

More general attempts to describe the mass field in the presence of baryons are found in
several extensions of the halo-model (e.g. Semboloni et al., 2011; Mohammed et al., 2014;
Fedeli, 2014; Mead et al., 2015; Debackere et al., 2020); in terms of response functions
calibrated using Separate Universe simulations (Barreira et al., 2019); in perturbative
modelling (Lewandowski et al., 2015); displacing particles according to the expected gas
pressure (Dai et al., 2018); or even using machine learning (Tröster et al., 2019).

In this work we follow another approach, namely the Baryon Correction Model (BCM),
initially proposed by Schneider and Teyssier (2015a) and extended in Schneider et al. (2019).
The main idea behind this technique is to split mass elements into 4 categories: galaxies, hot
bound gas in haloes, ejected gas and darkmatter, whose abundance and spatial distribution are
parametrised with physically-motivated recipes. The position of particles in a GrO simulation
is then perturbed accordingly.

The advantages of this approach are multiple. Firstly, it is physically motivated and does
not rely on any specific hydrodynamical simulation. The approach also captures the nonlinear
regime, it takes into account environmental effects, and it provides the three-dimensional
matter density field. Finally, it has only a few free parameters which could be constrained
directly by observations. Unfortunately, the approach is computationally expensive and
relies on the existence of a suite of high-resolution simulations with varying cosmological
parameters, both of which limit its usability in real data analyses.

Here, we propose a modified version of the BCM that solves these issues. Our version
captures the essence of the original approach but with different assumptions and in a
computationally efficient manner. We also extend the model to identify individual simulation
particles as part of galaxies, hot gas, cold (ejected) gas, or dark matter. Importantly, we
also demonstrate that our modified version of the BCM can be accurately combined with the
cosmology-scaling algorithm presented in Angulo and White (2010), so that the BCM can
be applied on top of any set of cosmological parameters.

Putting these two ingredients together, we predict themass power spectrum simultaneously
as a function of cosmology and astrophysical parameters. To test the accuracy of our approach,
we employ a single GrO simulation with which we reproduce, to better than 1%, the power
spectrum suppression as predicted by various state-of-the-art simulations (EAGLE, Illustris,
Illustris-TNG, OWLS, Cosmo-OWLS, BAHAMAS andHorizon-AGN)which adopt different
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cosmologies and galaxy formation prescriptions. Furthermore, we test the flexibility of our
model at z ≤ 2, for OWLS, Cosmo-OWLS, BAHAMAS and Horizon-AGN. We find that the
accuracy of our model does not degrade at high redshifts, indicating that our assumptions
hold over all the broad range of scales and cosmic times considered. As an initial application
of the framework developed in this manuscript, we explore the impact of baryons in extracting
cosmological information from the mass power spectrum. We stress also the importance of
quantifying and correctly propagating the uncertainties of the data model employed, which
can be the leading source of error in the forthcoming weak-lensing surveys.

This chapter is organised as follows: in §3.2 we present the N -body simulations used in
our work, in §3.3 we introduce our baryonic model and quantify its impact in the mass power
spectrum; in §3.4 we briefly describe the cosmology rescaling algorithm, its implementation,
and its combination to the BCM; in §3.5 we fit state-of-the-art hydrodynamical simulations
and provide the best-fitting parameters at z = 0, studying also their redshift evolution. We
explore the cosmological information in the power spectrum in §3.6. We discuss our results
and conclude in §3.7.

3.2 Numerical Simulations

3.2.1 Gravity-Only Simulations

Our GrO simulations were run with L-GADGET-3 (Angulo et al., 2012), an optimised and
memory-efficient version of GADGET (Springel, 2005). The initial conditions were generated
on-the-fly at z = 49 using 2nd-order Lagrangian Perturbation theory and have suppressed
cosmic variance thanks to the “fixed and paired” technique (Angulo and Pontzen, 2016).
Gravitational forces were computed using a Tree-PM algorithm with a Plummer-equivalent
softening length of εs = 6.7h−1kpc. The force and time integration accuracy parameters
were chosen so that z = 0 power spectra are accurate at the ∼ 1% level at k ∼ 5hMpc−1.

We have built (sub)halo catalogues with a Friends-of-Friends algorithm and a modified
version of SUBFIND (Springel et al., 2001). The FoF linking length is 20% of the mean
inter-particle separation, ` = 67h−1kpc. We kept objects gravitationally bound and resolved
with at least 20 particles. Additionally, for all the simulations we stored a set of particles
(homogeneously selected in Lagrangian space) diluted by a factor of 43, which we will use
as our dark matter catalogue.

We have run a set of three (paired) simulations, with box sides of 64, 128, 256 h−1Mpc

and 1923, 3843, 7683 particles of mass mp ≈ 3.2× 109 h−1M�. Therefore, Milky-Way like
haloes are resolved with ∼ 300 particles. The particle mass was also chosen to achieve a
high accuracy on the nonlinear power spectrum (Schneider et al., 2016).

The cosmological parameters were chosen to maximise the accuracy of the rescaling
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algorithm over a wide range of cosmologies. Specifically: the density of cold dark matter,
baryons and dark energy, in units of the critical density, are Ωcdm = 0.265, Ωb = 0.05,
ΩΛ = 0.685 respectively, the Hubble parameterH0 = 60 km s−1 Mpc−1, the spectral index of
the primordial power spectrum ns = 1.01, the amplitude of the linear fluctuation of the matter
density field at 8 h−1Mpc, σ8 = 0.9, the optical depth at recombination τ = 0.0952, the dark
energy equation-of-state parameters assuming a Chevallier-Polarski-Linder parametrisation,
(Chevallier and Polarski, 2001; Linder, 2003), w0 = −1 and wa = 0, and the sum of the
neutrino masses

∑
mν = 0 eV. We refer to Contreras et al. (2020a) for further details.

To test the accuracy of the combination of cosmology scaling and baryonic model,
we have carried out another paired simulation adopting the Planck 2013 cosmology (Planck
Collaboration et al., 2014b, hereafter Planck13): Ωcdm = 0.2588,Ωb = 0.0482,ΩΛ = 0.6928,
H0 = 67.77 km s−1 Mpc−1, ns = 0.961, σ8 = 0.828, τ = 0.0952, w0 = −1, wa = 0,
∑
mν = 0. This second simulation has the same number of particles and initial white-noise

field as our main simulation, but a box size of 272.4 h−1Mpc (instead of 256h−1Mpc). This
volume was chosen to exactly match the box size of our largest simulation after its cosmology
was rescaled to Planck13.

All the power spectra shown throughout this chapter, unless stated otherwise, are
computed by assigning particles in two 5123 interlaced grids employing a cloud-in-cellmass
assignment scheme, and using Fast Fourier Transforms. This results into a power spectrum
estimation accurate to 1% up to the grid Nyquist frequency (see Sefusatti et al., 2016). We
have checked that using a triangular shaped cloud scheme our results do not change.

The shot noise contribution is estimated as 1/n̄, and subtracted. n̄ P (k) reaches 0.01 at
k ∼ 5hMpc−1, a scale 4 times larger than the typical wavenumber affected by our choice
of softening length (k ∼ π(2.7 εs)

−1 ≈ 20hMpc−1). Therefore, we will focus on scales
k . 5hMpc−1, where we expect numerical noise in our results to be less than 1%.

3.2.2 Hydrodynamical Simulations

To test the performance of our BCM, we will compare its predictions against measurements
from various hydrodynamical simulations. In alphabetical order, these simulations are:

• BAHAMAS (McCarthy et al., 2017): run with GADGET3, calibrated to reproduce the
present-day stellar mass function and halo gas mass fractions, with the specific purpose
of studying the baryonic impact on the cosmic mass distribution. The simulation we
use in this work has a box size of L=400h−1Mpc and it has been run employing a
Planck15 cosmology with massive neutrinos (Planck Collaboration 2015 results XIII,
2016) (Ωcdm, Ωb, ΩΛ, As, h, ns, τ ,

∑
mν)=(0.2589, 0.0486, 0.6911, 2.116 × 10−9,

0.6774, 0.9667, 0.066, 0.06).

51



• Cosmo-OWLS (Le Brun et al., 2014): this set of simulations is an extension of the
OWLS simulations, designed to study cluster-size astrophysics. We use a simulation
which include metal-dependent radiative cooling, star formation, stellar and AGN
feedback, and have a L=400h−1Mpc box with a WMAP7 cosmology (Ωcdm, Ωb, ΩΛ,
As, h, ns, τ )=(0.226, 0.0455, 0.72845, 2.185× 10−9, 0.704, 0.967, 0.085).

• EAGLE (Schaye et al., 2015; Hellwing et al., 2016): a SPH hydrodynamical simulation
in a L=68h−1Mpc box that includes modelling for star formation, thermal AGN
feedback, black-hole growth and metal enrichment. The cosmology employed is
consistent with Planck13 (Ωcdm, Ωb, ΩΛ, As, h, ns, τ )=(0.2588, 0.0482, 0.6928,
2.1492× 10−9, 0.6777, 0.9611, 0.0952).

• Illustris (Vogelsberger et al., 2014b): a 75h−1Mpc box simulated with the adaptive
moving mesh code AREPO (Springel, 2010). Similarly to EAGLE, it includes a wide
range of astrophysical recipes, although their implementation and calibration differ.
In particular, its thermal AGN feedback has been shown to be over-effective, blowing
away most of the baryons inside haloes (van Daalen et al., 2020). The cosmology
employed is consistent with WMAP9 (Ωcdm, Ωb, ΩΛ, As, h, ns, τ )=(0.227, 0.0456,
0.7274, 2.175× 10−9, 0.704, 0.9631, 0.081).

• IllustrisTNG-300 (Springel et al., 2018): a 205h−1Mpc box simulated with the same
code and an updated version of the physics modelling of Illustris. Most notably,
it features a new kinetic AGN feedback, more in agreement with observations with
respect to the previous only-thermal one. The cosmology employed is a Planck15
with massless neutrinos (Ωcdm, Ωb, ΩΛ, As, h, ns, τ ,

∑
mν)=(0.2589, 0.0486, 0.6911,

2.081× 10−9, 0.6774, 0.9667, 0.066, 0).

• Horizon-AGN (Dubois et al., 2014): a 100h−1Mpc box run with the Adaptive Mesh
Refinement (AMR) algorithm RAMSES (Teyssier, 2002), which focus on the effects of
AGN on various cosmic quantities. The cosmology employed is WMAP7-like (Ωcdm,
Ωb, ΩΛ, As, h, ns, τ )=(0.226, 0.0455, 0.7284, 1.988× 10−9, 0.704, 0.967, 0.085).

• OWLS (Schaye et al., 2010; van Daalen et al., 2011): suite of simulations designed to
study different baryonic effects on the cosmic density field. The simulation used in this
work has a box of 100h−1Mpc and includes AGN feedback. The cosmology employed
is from WMAP7 (Ωcdm, Ωb, ΩΛ, As, h, ns, τ )=(0.226, 0.0455, 0.7284, 1.988 × 10−9,
0.704, 0.967, 0.085).

The power spectra for the mass field together with those for a GrO version of each
simulation were kindly provided to us or made publicly available by the authors. To facilitate
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their comparison, we rebin the original P (k) measurements into the same k bins.

3.3 Modified Baryon Correction Model

In this section we describe how we model baryonic processes in a given output of a GrO
simulation. Our approach follows closely the BCM proposed by Schneider and Teyssier
(2015a), with further assumptions to simplify it and speed-up its execution. Most of the
recipes of the BCM are given in terms of the host halo mass and radius. Here, we will assume
these to be M200 and r200, the mass and size of a sphere whose average density is equal to
200 times the critical density of the Universe.

3.3.1 Overwiew

The main idea behind the BCM is to capture baryonic effects by explicitly modelling four
components: galaxies, hot gas inside haloes, expelled gas and dark matter:

• Galaxies are placed at the minimum of the potential of dark matter (DM) haloes. The
mass of galaxies is given by subhalo abundance matching (Behroozi et al., 2013),
whereas their internal profile is given by a power law with an exponential cut-off at a
scale radius set by observations (Kravtsov et al., 2018).

• Hot gas is assumed to be in hydrostatic equilibrium inside DM haloes. The amount
of hot gas, Mbg, is given as a function of the universal baryon fraction, approaching
unity for halo massesMh �Mc, and decreasing as a power law (Mh/Mc)

β for smaller
masses, whereMc andβ are free parameters. The gas profile is described as a power-law
with a polytropic index given by the concentration of the host halo, and on scales larger
than half virial radius we assume that the gas perfectly traces dark matter.

• Gas ejected from its halo is assumed to be distributed isotropically up to a scale ∼
10 η r200. Its density profile is described as a constant with an exponential suppression,
consistent with assuming an initial Maxwell-Boltzmann distribution for the velocity
of ejected mass particles. The amount of mass ejected is simply given by mass
conservation: Mej = Mh −Mg −Mdm −Mbg.

• Dark matter is assumed to be initially described by a Navarro-Frenk-White profile
with the same concentration as in the GrO calculation. Posteriorly, the profile is
quasi-adiabatically relaxed to account for the modification in the potential induced by
the three components described above.
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Figure 3.1: Density profiles of a halo of mass 1.2 × 1014 h−1 M� and concentration c ≈ 4 at
z = 0. Left Panel: The black circles and dashed line are the measured gravity-only profile and its fit,
respectively. The initial profile is truncated at r200. Right Panel: The brown solid line represents the
theoretical total corrected profile, while the diamonds the measurements after the displacement of the
particles. All the BCM components are displayed according to the legend. Notice how the gas ejected
by the AGN feedback is the only component beyond r200. The total BCM theoretical and measured
density profiles are multiplied by a factor of 2 for display purposes.

Parameter Description Fiducial Value (z = 0)
Mc Halo mass scale for retaining half of the total gas 3.3 · 1013 h−1M�
M1 Characteristic halo mass for galaxy mass fraction 8.63 · 1011 h−1M�
η Maximum distance of gas ejection 0.54
β Slope of the gas fraction as a function of halo mass 0.12

Table 3.1: Parameters specifying our model for baryonic physics, and their fiducial values, obtained
fitting the BAHAMAS simulation, used throughout this chapter. See §3.3 for details on the baryonic
model, and §3.5 for details on how the parameters were found.
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The model has four free parameters (η, Mc, β, M1) with clear physical meaning: Mc is
the characteristic halo mass for which half of the gas is retained; β is the slope of the hot gas
fraction - halo mass relation;M1 is the characteristic halo mass for which the central galaxy
has a given mass fraction ε (ε = 0.023 at z = 0) and η sets the range of distances reached by
the AGN feedback. These parameters (all present in the original BCM, even if with slightly
different physical meaning and if M1 was fixed) are summarized in Table 3.1, and further
details on the whole procedure are given in Appendix B.

For a given halo, we can therefore obtain a prediction for the relative difference for the
cumulative mass profile before and after modeling baryons. We then perturb the position of
particles inside a halo by applying a displacement Φ(r) = r(MBC) − r(MGrO) so that they
capture the expected modification induced by baryons.

Finally, we tag each particle in our simulation to be part of one of our four components,
and rescale its mass to match the total expected mass in each component. This allows
to extend the model to other gas properties e.g. temperature and pressure, and thus
to simultaneously model weak lensing and other observables such as X-ray emission or
thermal/kinetic Sunyaev-Zeldovich signals. More details of this procedure are provided in
Appendix C.

3.3.2 A first example

To illustrate our model in practice, we have applied it to the haloes of one of the N -body
simulation described in §3.2. In this section we will use the fiducial BCM parameters given
in ST15, i.e. Mc = 1.2× 1014 h−1 M�, η = 0.5, β = 0.6,M1 = 2.2× 1011 h−1 M�.

In Fig. 3.1 we show a halo of 1014 h−1 M� and concentration parameter∼ 4 at z = 0. The
left panel shows the density profile from the GrO simulation whereas the right panel shows
the result after the BCM is applied. In both panels, the symbols represent the measurements,
whereas lines denote the respective analytic descriptions. We can see that the GrO profile is
well described by a NFW profile up to its critical radius r200. Beyond r200, we do not attempt
to model the mass distribution, and thus the GrO profile is simply set to zero. On the contrary,
the halo density profile significantly departs from a NFW after baryons are modelled.

On very small scales, the density essentially follows that of the central galaxy. The hot
gas has a NFW slope on large scales but a flatter profile in the inner region. The dark matter is
perturbed by the gravitational potential of the other components, resulting in a steeper profile
in the inner region and a flatter profile at large radii, albeit the effect is so small that it is not
visible by eye.

Beyond the halo boundaries, where the GrO model is null, the density profile is totally
constituted by the ejected material. This means in practice that, after the displacement of the
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particles, the effective density profile in the halo outskirts will be equal to the one given by
the GrO simulation plus the ejected component of the BCM.

The displacement field and cumulative mass profiles for this halo are shown in Fig. 3.2.
Since we consider initially only the mass within r200, the GrO profile is constant for r > r200.
After modelling baryons, the mass increases up to a scale set by the strength of the AGN
feedback. We can also see that the displacement field is largest close to the halo boundary.
This implies that these are the mass elements that will be ejected out and describe the expelled
gas component.

The distortions of the halo density profiles translate directly into modifications to the
mass power spectrum. In Fig. 3.3 we show the ratio of the power spectrum to the GrO
one. Coloured lines display the results for the total mass field and for each of the BCM
components separately. Consistent with the expectation set by the density profiles, the mass
power spectrum is suppressed on intermediate scales owing to the ejected mass, on small
scales, the central galaxy counteracts this effect and the power spectrum is enhanced. In
§3.3.4 we will investigate systematically these modifications with respect to BCM parameter
values. Fig. 3.3 also presents the results for the ST15 method as dashed lines. Although
both models agree qualitatively, they disagree in detail. We discuss general and specific
differences among them in the next subsection.

Comparison with Schneider & Teyssier (2015)

The main difference of our BCM with respect to that of Schneider and Teyssier (2015a)
is that we assume that baryonic physics acts only over mass elements within the host halo.
Notice that this assumption does not imply a null effect on the large-scale clustering (since the
ejected gas does reach large scales), but implies instead that particles perturbed by baryons
were initially inside haloes. On the contrary, ST15 attempt to model the mass profiles up
to infinity, which in practice means that the displacement tends to zero only at very large
distances from the halo centre, and it also implies that in general the displacement of a given
mass element receives (a non-commutative) contribution of every single halo in the simulated
volume. Furthermore, this approach requires modelling the distribution and clustering of
field particles (not belonging to any halo), an operation computationally expensive that cannot
anyway take into account halo local environments.

By truncating the profiles at r200, thus forcing the displacement of the particles to be
zero beyond r200, we avoid all these potential issues and remove the non-locality of the
model (which appears rather numerical than physical). This also yields a better numerical
efficiency as particles inside different haloes can be treated separately, which allows a
trivial parallelisation of the algorithm. Our BCM also does not require modelling the mass
distribution outside halos, both computationally expensive and uncertain on a halo-by-halo
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Figure 3.2: Upper panel: Initial gravity-only (MGrO, black dotted line) and baryon corrected
(MBC, brown solid line) mass profiles. Notice that MGrO is constant after r200, while MBC tends
asymptotically toMGrO at large radii, because of the ejected mass. Lower panel: Displacement field
Φ(r) = r(MBC) − r(MGrO). In radial shells whereMGrO < MBC we have that Φ < 0 (blue solid
line), thus the particles infall toward the centre of the halo. On the contrary, MGrO > MBC implies
that Φ > 0 (red dashed line) and the particles are pushed away from the centre. Notice also that when
approaching r200 the displacement becomes of the order of tens of Mpc.

Figure 3.3: Baryonic effects on the matter power spectrum, defined as S(k) ≡ P/PGrO, considering
one by one the components of the standard ST15 (dashed lines) and new (solid lines) version the BCM
at z=0. The total impact (black) is given by the sum of central galaxy (gold), hot bound gas(red),
relaxed dark matter (blue), ejected gas (green) contributions.
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basis.

In our approach we employ similar analytical density profiles and free parameters as
those described in Schneider and Teyssier (2015a). However, the differences discussed above
imply that the BCM parameters affect the nonlinear power spectrum in a somewhat different
way. We now explore the differences in the power spectrum predictions between the ST15
BCM and our version. To do so, we have implemented this BCM following step by step the
prescriptions of Schneider and Teyssier (2015a), and applied it to our GrO simulation. We
compare the power spectra in Fig. 3.3 for both models as dashed and solid lines.

For the same model parameters, our implementation predicts less suppression of the
power spectrum up to k ∼ 3hMpc−1, and larger suppression on smaller scales. We can
understand these discrepancies by examining each BCM component separately (displayed as
coloured lines in Fig. 3.3).

On small scales, k ≈ 5hMpc−1, the predicted enhancement due to galaxies is smaller
than that in ST15 by 2-3 times. Since our halo masses are smaller than in ST15, galaxies
are also effectively less massive, which translates into a smaller enhancement of power. We
notice that the abundance matching performed by Behroozi et al. (2013) and used in Kravtsov
et al. (2018) is calibrated with M200 critical, so, unlike ST15, we expect our galaxy mass
function to be consistent with observations. Because of the lower halo mass, haloes also
have less gas, both ejected and in equilibrium. Therefore, we expect a weaker impact of gas
components on the matter power spectrum, which is indeed what is displayed by blue and
green lines. Finally, in the ST15 implementation the dark matter quasi-adiabatic relaxation
causes a suppression of ≈ 5 %, affecting large scales, whereas in ours the effect is negligible
at k < 2 hMpc−1. This is also expected by the weaker modification of the gravitational
potential caused by the baryons, combined with the assumption that the halo back reaction is
negligible at scales larger than r200.

3.3.3 Numerical implementation

The concentration of each of these haloes is found by fitting a NFW form to the mass profile
computed over 20 bins uniformly spaced in log(r/r200) over the range [3 εs/r200, 1]. We
compute the baryonic corrections for haloes with more than 640 particles (10 subsampled
particles), i.e. Mh ≥ 2 · 1012 h−1M�. We note that, although we might expect a bias ≈ 8%

in the concentration estimation of haloes sampled with ≈ 600 particles (Poveda-Ruiz et al.,
2016), 98% of the baryonic effect on the matter power spectrum is given by haloes more
massive than 1013 h−1M�, as shown in Appendix D. We resolve the latter haloes with more
than 3000 particles, thus expecting a bias ≤ 2% in the concentration estimation.
To increase the computational efficiency of the BCM, the density profiles are computed
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and stored directly on-the-fly by our N -body code. Furthermore, at each output, particles
are sorted according to halo membership, and their relative distances to the parent halo
centre stored. Additionally, the concentrations of all the haloes are computed and stored in
post-processing for each snapshot of the simulation. All this allows to be able to quickly apply
the BCM exploiting OpenMP andMPI parallelisation. On average, the whole procedure takes
≈ 5 (≈ 0.5) seconds on 4 threads when applied to our biggest (smallest) simulation.
The BCM displacement field is found by inverting the mass profiles, and in this case the
truncation produces a thin shell of very large displacement at radii approaching r200. The
shape of this thin shell affects the matter density field at all the scales larger than r200, thus
we refine the radial bins in that region to have more precision in the matter distribution on
large scales.

3.3.4 Impact of baryons on the power spectrum

In this subsection we study the range of possible distortions of the matter power spectrum
allowed by the BCM.

In Fig. 3.4 we display the mass power spectra obtained after applying the BCM to our
fiducial GrO N -body simulation. Each panel varies a single parameter of the model while
keeping the other three fixed. Bluer (redder) colors represent low (high) parameter values.

The top left panel variesMc, the typical mass of haloes that have lost half of their gas, in a
logarithmic range [12, 16]h−1M�. For low values ofMc, the power spectrum barely changes
owing to the relatively minor contribution that. 1013 h−1M� haloes have to the mass power
spectrum. As Mc increases, however, more haloes lose baryons and the power spectrum is
suppressed more.

The larger the halo mass, the larger the scale over which baryons are redistributed by
feedback, thus the power spectrum suppression affects progressively larger scales. Eventually,
whenMc ∼ 1015 h−1M� the abundance of haloes drops and the power spectrum converges.

How rapid the baryon fraction decreases with halo mass is controlled by β, which is
varied in the logarithmic range [−1, 1] (bottom left panel). We can see that the impact of this
parameter is smaller if compared to that ofMc. Higher values produce a faster transition to
haloes devoid of gas, and consequently the power spectrum is tilted, being more suppressed
on small scales and less on large scales. On the contrary, for lower values the power spectrum
is more suppressed on large scales, and less on small scales.

The top right panel varies η (in the same range as β) and consequently the radius up to
which the ejected gas will settle in. The larger the value of η, the further the gas is expelled
and therefore the larger the scales that are suppressed. In principle there is no bound on the
minimum wavenumber affected, in fact, in the limit of η →∞, all wavelengths are affected.
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Figure 3.4: Modifications to the matter power spectrum at z = 0 caused by baryons, S(k) ≡ P/PGrO.
Each panel varies one of the four free parameters of the baryon correction model (Mc, η, β,M1) while
keeping the other three fixed at their fiducial value.
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On the other hand, as η decreases, the expelled gas remains very close to its initial position
and the power spectrum barely changes.

Finally, the bottom right panel variesM1, the typical mass of haloes with a central galaxy
of 0.023M1 h

−1M�, in the logarithmic range [9, 13]h−1M�. There are two separate trends
visible in this plot. Firstly, as we increaseM1 a larger fraction of baryons is transformed into
stars, which in turn reduces the amount of expelled gas and consequently, the power spectrum
suppression is reduced up to k ≈ 3hMpc−1. On smaller scales, the contribution of stars
in the modelled galaxies becomes important, which increases the amplitude of these Fourier
modes.

Overall, we see that the BCM has flexibility to model many different physical scenarios,
but, at the same time, not every possible P (k) modification is allowed. In fact, the
modifications are constrained to certain regions and have very specific dependences with
the wavelength. Therefore, it is not guaranteed that the model is able to accurately reproduce
the predictions of state-of-the art hydrodynamical simulations. We explore this in §3.5.

3.4 Cosmology scaling of gravity-only simulations

The BCM enables a flexible modelling of baryonic effects provided a suite of high-resolution
GrO simulations with varying cosmological parameters. Here we will show that these GrO
predictions can be obtained accurately and efficiently using cosmology-rescaling techniques.

The main idea of a cosmology rescaling is to transform the length, time, and mass units
of the outputs of a N -body simulation, so that it predicts the nonlinear structure expected in
arbitrary-many nearby cosmologies (Angulo and White, 2010; Angulo and Hilbert, 2015).
The algorithm has been extensively tested (Ruiz et al., 2011; Renneby et al., 2018; Mead and
Peacock, 2014a,b; Mead et al., 2015; Zennaro et al., 2019; Contreras et al., 2020a), and has
recently been extended to cover massive neutrino cosmologies (Zennaro et al., 2019), where
the redshift and scale dependence of the growth factor induced by the neutrinos is computed
with the public code reps (Zennaro et al., 2017).

Here we employ the latest incarnation of the cosmology-rescaling, which, in addition
to the units transformation, includes a correction of large-scale modes using 2nd order
Lagrangian Perturbation Theory and a correction of small-scale modes. For the latter, the
algorithm displaces the particles inside haloes to account for the cosmology-dependence of
the concentration-mass-redshift relation. For further details we refer the reader to (Contreras
et al., 2020a).

In order to maximise the accuracy of the method, we should have a snapshot taken exactly
at the transformed cosmic time. In general, if we rescale a pre-existing simulation, we
can apply only the time transformations allowed by the finite number of snapshots stored,
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Figure 3.5: Ratio of the mass power spectra at z = 0 of two simulations in the cosmology preferred by
Planck13: one scaled from our fiducial cosmology, Pscaled(k), and the other carried out directly with
Planck13, Ptarget(k). Black lines display results of GrO simulations, whereas coloured lines do so for
simulations where baryons are explicitly modelled in the BCM with parameters mimicking EAGLE,
Illustris-TNG, and BAHAMAS, as indicated by the legend. The grey band marks a discrepancy of
1%.

decreasing the accuracy of the method. Obviously, the more snapshots stored the higher
the accuracy achieved. We have stored 94 snapshots on the expansion factor interval a =

[0.02, 1.25] (notice that the simulation is run “to the future”, z < 0, making possible the
scaling to extreme cosmologies). To increase even more the accuracy of the method, we
apply the algorithm to the two snapshots closest to the scaling target time, interpolating
afterwards the chosen summary statistics. Having two snapshots taken at cosmic expansion
factors a0 and a1, and scaled expansion factor a∗ such that a0 < a∗ < a1, the interpolated
scaled power spectrum reads

P (a∗) = P (a0) ·
(

1− a∗ − a0

a1 − a0

)
+ P (a1) ·

(
a∗ − a0

a1 − a0

)
, (3.1)

where P (a0) and P (a1) are the power spectra measured rescaling the two snapshots at a0 and
a1, respectively.

Scaling of the halo catalogue

The halo catalogue is directly rescaled, to avoid to run SUBFIND on the rescaled distribution
of particles. Within the standard scaling algorithm, the density profiles should be simply
ρ∗(r) = m∗/s

3
∗ρ(r), where m∗ = s3

∗Ωm,T/Ωm,O is the mass scale factor, s∗ is the length
scale factor and the “T” and “O” subscripts refer to the target and original cosmologies,
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respectively. Accordingly, the NFW parameters should be rescaled as rs,∗ = s∗rs and
ρc,∗ = m∗/s

3
∗ρc. The concentration correction adds an extra displacement which we take into

account as ρ†∗(r) = ρ∗(r) + ∆ρ(r), where ∆ρ(r) is the difference between the NFW profiles
of two haloes with the concentration computed within target and scaled cosmology. The scale
radius of the NFW is then r†s,∗ = rs,∗ + ∆rs and the characteristic density ρ†c,∗ = ρc,∗ + ∆ρc.
The critical radius and mass r200 andM200 are then found with a minimisation over the new
NFW halo profile and within the target cosmology.

Joint performance of cosmology scaling and BCM

The scaling algorithm provides highly accurate predictions for the mass power spectrum –
better than 3% at z ≤ 1 over the whole range of ΛCDM-based cosmologies currently viable,
and over a wide range of scales 0.01−5hMpc−1 (Contreras et al., 2020a). Similarly, the halo
mass function is reproduced with an accuracy better than 10% (Angulo and White, 2010). In
the following we will show that the algorithm also provides high-quality predictions for the
mass clustering when used along with the BCM.

To quantify the accuracy of the method, we have rescaled our fiducial simulation (c.f.
§3.2) to the cosmological parameters preferred by Planck13. We then apply the BCM to the
rescaled output and compare to the results obtained by applying the BCM to a simulation
directly carried out with a Planck13 cosmology.

Fig. 3.5 shows the ratio of the power spectra at z = 0 for three different sets of BCM
values. These sets were chosen so that they accurately describe the baryonic effects in the
EAGLE, Illustris-TNG, and BAHAMAS simulations. For comparison, we also show the
precision when just rescaling GrO outputs. For all models considered the accuracy of the
cosmology rescaling is preserved at a very high level, adding no more than 1% additional
uncertainty over the rescaling of GrO simulations. Notice that we find similar results for
Illustris, Horizon-AGN, OWLS and Cosmo-OWLS, even if not shown in figure for display
purposes.

3.5 Fitting the state-of-the-art hydrodynamical simulations

In this section we will explore if the BCM is able to correctly describe the baryonic effects
predicted in seven different state-of-the-art hydrodynamical simulations: EAGLE, Illustris,
Illustris-TNG, Horizon-AGN, OWLS, Cosmo-OWLS, and BAHAMAS. These simulations
adopt different cosmological parameters, sub-grid physics, and values for the free parameters
(owing to different strategies and observations used to calibrate them). Therefore, this exercise
will test our ability to simultaneously model cosmology and astrophysics.

63



Figure 3.6: Upper Panel: Measurements of the baryonic impact to the matter power spectrum, S(k) ≡
P/PGrO, in different hydrodynamical simulations according to the legend (symbols), compared against
our respective best-fits (solid lines). Lower Panel: Difference between measurements and best-fits.
The grey shaded band marks the 1% difference.

3.5.1 Simulation data & BCM parameter sampling

For each of the seven hydrodynamical simulations, we fit the ratio of the mass power spectrum
with respect to its GrO counterpart: S(k) = Phydro/PGrO. We interpolate S(k) in 20
data points uniformly spaced in log-k over the range [0.1 − 5] hMpc−1, to have consistent
measurements for all the simulations. Weuse an empirical approach to estimate the covariance
of S(k). First, we assume:

CS,ij = E(ki)K(kj, ki)ETj (kj), (3.2)

where E is an envelope function that describes the typical amplitude of the uncertainty as a
function of wavenumber, and K(k) the correlation of this uncertainty, which we model as a
Gaussian distributed random variable K = N (|ki − kj|, `).

We set the magnitude of each term based on the intra-data variance as a function of
scale. Specifically, on large scales we assume E to be constant, with a correlation length
` = 0.1hMpc−1. To model the small-scale noise we use E = [1 + 0.5 erf(k − 2)]fS(k),
where f = 0.6% for BAHAMAS, Cosmo-OWLS, EAGLE and Illustris-TNG300, f = 0.8%

for OWLS and f = 2% for Illustris, with a longer correlation length ` = 0.5hMpc−1.
We should take particular care in the case of Horizon-AGN. The snapshots of the
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hydrodynamical run were taken at slightly different redshifts with respect to the GrO. We
correct at first order this effect by rescaling the power spectra normalised by the growth
factors at the correct expansion factors according to Eq. A2 of Chisari et al. (2018). However,
even after this correction there is still a 1% disagreement on large scales, arguably given by a
difference in the number of particle species with which the two simulations have been carried
on (Angulo et al., 2013; Chisari et al., 2018; van Daalen et al., 2020). For this reason, we set
the amplitude of the envelope functions for Horizon-AGN to 1%.

To fit the ratio measurements, S(k), we first rescale our fiducial GrO simulation to match
the cosmology of each of the seven simulations. We then compute the power spectra before
and after applying our BCM. For this procedure we use a 64h−1Mpc simulation, avoiding
to use its paired and the interpolation between snapshots described in §3.4. We show in
Appendix D that this choice will not affect the final results, since we expect the suppression
S(k) to be converged at 1% level. We have furthermore tested that the small differences in
redshift between target and rescaled power spectra is at first order canceled out in the ratio.

We recall that the BCM is fully specified by 4 parameters: ϑ = (M1,Mc, η, β). The
prior for these parameters are assumed to be flat in log space over the range: logM1 ∈
[9, 13]h−1M�, logMc ∈ [12, 16]h−1M�, log η ∈ [−1, 1], log β ∈ [−1, 1]. We note that with
this prior choice, the ejected radius of each halo is defined such that rej ≥ r200.

We define our likelihood as

L(ϑ|D) ∝ exp

[
−1

2

∑

k

(
S(k)D − S(k)ϑ

ΣS(k)

)2
]
, (3.3)

where the subscripts D and ϑ refer to data and theoretical model, respectively, and ΣS(k) is
the diagonal of CS,ij defined in Eq.3.2. We sample the posterior probability with the affine
invariant MCMC algorithm emcee (Foreman-Mackey et al., 2013), employing 8 walkers
initialised with a latin-hypercube to optimise the hyper-volume spanned. Each walker has
2500 steps with a burn-in phase of 1000. We highlight that thanks to the heavy optimizations
of all the codes involved, a chain step can be carried out in less than 6 seconds on a common
laptop.

3.5.2 Best-fitting parameters

Wenow present the best fits and constraints on the BCMparameters as estimated from various
hydrodynamical simulations.

Fig. 3.6 compares the measured suppression S(k) with that predicted by our method
evaluated with the best-fitting parameters. Remarkably, we can see that the BCM is an
excellent description of the data at all scales considered. This is quantified in the bottom
panel, which displays the difference between the data and the best fit model, thus can be
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Figure 3.7: 1σ credibility levels of the free parameters of our Baryonic Correction Model, obtained
by fitting the suppression in the power spectrum at z = 0 for EAGLE (brown), Horizon-AGN (blue),
Illustris (green), Illustris-TNG (red), OWLS (purple), Cosmo-OWLS (light-blue) and BAHAMAS
(black). The upper subplots show the marginalised posterior PDF of the baryonic parameters. The
best-fitting models are shown in Fig. 3.6.
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interpreted as the fractional accuracy of the model in predicting the full power spectrum. For
all simulations and scales, this is better than 1%.

In Fig. 3.7 we show the 1σ credibility levels and the marginalised posterior probability
density functions (PDFs) of the BCM parameters. The best-fitting values, together with the
means and modes of the marginalised posteriors, are provided in Table 3.2.

We can see that there is a broad agreement between the preferred values for some
parameters and between a subset of simulations, however, in general different hydrodynamical
simulations lie on different regions of the BCM parameter space, as a consequence of the
very different predictions for the suppression S(k) owing to the differences in their physics
implementation.

The Illustris simulation (Vogelsberger et al., 2014b) displays the largest suppression, ≈
35 % at k ≈ 6hMpc−1, whereas the EAGLE run presents the weakest, 2% on the same
scale. Other simulations fall in between, with Illustris-TNG and Horizon-AGN providing
almost identical suppressions, as well as Cosmo-OWLS and BAHAMAS, at least on the
scales considered.

Consistent with this picture, the expected value of Mc is the largest for Illustris and the
smallest for EAGLE:≈ 1015 and≈ 1012 hMpc−1, respectively, with the other simulations in
between. Interestingly, Illustris, BAHAMAS, Cosmo-OWLS and OWLS prefer roughly the
same value of η ≈ 0.5, whereas Illustris-TNG300, Horizon-AGN and EAGLE are consistent
with each other and prefer much smaller values, η ≈ 0.15, consistent with almost no ejected
gas to large distances. BAHAMAS,Cosmo-OWLSandOWLSprefer smallβ values, β . 0.5,
in contrast with the other simulations, which have rather larger values, β & 2.5. The expected
values of M1 for Horizon-AGN, Illustris-TNG and OWLS are . 1010 h−1M�, whereas for
all the othersM1 & 1011 h−1M�.

Finally, we note that there are ratherweak degeneracies among parameters, which supports
the idea that the BCM is a general and minimal modelling of baryonic effects in simulations,
meaning that it can reproduce arbitrary matter power spectra with a minimum set of free
parameters. It is also clear that there is no consensus on themagnitude of baryonic corrections,
and thus the need for a flexible modelling for cosmological data analysis.

3.5.3 Relation to the baryon fraction in clusters

Although hydrodynamical simulations are calibrated to reproduce several observables, they
make specific choices for various processes of their sub-grid physics.

Recently, van Daalen et al. (2020) analysed a suite of simulations from the BAHAMAS,
OWLS, and Cosmo-OWLS projects to study how the initial mass function, supernovae and
AGN feedback, and metal enrichment recipes impact the power spectrum. Regardless of
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Simulation Mc [1014 h−1M�] η β M1 [1011 h−1M�]
BAHAMAS (0.38, 0.33, 0.08) (0.53, 0.54, 0.53) (0.47, 0.12, 0.22) (10.85, 8.63, 5.63)
Cosmo-OWLS (0.04, 0.01, 0.07) (0.35, 0.35, 0.36) (0.25, 0.22, 0.34) (1.61, 2.09, 1.54)

OWLS (0.4, 0.45, 0.24) (0.46, 0.43, 0.41) (0.67, 0.8, 0.45) (0.01, 0.04, 0.14)
Horizon-AGN (0.12, 0.05, 0.04) (0.15, 0.17, 0.35) (6.38, 8.31, 3.15) (0.07, 0.02, 0.09)

Illustris-TNG300 (0.23, 0.19, 0.12) (0.14, 0.15, 0.18) (4.09, 2.56, 2.56) (0.22, 0.03, 0.14)
Illustris (66.48, 91.03, 22.1) (0.49, 0.5, 0.5) (6.36, 5.42, 3.66) (9.44, 9.65, 8.85)
EAGLE (0.18, 0.01, 0.03) (0.14, 0.11, 0.58) (9.65, 6.23, 4.23) (11.15, 4.2, 2.52)

Table 3.2: For each BCM parameter we tabulate the best-fit, the mode and the mean values of the
marginalised posterior PDF. See §3.3 for details on the baryonic model, and §3.5 for details on how
the values were found.

Figure 3.8: Baryonic impact on thematter power spectrum at k = 1hMpc−1, defined as∆P (k)/P (k)
as a function of the halo baryon fraction for haloes of 1014 M�. The star symbols correspond to
the quantity measured in our simulation using a feedback model that resemble the hydrodynamical
simulations specified in the legend, in halo mass interval of [6 × 1013,2 × 1014] M�. The light
blue shaded area marks the region allowed by the BCM, varying the parameters within the priors
in logarithmic space logM1 ∈ [9, 13], logMc ∈ [12, 16], log η ∈ [−1, 1], log β ∈ [−1, 1]. The
dashed-dotted lines represents the maximum theoretical suppression given by (1−Ωb/Ωm)2− 1, the
different colors being referred to the simulation cosmology according to the legend. The black dashed
line is the fit provided by van Daalen et al. (2020), being the grey and light grey shaded areas the 1%
and 2% deviations, respectively.
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these choices, they found a tight correlation (≈1%) between the mean baryon fraction inside
haloes and the power spectrum suppression. These relations also held for the EAGLE,
Illustris, Illustris TNG and Horizon-AGN simulations. We now test whether our BCM
implementation is able to recover such correlation.

In Fig. 3.8 we show all possible power spectrum suppressions (within our prior parameter
space) at k = 1hMpc−1 predicted by our model at a fixed baryon fraction. For comparison,
stars show the mean BCM values found in the previous section for various hydrodynamical
simulations. Also for comparison, dashed lines indicate an estimate for the largest possible
suppression expected for a given baryon fraction, i.e. assuming haloes expel all their gas to
infinity. Decomposing the power spectrum in dark matter and baryonic contribution, it is
easy to show this is given by:

max [S(k)] =

(
1− Ωb

Ωm

)2

. (3.4)

Firstly, we see that the BCM predicts a clear relation between S(k) and the baryon
content of clusters, including the relation reported in van Daalen et al. (2020) down to a
baryon fraction fb ≈ 0.3. For smaller baryon fractions, the predictions disagree. However,
we note that in that regime van Daalen et al. (2020) relies on an extrapolation and indeed for
fb . 0.2 predicts a larger suppression than the maximum expected.

We note that our relation is significantly looser than that of van Daalen et al. (2020)
– it is interesting to speculate the reasons behind this. On one hand, this could imply
that there are fundamental relationships between the free parameters of the BCM, or that
the functional forms provide more freedom than required. This could imply that a more
deterministic model could be found in the future. On the other hand, many numerical
simulations are calibrated to reproduce certain observables which might artificially limit the
range of possible suppressions.

Very interestingly, the baryon fractions inferred by fitting the simulations (coloured stars)
perfectly agree (< 1 %) with the fitting function provided by van Daalen et al. (2020), in
all cases except for Illustris. This means that by only providing the clustering our model is
able to correctly predict the amount of DM and baryons in simulated clusters. In the case of
Illustris, on the other hand, our model indicates fb ≈ 10 % the cosmic value, whereas the
measurement from the hydrodynamical simulation is fb ≈ 35 %. Extreme feedback models,
such as the Illustris one, appears to be strong enough to perturb the gas outside the halo
boundaries. In order to reproduce the clustering of these simulations within the assumption
of the model, i.e. no particle is displaced outside haloes, more gas needs to be expelled from
the halo, resulting in an underestimation of the halo baryon fraction.

To confirm this hypothesis, we have fit another simulation of the Cosmo-OWLS suite,
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run with the same sub-grid implementation but with higher minimum heating temperature
for AGN feedback, T = 108.7K. We have found that in this case the baryon fraction is
underestimated by a factor of 2. Despite the fact that such strong feedback models are not
preferred by observations, it will be interesting to explore further these aspects in the future,
to refine the parametrisation and recipes of the BCM.

3.5.4 Redshift evolution of baryonic parameters

Up to this point, we have only considered the baryonic effects at redshift zero. None of the
BCM free parameters has a clear theoretical redshift dependence, except forM1, for which we
give a parameterisation based on halo abundance matching in Appendix B. A naive approach
would be to consider the other parameters constant, thus assuming that the evolution of the
baryonic effects is only given by the evolution of the halo mass function. However, it has
already been proven that this is not the case. The BCM fitting function parameters provided
by Schneider and Teyssier (2015a) show in fact a clear redshift dependence, when applied
to Horizon-AGN at different snapshots (Chisari et al., 2018). In this section, we extend
Chisari et al. (2018) analysis by fitting the power spectrum suppression for BAHAMAS,
Cosmo-OWLS, OWLS and Horizon-AGN at multiple redshifts between 0 ≤ z ≤ 2. We
perform the fit with the same setup used in the previous section for z = 0.

We display the measured S(k) along with the best-fitting BCM predictions in Fig. 3.9.
Firstly, we can see a clear evolution of S(k), with an amplitude that is typically smaller at
high z. This is comparable with the analysis of Chisari et al. (2018). Remarkably, our model
provides an excellent fit for the data over all the scales and redshifts considered, achieveng a
percent accuracy even in the most extreme cases.

In Fig. 3.10 we show the expectation values forMc, η, β, andM1 as a function of redshift.
We find that BAHAMAS, Cosmo-OWLS and OWLS do not show a significant evolution of
the AGN feedback range, having the η parameter roughly constant in time. On the contrary,
Horizon-AGN shows a monotonic increase of η, in agreement with the finding of Chisari
et al. (2018). The power spectrum suppression S(k) of the hydrodynamical simulations in
study roughly peaks around z ≈ 1. Therefore, for the correlation shown in Fig. 3.8 we can
expect the peak of the quantity of gas expelled from haloes around this redshift.

Indeed, we find that the mean values ofMc in all the simulations increase up to z = 1 and
a slowly decrease afterwards, except for Horizon-AGN in whichMc monotonically increases.
The characteristic host halo mass M1 shows a similar trend, increasing at low redshifts and
staying somewhat constant after z ≈ 0.5. Finally, it appears that for OWLS, Cosmo-OWLS
and BAHAMAS steeper transitions in mass from gas-rich to gas-poor haloes are preferred
at higher redshifts. At odds with this trend, Horizon-AGN mean values of β monotonically
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Figure 3.9: The impact of baryons on the power spectrum, S(k) ≡ P/PGrO as measured in the
BAHAMAS (top left), Cosmo-OWLS (top right), OWLS (bottom left), and Horizon-AGN (bottom
right) simulations at redshifts 0, 0.25, 0.5, 1, 2, as indicated by the legend. We do not show all the
redshifts available for display reasons. Solid lines represent the best-fitting model.
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decrease from z = 0 to z = 1.
In conclusion, it is clear that it is required a large BCM parameter space in order to

describe different state-of-the-art hydrodynamical simulations. The redshift evolution of the
parameters shows some similarities but it is not always consistent among the simulations.
All this emphasises the importance of having flexible and general recipes in the BCM, at the
risk of biasing parameter estimates.

3.6 Information analysis: baryon-cosmology degeneracies

In the previous sections we have shown that our framework can simultaneously model
cosmology and astrophysics in the mass power spectrum. Now, we explore the degeneracies
between them, and investigate howmuch cosmological information is lost after marginalising
over the free parameters of the BCM.

3.6.1 Fisher Matrix

We employ a Fisher formalism to quantity the amount of information encoded in the mass
power spectrum. Notice that we refrain from modelling the shear power spectrum (which
would correspond to a convolution of the mass power spectrum with the relevant lensing
kernel) to keep our study as general and independent of details of a particular experiment
(e.g. the redshift distribution of background galaxies) as possible.

Using the power spectrum P (k) as our observable, and assuming a multivariate Gaussian
distribution, the Fisher matrix is defined as:

Fij ≡
∂P

∂ϑi
C−1∂P

†

∂ϑj
+

1

2
tr

[
C−1 ∂C

∂ϑi
C−1 ∂C

∂ϑj

]
(3.5)

where C is the observable covariance matrix. We neglect the second term of Eq.3.5 to ensure
the conservation of the information (Carron, 2013), noting however that C depends very
weakly on cosmology and that term would be negligible (Kodwani et al., 2019).

Model parameters and priors

Our fiducial model will consist of a 8-parameter cosmology: five parameters describing
a minimal model (Ωm, Ωb, h, ns, As), one parameter describing the total neutrino mass
(
∑
mν), and two parameters describing the dark energy equation of state, w0 and wa in the

Chevallier-Polarski-Linder parametrisation, (Chevallier and Polarski, 2001; Linder, 2003).
We assume fiducial values for these parameters consistent with the current constraints from
CMB+BAO+Lensing (Planck Collaboration et al., 2018, hereafter Planck18). Specifically:
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Figure 3.10: Marginalised values of the best-fitting BCM parameters for the BAHAMAS,
Cosmo-OWLS, OWLS, and Horizon-AGN simulations at different redshifts 0 ≥ z ≥ 2, as indicated
by the legend. Note that the redshifts of the measurements are slightly shifted for display purposes.

Ωcdm = 0.261, Ωb = 0.04897, ΩΛ = 0.69889, H0 = 67.66 km s−1h−1Mpc, ns = 0.966,
As = 2.105× 10−9, w0 = −1, wa = 0,

∑
mν = 0.06 eV.

Wewill also consider 4 additional baryonic parameters specifying the BCM. In particular,
the best-fitting values of BAHAMAS found in §3.5: Mc = 3.3 × 1013 h−1M�, η = 0.54,
β = 0.12, M1 = 8.63 × 1011h−1M�. This specific choice is justified by noticing that
the BAHAMAS simulation have been specifically calibrated to match the observed baryon
fraction in haloes, a quantity that iswell correlatedwith baryonic clustering effects. Therefore,
we expect its predictions to be more reliable for this analysis. Moreover, the cosmological
framework of the simulation, which is given by Planck 2015 best-fitting values and includes
massive neutrinos, is very similar to our fiducial one. We set the redshift of our analysis at
z = 0.25, around which the lensing window of most of the current and forthcoming lensing
surveys is peaked.

Covariance matrix

Very often, when computing the covariance matrix of the observable, C, it is implicitly
assumed a perfect theoretical model over the whole range of scales. This, however, is not
correct in general. Specifically, for the case of nonlinear power spectrum, there are model
uncertainties (arising from, for instance, how baryonic effects are described, the solution of
theVlassov-Poisson equations byN -body simulations, or emulation uncertainties) that should
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be taken into account. Therefore, we split our covariance matrix in two terms: C = CD + CT,
where CD describes the data covariance and CT the theory one. We employ a Gaussian data
covariance which reads

CD,ij = δij
2

Nk

[
P (ki) +

1

n̄

]2

, (3.6)

where Nk is the number of independent modes in each bin, approximated as Nk =

Vboxk
2∆k/(2π) being ∆k the bin width, and 1/n̄ is the shot noise term. The reference

power spectrum P (k) is computed with halofit (Takahashi et al., 2012) within the fiducial
cosmology Planck18, and we consider for the shot noise term a total volume of 1h−3Gpc3

and a number density n̄ = 5 · 10−2 h3 Mpc−3.
For CT we employ the same procedure used in §3.5.1, Eq. 3.2. We consider here as

sources of model error the BCM and the cosmology rescaling. For the first, we assume E to
be a constant with amplitude 1% of the reference power spectrum, and a correlation length
` = 1hMpc−1 which is motivated by our findings in Fig. 3.6.

For the term originating from the cosmology rescaling, E is a constant P (k)/100 that
raises smoothly up to 2 % at k ∼ 1hMpc−1, E = [1.5 + 0.5 erf(k − 1)]P (k), and same
correlation length ` = 1hMpc−1, since typical deviations from the target simulation are
similar on all scales (c.f. Fig. 3.5 and Contreras et al. 2020a). The theory covariance is
simply given by the sum of the two contributions described above.

Numerical derivatives

The next ingredient for computing the Fisher matrix elements is the estimation of the partial
derivatives ∂P/∂ϑi. We compute these using second-order-accurate central finite differences:

∂Pϑ(k)

∂ϑ
≈ Pϑ+ε(k)− Pϑ−ε(k)

2ε
. (3.7)

Wehave checked that using the fourth-order approximation the results are practically identical.
The parameter intervals, listed in Tab 3.3, are chosen to produce a 1 % effect in the matter
power spectrum in the range [0.01, 5]hMpc−1. We have carefully checked that these intervals
are sufficiently small so that the power spectrum response is still linear but large enough so
numerical noise is reduced.

Operationally, we rescale the cosmology of our simulation to the required parameter
set, apply the BCM, and then measure the power spectra. In this analysis we use a set of
paired simulations run with 7683 particles and a box size of 256h−1Mpc described in §3.2.
To increase the precision of the scaling, we furthermore apply the interpolation between
snapshots discussed in section §3.4. Therefore, for each point in the parameter space we
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Figure 3.11: Upper panel: derivatives of the matter power spectrum at z = 0.25 with respect to Ωcdm,
evaluated for a Planck18 (with

∑
mν = 0 eV) cosmology and a BAHAMAS-like baryonic model.

The black symbols indicate the results obtained using our cosmology scaling technique, which we
compare against linear theory (red), halofit (blue), NGenHalofit(green) and EuclidEmulator

(purple). Lower panel: ratio over halofit of the derivatives shown in the upper panel.

Figure 3.12: Derivatives of the matter power spectrum around the cosmology preferred by (Planck
Collaboration et al., 2018) at z = 0.25. Symbols display the results computed with rescaled N -body
simulations, whereas blue and red solid lines do so for halofit and linear perturbation theory,
respectively.
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scale the cosmology of four snapshots (two paired), and apply the BCM four times. In this
case, we measure the power spectrum in bins which are multiples of the fundamental mode.

To achieve the extremely high precision required by the Fisher matrix calculation (e.g.
numerical stability of the matrix inversion) we make a regression of our data in logarithmic
bins for k > 0.1hMpc−1, using the Gaussian processes framework Gpy (GPy, 2012), and
furthermore applying a gaussian smoothing to remove any residual small-scale noise.

To test the accuracy of our results we compare our derivatives against those predicted
by linear theory given by the Boltzmann solver CLASS (Lesgourgues, 2011a), halofit
(Takahashi et al., 2012), EuclidEmulator (Knabenhans et al., 2019) and NGenHalofit

(Smith and Angulo, 2019). The EuclidEmulator is built using a suite of 100 simulations run
with different cosmologies, with a nominal absolute accuracy of 1%, whereas NGenHalofit
is a 3%-accurate extension of halofit obtained by calibrating against the Däemmerung suite
of simulations. Since none of these two codes support massive neutrino cosmologies, we
perform the comparison assuming

∑
mν = 0 eV and furthermore neglect baryonic effects.

In Fig. 3.11 we show our results for ϑ = Ωcdm. On the largest scales considered, halofit,
NGenHalofit, EuclidEmulator and our cosmology scaling technique all perfectly agree.
On intermediate scales (k > 0.1hMpc−1) the methods start to disagree at the 20% level.
Specifically, our method, EuclidEmulator and NGenHalofit are in very good agreement
but are systematically different from linear theory and halofit.

It is also interesting to note that BAO oscillations in NGenHalofit are damped more
efficiently with respect to halofit and linear theory, but not as much as in EuclidEmulator.
On small scales, EuclidEmulator predictions depart from those of NGenHalofit, providing
again similar results around k ≈ 4h−1Mpc. The cosmology scaling algorithm predicts
power spectra which match the ones from EuclidEmulator within 1%, and accordingly
the derivatives appear to be at the same accuracy level, supporting the validity of our
approach. Although not shown here, we have checked that we obtain similar conclusions
when considering other cosmological parameters in our set. It is also worth to highlight that
we have obtained our results with only two relatively small simulations, L = 256hMpc−1.

Having tested our implementation against other nonlinear models, we now consider our
entire parameter space includingmassive neutrino and dynamical dark energy. In Fig. 3.12we
show themeasured partial derivativeswith respect to each of our 12 parameters. Linear theory
and halofit predictions are overplotted for reference in the case cosmological parameters.

Cosmological derivatives provided by the three methods agree on large scales but differ
on smaller scales (k > 0.1hMpc−1). The good agreement between our approach with
NGenHalofit and EuclidEmulator shown in Fig. 3.11 suggests the differences arise from
inaccuracies in halofit rather than in the cosmology rescaling.

The dependence of the power spectrum with BCM parameters is consistent with that
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parameter (ϑ) interval (ε)
Ωcdm 2.6× 10−3

Ωb 7.0× 10−4

H0 [Km s−1Mpc−1] 1.6× 10−3

ns 3.5× 10−3

log As 2.7× 10−3

w0 5.1× 10−2

wa 5.2× 10−2
∑
mν [eV] 2.0× 10−2

Mc [h−1M�] 1.2× 10−1

M1 [h−1M�] 3.5× 10−1

η 1.3× 10−1

β 1.4× 10−1

Table 3.3: Parameter intervals used to compute numerically the derivatives of the power spectrum.
The values were chosen to cause 1% change in the nonlinear matter power spectrum over the range
k ∈ [0.01− 5]hMpc−1.

shown in Fig. 3.4, being the range of the AGN feedback parametrised by η the one impacting
the power spectrum on larger scales, while the galaxy formation parametrised byM1 causes
an enhancement of power on small scales.

3.6.2 Information in the mass power spectrum

In the Gaussian approximation, the total amount of information that we can extract up to
a given scale is proportional to the number of independent modes contained in that scale.
Since the number of independent modesNk goes asNk ∝ k3, it is evident that even a modest
increase of the smallest scale modelled can unlock a big amount of information. Small scales,
on the other hand, are more affected by baryonic physics. In this subsection we will explore
this interplay.
In Fig. 3.13 we show the 1σ credibility regions of baryonic and cosmological parameters,
employing as minimum scales wavenumbers from 2hMpc−1 to 5hMpc−1. The baryonic
parameters show many degeneracies, both between each other and the cosmological
parameters. In particular, for large Mc the model prefers low η and h, and large values
of w0, As, Ωcdm . The β parameter is degenerate with M1, and for large values of η
are preferred large M1. Moreover, η is degenerate with the dark energy equation-of-state
parameters, preferring large values for low w0 and high wa.

As we consider smaller scales, constraints improve and some of the degeneracies flip
direction or are completely broken. For example, large values of h seem to prefer high M1

considering only scales up to k = 3hMpc−1, but lowM1 extending the analysis to smaller
scales. The degeneracy between h and Ωb is broken including scales k ≥ 4hMpc−1. At
large scales, the sum of neutrino masses

∑
mν shows an anticorrelation with Mc, a result
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Figure 3.13: 1σ ellipses computed considering as maximum wavenumber of the analysis kmax=2,3,4
and 5 hMpc−1 (blue, orange, brown and red solid lines, respectively). These Fisher forecasts
have been computed using a 256h−1Mpc simulation, scaled to Planck18 cosmology and employing
a BAHAMAS-like baryonic feedback at redshift z = 0.25. Notice that we are not considering the
theoretical contribution to the covariancematrix to show the dependence of the parameter degeneracies
with the minimum scale.
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similar to what found by Parimbelli et al. (2019), using halofit combined with BCM fitting
function up to k ≤ 0.5hMpc−1 in weak lensing forecasts. We note that, however, including
the small scales the situation changes, and for large neutrino masses are preferred high values
ofMc.
In principle, it is possible to constrain the BCMparameters through observations, e.g. the halo
baryonic fraction and stellar-to-halo mass relation through X-ray, thermal Sunyaev-Zeldovich
effect or weak-lensing data. In practice, however, the actual constraints on the BCM
parameters are loose because of both observational and modelling uncertainties (e.g.
hydrostatic mass bias, see Schneider et al., 2019).
A viable alternative can be the marginalisation over the baryonic parameters to avoid biased
results in the estimation of the cosmological parameters, at the price of loosing constraining
power. In Fig. 3.14 we show the 1σ credibility regions obtained by ignoring, fixing and
marginalising over the baryonic physics. Interestingly, the degeneracies of the cosmological
parameters slightly change if we consider or not the baryonic effects, even if we do not
marginalise over them. Notice that by construction the ellipses are centred about the true
values of the parameters, therefore the plot is not meant to show the possible biases of the
parameters estimation. It is also important to note that, despite the use of a state-of-the-art
modelling within high resolutionN -body simulations, the theoretical errors of the model are
still the main uncertainties on the constraints, and must be incorporated in each pipeline to
avoid bias in parameter estimations. On the other hand, we find that the marginalisation over
the baryonic parameters have a quite different impact on the constraining power for different
parameters.

In Fig. 3.15 we display the expected marginalised 1σ constraints in the parameters
employing the information up to varying wavelengths. We display a case where we assume
perfect knowledge of the astrophysical processes (solid lines) and where we marginalise over
the baryonic parameters (dashed lines). It is evident that the impact of the marginalisation
is scale-dependent, and generally larger on large scales. The constraints obtained at
k = 5hMpc−1 for

∑
mν , Ωb and wa are factors of ∼ 2 larger after the marginalisation.

On the contrary, h, As and w0 have a factor of ∼ 4 − 5 weaker constraints, with the other
parameters falling in between.

Recently, Schneider et al. (2020) have performed a similar study, fitting the shear power
spectrum using a model which combines the predictions of halofit with an emulator built
upon a baryon correction model. They find that constraints in ns are more than a factor of
2 weaker after the marginalisation, whereas h and Ωm less than 50%. These results are in
broad agreement with our findings, even if a more direct comparison is not possible because
of the different assumptions in the BCM setup, the characteristics of the target survey and the
observable used in the analysis.
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Figure 3.14: 1σ Fisher contours of the matter power spectrum measured at scales k ≤ 5hMpc−1,
considering only cosmology (purple line), an exact baryon modelling (blue), marginalising over the
baryonic parameters (orange), and including in the marginalisation the theory errors (red).

Figure 3.15: Expected accuracy in cosmological parameters constraints as a function of the maximum
wavenumber k used in the analysis. Different colours display the results for different parameters, as
indicated by the legend. Dashed and solid lines show the ratio between results obtained marginalising
and fixing baryonic parameters, respectively. Note the former are multiplied by a factor of two for
display purposes. The dashed-dotted line represents the ideal scaling expected for Gaussian fields,
∝ k−3/2.
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3.7 Discussion and Conclusions

Cosmological observations are entering an age where uncertainties in data models are
significantly limiting the inferred parameter constraints. In particular, for weak gravitational
lensing, not only the nonlinear evolution of density fluctuations but also details of galaxy
formation theory and the evolution of cosmic gas become important for correctly interpreting
future measurements.

Jointly modelling cosmology and astrophysics via hydrodynamical simulations requires
a huge computational effort because of the large dynamical range and number of (still
uncertain) astrophysical processes involved. In addition, hydrodynamical simulations make
specific choices about the physics included, hydrodynamical solver, and the free parameters
of each sub-grid recipe. To consistently and systematically explore different models of both
cosmology and astrophysics appears simply unfeasible with the current computational power
without making multiple assumptions.

In this context, baryonic correction and cosmology rescaling methods appear to provide
a fast and flexible approach to capture the effects of astrophysics and cosmology on
the full density field. The main idea is to model the impact of baryonic physics with
a minimal set of recipes (motivated by observations and numerical simulations), which
are applied in post-processing to a gravity-only simulation with varying cosmologies, as
provided by cosmology-rescaling methods. In this way, observations such as weak-lensing
and Sunyaev-Zeldovich could simultaneously constrain cosmological and astrophysical
parameters.

Key points of this method are the dispensable use of a full set ofN -body simulations, the
relatively easy incorporation of extensions to ΛCDM, the large parameter space covered, and
the possibility of carrying out larger and more accurate simulations to achieve a higher
precision in the matter clustering measurements. We recall moreover that for each of
the baryon-cosmology set we obtain a full 3D prediction for the galaxy, gas, and star
distributions, opening up interesting possibilities of predicting the cross-correlations of
different observables.
In this chapter we have discussed one possible implementation of such baryonic correction
models applied on one paired N -body simulation rescaled to different cosmologies. Below
we summarise the main findings:

• Our specific Baryon Correction Model (BCM) is able to describe the mass matter
power spectrum up to k = 5hMpc−1 at z = 0, achieving an accuracy of < 1% for all
7 state-of-the art hydrodynamical simulations here considered (Fig. 3.6).

• By only fitting the mass clustering, we are able to recover the correct halo baryon

81



fraction in most of the cases, except for extreme feedback models (e.g. Illustris,
Fig. 3.8).

• Different hydrodynamical simulations prefer different values and redshift evolution
for the free parameters of the BCM (Fig. 3.7). Despite this, there is a relatively
tight correlation between the baryon fraction in clusters and the baryon-induced power
spectrum suppression (Fig. 3.10).

• Applying our BCM to cosmology-rescaled simulations adds only < 1% uncertainty to
the whole approach (Fig. 3.5).

• Using a Fisher matrix formalism we explore the impact of baryons on the information
available in the mass power spectrum up to k ∼ 5hMpc−1 (Fig. 3.12). We find
baryons change the sensitivity of P (k) to cosmology, altering the degeneracy among
parameters.

• After a marginalisation over the free parameters of the BCM, there is a moderate
degradation of constraining power (see Fig. 3.15). Specifically, constraints decrease
by factors of 2-4 depending on the parameter considered. Naturally, these values will
depend on the specific setup of a given survey.

• Errors and uncertainties in any data model exist and cannot be neglected. We estimate
themagnitude of such uncertainty for our approach to be of about∼ 2%. We incorporate
these errors in our Fisher analysis and find that it degrades cosmological information
further than a marginalization of the BCM free parameters (red contours, Fig 3.14) for
the setup considered here.

In conclusion, the combination of BCM and cosmology rescaling provides a powerful
framework for simultaneouslymodel cosmology and baryonic physics for large scale structure,
and weak gravitational lensing in particular. There are some aspects that are important to
highlight in the context of future data analyses.

First, it is crucial to understand and quantify all sources of uncertainties in data models.
This can be achieved, for instance, by analysing mock lensing surveys constructed from
state-of-the-art hydrodynamical simulations and realistic conditions. Naturally, the exact
impact of theory errors depend on the specifics of the target observational setup and the
model employed, but we emphasise the need of more flexible rather than more deterministic
models for baryonic effects.

Second, it is important to guarantee that the BCM is both minimal and flexible enough
so that derived constraints are as tight as possible, but also that they do not make strong
assumptions regarding the underlying baryonic physics. This is crucial to ensure robust
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constraints on, for instance, neutrino masses. Thanks to the clear physical meaning of
each component and the free parameters of the BCM, the assumptions, functional form and
values can be directly compared with hydrodynamical simulations under extreme physics
implementations.

Third, the accuracy of the BCM, the cosmology rescaling, and numerical simulations as
a whole can be improved further. For instance, better concentration-mass relation models
and the joint use of various simulations can improve the accuracy of cosmology-rescaling;
systematic comparison among different N -body codes as a function of force and
time-integration accuracy; and direct testing of the recipes within the BCM.
An interesting path is to extend the BCM to other gas properties. This would pave the
way for joint analysis of multiple observables. For instance, the extent of the expelled
gas should not only affect lensing observables, but also the amount of gas detectable via
Sunyaev-Zeldovich effect. Similarly, the amount of galaxies and their mass affects the
lensing signal on small scales, but also affects the galaxy correlation function on small scales.
The use of high-resolution simulations enabled by the cosmology-rescaling should also allow
for more sophisticated and realistic modelling of the galaxy-halo connection, which should
ultimately improve the performance of the BCM and reduce free parameters. We plan to
explore all this in future works.
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Chapter 4

Baryonification and bispectrum: going to
higher orders

In this chapter, adapted from “Simultaneous modelling of matter power spectrum and
bispectrum in the presence of baryons” (Aricò et al., 2021a), we demonstrate that
baryonification algorithms, which displace particles in gravity-only simulations according to
physically-motivated prescriptions, can simultaneously capture the impact of baryonic physics
on the 2 and 3-point statistics of matter. Specifically, we show that our implementation of a
baryonification algorithm jointly fits the changes induced by baryons on the power spectrum
and equilateral bispectrum on scales up to k = 5hMpc−1 and redshifts 0 ≤ z ≤ 2, as
measured in six different cosmological hydrodynamical simulations. The accuracy of our
fits is typically ∼ 1% for the power spectrum, and for the equilateral and squeezed bispectra,
which somewhat degrades to ∼ 3% for simulations with extreme feedback prescriptions.
Our results support the physical assumptions underlying baryonification approaches and
encourage their use in interpreting weak gravitational lensing and other cosmological
observables.

4.1 Introduction

Despite large efforts of the scientific community, the nature of dark energy and dark
matter remains elusive. Even if the standard ΛCDM model has successfully passed many
independent tests in the last decades, recent tensions in the estimated values of the Hubble
constant and in the amplitude of the linear fluctuation have been pointed out as a possible
window to physics beyondΛCDM (e.g. Verde et al., 2019;Wong et al., 2020). To successfully
solve these tensions, it is paramount that current and upcoming cosmological surveys extract
the maximum amount of cosmological information at the low redshifts, where dark energy
and dark matter are more accessible (Planck Collaboration et al., 2018; Troxel et al., 2018;
Benitez et al., 2014; Laureĳs et al., 2011; DESI Collaboration et al., 2016; Aihara et al.,
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2018). For many observables and statistics, the limiting factor will be the predictability and
accuracy of theoretical models employed to analyse the data.

For the case of next-generation weak lensing surveys, the largest theoretical uncertainty
is given by baryonic physics – gas cooling, star formation, and feedback, for instance, modify
significantly the total mass distribution in the universe in a way that is not possible to
accurately predict from first principles. On the other hand, if these baryonic processes are
modelled appropriately, then we could extract more cosmological information, and possibly
also constrain astrophysical processes.

A promising approach to incorporate the baryonic effects in models for the cosmic density
field is baryonification (Schneider and Teyssier, 2015a; Schneider et al., 2019; Aricò et al.,
2020b). Briefly, these algorithms displace particles in gravity-only simulations according to
physically-motivated recipes designed to mimic the effects produced by baryons in the Large
Scale Structure (LSS) of the universe. This method has been extensively tested against many
hydrodynamical simulations, and it is shown to be very accurate in capturing the changes
induced by baryons on the power spectrum (Schneider et al., 2020; Aricò et al., 2020b).

In general, baryons are expected to modify the full density field and thus the whole
hierarchy of N -point functions, not only the power spectrum. Indeed, hydrodynamical
simulations predict a non-zero impact of the astrophysical processes on the bispectrum
(i.e. the Fourier-space 3-point correlation function), and a difference dependence of baryon
physics on power spectrum and bispectrum (Semboloni et al., 2013; Foreman et al., 2020).
A joint analysis of power spectrum and bispectrum thus could potentially help to break
degeneracies among different baryonic feedbacks. Moreover, the bispectrum is expected
to add significant cosmological information in the analysis of ongoing and future weak
lensing surveys (Kilbinger and Schneider, 2005; Bergé et al., 2010; Semboloni et al.,
2013), especially when self-calibrating the measurements taking advantage of the different
redshift dependences of the two statistics (Huterer et al., 2006). The exploitation of the
extra information provided by the bispectrum is limited by the accuracy and computational
cost of the bispectrum models, as well as the unknown impact of systematics e.g. baryon
physics and intrinsic alignment. Big steps foward have been done in the last years, and the
development of efficient, publicly available codes (e.g. bskit (Foreman et al., 2020)) to
measure the bispectrum in simulations, techniques as the folding of particle distribution (see
Appendix F), and the common use of emulators to efficiently explore the parameter space
of expensive functions (e.g. Heitmann et al., 2014; Knabenhans et al., 2019; Winther et al.,
2019; McClintock and Rozo, 2019; Pellejero-Ibañez et al., 2020; Angulo et al., 2020; Euclid
Collaboration et al., 2020; Aricò et al., 2020a; Zennaro et al., 2021), pave the way to the
incorporation of the bispectrum in the analalysis of upcoming surveys.
Motivated by these findings, in this chapter we extend the analysis of the baryonification
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algorithm presented in Aricò et al. (2020b) (hearafter A20) to the bispectrum. We note that
exploring the predictions of baryonification for the bispectrum is also important since it could
highlight the pitfalls of the method or, instead, could support the correctness of the whole
approach. Additionally, this comparison would represent an independent test of the method
since higher-order statistics were never employed in the formulation of the baryonification
algorithm. Given the simplifications and assumptions of baryonification methods – e.g.
spherically symmetric displacements, dependences on halo mass, and neglected physical
processes – it is unclear whether they would be able to consistently model baryonic effects
on the power spectrum and bispectrum.
First, we extend the model to account for gas that has been reaccreted by halos, and then show
how different model parameters change the power spectrum and bispectrum. Then, we show
that our baryonification implementation can simultaneously reproduce, to better than 3%, the
power spectrum and bispectrum measured in six state-of-the-art hydrodynamical simulations
at k ≤ 5hMpc−1 and at z ≤ 2. These range of scales and redshifts are suited to optimally
extract information from stage IV surveys, where the signal is expected to peak at z ≈ 1 and
k ≈ 1hMpc−1 (Taylor et al., 2018b,a, 2020). We furthermore explore the impact that the
different components of the model, e.g. central galaxy, ejected gas and back-reaction onto
dark matter, have on the matter bispectrum.

This chapter is structured as follow: in §4.2 we describe our numerical simulations, while
in §4.3 we present our methodologies for baryonic and cosmology modelling of the density
field. In §4.4 we discuss the impact of baryons in the bispectrum, whereas in §4.5 we show
our fits to the hydrodinamical simulations. We give our conclusions in §4.6.

4.2 Numerical simulations

In this work we use the same suite of N -body simulations used in A20. We refer the reader
to it for further details, and here we only provide a brief description.

Our gravity-only simulations were carried out with l-gadget-3 (Angulo et al., 2012), a
modified version of gadget (Springel, 2005). We employ simulations of box sizes: L=64,
128, and 256 h−1Mpc containing 1923, 3843, 7683 particles, respectively. We adopt the
Nenya cosmology, as defined by Contreras et al. (2020a): Ωcdm = 0.265, Ωb = 0.050,
ΩΛ = 0.685, H0 = 60 km s−1 Mpc−1, ns = 1.010, σ8 = 0.90, τ = 0.0952,

∑
mν = 0,

w0 = −1, and wa = 0. These parameters are optimal to rescale them to a large range
of cosmologies (Contreras et al., 2020a; Angulo et al., 2020). To test the accuracy of this
rescaling, we will consider two additional simulations of 512h−1Mpc and 15363 particles:
one adopting the Nenya cosmology, and the other a massless neutrino Planck cosmology
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Figure 4.1: Baryonic effects at z = 0 on the power spectrum (left panel), equilateral bispectrum
(central panel) and reduced bispectrum (right panel), measured in 6 hydrodynamical simulations:
BAHAMAS (standard, low and high AGN), EAGLE, Illustris and Ilustris TNG-300. We display the
ratio of S = {P,B,Q} estimated in the full hydrodynamical simulation to that in their respective
gravity-only counterpart.

(Planck Collaboration et al., 2018) 1. To compute the statistics of the density field, we use
catalogue of simulation particles, selected homogeneously, diluted by a factor of 43. The
initial conditions of all our simulations were computed with the “fixed and paired” technique
described in Angulo and Pontzen (2016), thus their cosmic variance is heavily suppressed.
In Appendix E we show the impact that the “fixed and paired” technique has on the power
spectrum and bispectrum in simulations with different box sizes. The cosmic variance in the
bispectrum has an amplitude of ≈ 3% in our 64h−1Mpc simulation, and less than 2% in
our 256h−1Mpc, whereas in the power spectrum is always below 1%. Thus, if not specified
otherwise, our results will be computed with the L=256h−1Mpc simulation, with which we
expect our results to be converged to about 2% for both bispectrum and power spectrum.

4.2.1 Measurement of power spectra and bispectra

Considering an overdensity field in Fourier space δ(k), we define the power spectrum as

〈δ(k1)δ(k2)〉 ≡ (2π)3δD(k1 + k2)P (k1) (4.1)

and the bispectrum as

〈δ(k1)δ(k2)δ(k3)〉 ≡ (2π)3δD(k1 + k2 + k3)B(k1, k2, k3), (4.2)

1Ωcdm = 0.261, Ωb = 0.049, ΩΛ = 0.699, H0 = 67.66 km s−1 Mpc−1, ns = 0.966, σ8 = 0.81,
τ = 0.0561,

∑
mν = 0, w0 = −1, wa = 0.
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Figure 4.2: Density profiles of gas (blue diamonds) and stars (orange circles) as measured in the
Illustris TNG-300 simulation, at z = 0. Each panel shows a different mass bin: 1013.5− 1014 h−1M�
(left panel), 1014 − 1014.5 h−1M� (central panel), and 1014.5 − 1015 h−1M� (right panel). The
baryonification model that best fits simultaneously the three density profiles is shown as blue and
orange shaded bands for gas and stars, respectively. The different gas and stellar subcomponents are
displayed with different line styles, according to the legend. Note that the reaccreted gas density is
consistent with zero, thus not appearing in the plot.

where 〈...〉 denotes the ensemble average and δD is theDirac’s delta. To reduce the dependence
of the bispectrum on the power spectrum and cosmology, we will mostly consider the reduced
bispectrum (Scoccimarro, 2000; Sefusatti and Komatsu, 2007), defined as

Q(k1, k2, k3) ≡ B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)
. (4.3)

Wewill mostly focus on the equilateral configuration, k1 = k2 = k3, since it is expected to
contain the most independent information from the power spectrum. Indeed, in the extreme
triangle configurations, the “squeezed” limit can be seen as “conditional” power spectra,
and thus they are expected to present similar baryonic effects to the power spectrum (see
e.g. Barreira et al., 2019); whereas the “squashed” limit generally track the equilateral one
(Foreman et al., 2020). We focus on the equilateral configuration also because it is sensitive
to anisotropies of the density field, of particular interest in our case, to test the spherical
symmetry assumption in the modelling of baryons. In this case, Eq. 4.3 is reduced to:

Q(k) =
B(k)

3P (k)2
. (4.4)

We measure the bispectrum using bskit (Foreman et al., 2020)2, an extension of
nbodykit (Hand et al., 2018) which uses a Fast Fourier Transform (FFT)-based bispectrum
estimator (Scoccimarro, 2000). Both the bispectrum and the power spectrum are measured

2https://github.com/sjforeman/bskit
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in two interlaced grids (Sefusatti et al., 2016) employing a triangular shaped cloud mass
assignment scheme. The shot noise contribution is estimated as 1/n̄ for the power spectrum,
and as 1/n̄2 + 1/n̄[P (k1) + P (k2) + P (k3)] for the bispectrum, and subtracted. Finally, we
have rebinned all themeasurements in 25 logarithmic bins over the interval [0.1, 5.0]hMpc−1.
Additionally, when measuring the clustering on small scales, we use the “folding” technique
(Jenkins et al., 1998; Colombi et al., 2009), described in Appendix F, which reduces CPU
and memory usage.

We will compare our results against the power spectra and bispectra from a number
of cosmological hydrodynamical simulations, as measured by Foreman et al. (2020)3.
Specifically, we use four state-of-the-art hydrodynamical simulations: BAHAMAS 4

(McCarthy et al., 2017, 2018), EAGLE 5 (Schaye et al., 2015; Crain et al., 2015; McAlpine
et al., 2016; Hellwing et al., 2016; The EAGLE team, 2017), Illustris 6 (Vogelsberger et al.,
2013, 2014b,a; Sĳacki et al., 2015), and Illustris TNG-300 7 (Springel et al., 2018; Pillepich
et al., 2018; Nelson et al., 2018; Naiman et al., 2018; Marinacci et al., 2018; Nelson et al.,
2019). In the case of BAHAMAS, we consider two additional AGN feedback calibrations,
dubbed as “low-AGN” and “high-AGN”: in the first one the temperature at which the AGN is
activated is lower and thus the AGN feedback is weaker; whereas in the latter AGN feedback
is stronger with respect to the standard run.

In Fig. 4.1 we show the baryonic effects on the power spectrum, bispectrum, and reduced
bispectrum. We display the ratio of the clustering measured in the full hydrodynamical
simulations to that in their gravity-only counterparts. Different colours show the results for
different simulations, as indicated by the legend.

We see that the amplitude of baryonic effects considerably varies among simulations, in
both power spectra and bispectra. In particular, Illustris and Bahamas high-AGN show the
strongest suppression in both these statistics, likely due to their strong Supernovae and AGN
feedback. On the contrary, EAGLE and Illustris TNG-300 show the smallest baryonic effects
also likely related to their comparatively weak feedback in massive halos. We highlight that
both of these simulations display an enhancement of the bispectrum at k ≈ 2 − 3hMpc−1,
which has been linked to the presence of late-time reaccreted gas by Foreman et al. (2020).
We will test this hypothesis with our baryonification framework later on.

Interestingly, whereas baryons can either suppress or enhance the gravity-only bispectrum,
they appear simpler in the reduced bispectrum: baryons always enhanceQ(k) on small scales.
Qualitatively, there seems to be a clear correlation between the baryonic effects in the power

3https://github.com/sjforeman/hydro_bispectrum

4http://www.astro.ljmu.ac.uk/~igm/BAHAMAS/

5http://icc.dur.ac.uk/Eagle/

6https://www.illustris-project.org/

7https://www.tng-project.org
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spectrum and bispectrum. However, this correlation is not perfect: Illustris and BAHAMAS
high-AGN show similar effects on the reduced bispectrum, but the effects on the power
spectrum are clearly different 8. In the next sections we will explore whether baryonification
methods can successfully describe all these features at high precision.

4.3 Modelling of the density field

Given a particle field in a Gravity Only (GrO) N-body simulation, we can obtain themass field
in arbitrary cosmologies and baryonic scenarios by manipulating the positions and masses of
the particles. To do so, we use the framework described in A20, which we recap next.

We first apply a “cosmology rescaling” to obtain a simulation at a desired cosmological
parameter set (Angulo and White, 2010). For this, we scale the lengths, masses and time (by
selecting different snapshots) of our simulation in order to match the amplitude of the linear
density fluctuation of another cosmology. This technique has been extensively tested (Ruiz
et al., 2011; Renneby et al., 2018; Mead and Peacock, 2014a,b; Mead et al., 2015; Angulo
and Hilbert, 2015; Zennaro et al., 2019; Contreras et al., 2020a), and it has been recently
extended to take into account the non-universality of the halo mass function (Ondaro-Mallea
et al., 2021). The cosmology rescaling has a < 3% accuracy in the matter power spectrum
and 5% in the matter bispectrum up to k ∼ 5h−1Mpc (Contreras et al., 2020a, Zennaro et al.
in prep), over a broad range of cosmologies, even beyond-ΛCDM. Note we expect a higher
accuracy for the ratio of baryonified over gravity-only outputs, as we will show later.

We then apply a “baryonification” algorithm to further displace the particles of the
simulation, and mimic the effect of different baryonic components. In A20, each halo was
assumed to have four components: dark matter, a central galaxy, bound gas, and expelled
gas. In this work, we additionally model satellite galaxies and late-time reaccreted gas, which
we describe in detail in the next subsection. The density profiles of all these components
are parametrised with physically motivated functional forms, whereas the GrO halo density
profile is modelled with as a NFW profile (Navarro et al., 1997). Once we have the initial
and the “baryonic” density profiles, we compute a displacement field which, applied to the
halo particles, distorts their distributions accordingly.

4.3.1 Updates of the baryon correction model

One of the main advantages of the baryon correction model is its extreme flexibility, which
allows us to make modifications or include new physics according to various possible

8However, note that Illustris simulates a box less than 75h−1Mpc, thus their results could be affected by
cosmic variance and lack of long wavemodes. As showed in Appendix E, massive haloes contribute to baryonic
effects more in the bispectrum than in the power spectrum. As a consequence, the reduced bispectrummeasured
in relatively small boxes is suppressed at small scales with respect to larger boxes.
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scenarios. In this work, we have implemented in the model of A20 the following four
main updates:

• The adoption of a more flexible functional form for the bound gas;

• The inner slope of the power-law in the central galaxy is a new free parameter;

• The modelling of a satellite galaxies component;

• The inclusion of a late-time reaccreted gas component;

We find that the parametrisation of the bound gas density shape used in Schneider and
Teyssier (2015a); Aricò et al. (2020b) is not flexible enough to match the profiles measured
in a wide range of halo masses of hydrodynamical simulations. We therefore use here a more
flexible shape, with an explicit dependence on the halo mass. The shape of the bound gas
now reads:

ρBG(r) =
y0

(1 + r/rinn)βi
1

(1 + (r/rout)2)2
(4.5)

where y0 is a normalisation factor, obtained by imposing
∫ r200

0
dr4πr2ρBG(r) = fBGM200.

The profile is a double power-law with two characteristic scales, rinn and rout, defining
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where the slope changes at small and large radii, respectively. We define the inner radius
rinn = θinn × r200 and rout = θout × r200, with θinn and θout being free parameters of the
model. The gas inner slope explicitly depends on halo mass as βi = 3 − (Minn/M200)µi ,
with the characteristic massMinn and µi as free parameters. After checking the small impact
that µi has on both power spectrum and bispectrum, we have fixed its value to µi = 0.31, in
agreement to the Model A-avrg in Schneider et al. (2019).

This profile is similar to that in Schneider et al. (2019), with the main difference being
that in our model the bound gas perfectly traces the dark matter on scales beyond rout and
the ejected gas decay exponentially, whereas Schneider et al. (2019) models a single gas
component, with the slope at large radii as a free parameter.

The central galaxy density profile is given by

ρCG(r) =
y0

Rhrαg
exp

[
−
(

r

2Rh

)2
]
, (4.6)

where y0 is found imposing
∫ r200

0
d3ρCG(r) = fCGM200, the half-mass radius isRh = 0.015×

r200 and αg, the inner slope of the central galaxy, is a free parameter of the model, with a
fiducial value αg = 2.

In addition to the central galaxy, we add the stellar component of satellite galaxies. Stellar
mass is, to a good approximation, collisionless and thus a good tracer of dark matter. For this
reason we model the contribution of satellite galaxies as the dark matter. The dark matter
back-reacts to the baryonic potential well, and therefore the satellite galaxies, being a linearly
biased tracer of the dark matter, are quasi-adiabatically relaxed. We refer the reader to A20
for the details of the implementation of the back-reaction mechanism.

Motivated by the hypothesis of Foreman et al. (2020), who suggested the presence of
an overdensity of gas reaccreted at late times to explain the maximum in the bispectrum
around k ≈ 2.5hMpc−1 in the Illustris TNG-300 simulation, we added to our model a new
gas component, which mimics such gas overdensity. We assume this new component to be
Gaussian shaped:

ρRG(r) =
y0√
2πσr

exp

[
−(r − µr)2

(2σr)2

]
, (4.7)

where y0 = fRGM200/
∫ r200

0
4πr2ρRG(r)dr.

For simplicity, we assume the gas overdensity to have a fixed spatial distribution in terms
of the halo virial radius, µr = 0.3 × r200 and σr = 0.1 × r200, and after checking that our
main results are not affected by this choice. We let free instead the mass fraction, fRG, as
explained in what follows.

All the density profiles of the baryon correction model are normalised toM200, with the
abundance of each component determined by its respective mass fraction. The dark matter
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Figure 4.5: Upper panel: Baryon suppression of the matter power spectrum at z = 0, when applying
the baryon correction model to haloes smaller than 1013h−1M� (green dotted line), between 1013 −
1014h−1M� (brown solid line), 1014 − 1015h−1M� (golden dashed line) and to all the haloes (blue
dots) of our 512h−1Mpc simulation. Lower panel: Same as the upper panel, but for the ratios between
baryonic and gravity-only results in the reduced bispectrum.

95



fraction is fixed by cosmology, fDM = 1− Ωb/Ωm.
The central galaxy fraction is given by an abundance-matching parametrisation (Behroozi

et al., 2013):

fCG(M200) = ε

(
M1

M200

)
10g(log10(M200/M1))−g(0), (4.8)

g(x) = − log10(10αx + 1) + δ
(log10(1 + exp(x)))γ

1 + exp(10−x)
. (4.9)

We use the best-fitting parameters at z = 0 given by Kravtsov et al. (2018), along with
the redshift dependence given by Behroozi et al. (2013), both reported in Appendix A of A20
and not included here for the sake of brevity.

Satellite and central mass fractions have the same parametric form, and their parameters
are assumed to be linearly dependent e.g. M1,sat(z = 0) = αsatM1,cen(z = 0), with αsat as a
free parameter of the model, similar to the approach of Watson and Conroy (2013).

The halo gas mass fraction, defined as the sum of the bound gas and the reaccreted gas, is

fHG(M200) = fBG + fRG =
Ωb/Ωm − fCG − fSG

1 + (Mc/M200)β
, (4.10)

withMc and β free parameters, and fCG, fSG, the central and satellite galaxy mass fractions,
respectively. The reaccreted gas mass fraction is

fRG(M200) =
Ωb/Ωm − fCG − fSG − fHG

1 + (Mr/M200)βr
= fHG

(Mc/M200)β

1 + (Mr/M200)βr
, (4.11)

withMr as a free parameter and βr fixed for simplicity to βr = 2.
Finally, the bound and ejected gas mass fractions are set by mass conservation:

fBG = fHG − fRG; (4.12)

fEG = Ωb/Ωm − fCG − fSG − fHG. (4.13)

As an example, we show in Fig. 4.2 how this updated model is able to reproduce at the
same time the gas and stellar density profiles measured in three different halo mass bins
of Illustris TNG-300, [1013.5 − 1014]h−1M�, [1014, 1014.5]h−1M� and [1014.5, 1015]h−1M�.
Note that here our reaccreted mass fractions are consistent with zero, thus not appearing in
the plot. In summary, our baryonic model has a total of 8 free parameters: 2 regulating the
amount of gas retained in haloes, 4 shaping the gas density profile, 1 for the galaxy mass and
1 for the amount of reaccreted gas.
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4.3.2 Accuracy of cosmology rescaling and baryonification in the
bispectrum

In A20 we showed that applying a baryonification algorithm together with a
cosmology-rescaled simulation led to percent-accurate results in the power spectrum. We
now perform an analogous test to validate the performance of the updated model and extend
the analysis to the bispectrum.

In Fig. 4.3we compare the baryonic effects on the power spectrum and reduced bispectrum
as measured in a simulation carried out with a Planck cosmology and a simulation carried
our with a Nenya cosmology and then rescaled to a Planck cosmology (c.f. §4.2). These two
cases are denoted as target and scaled, respectively, and displayed by symbols and lines as
indicated by the legend.

We display four different baryonification parameter sets, chosen to roughly reproduce
the clustering of EAGLE, Illustris, Illustris TNG-300 and BAHAMAS. We can see that the
difference between applying the BCM on top a rescaled or target simulation is less than 1%

in the power spectrum and reduced bispectrum. We show these results only for z = 0, but
we have explicitly checked that at higher redshifts we obtain similar outcomes.

We note that the initial conditions of the target simulation were not set to match that of
the simulation we scale, nor its volume have been chosen to match the volume of the rescaled
simulation (which could have increase the agreement further). Nevertheless, the errors we
obtain are comparable to our target accuracies for reproducing the baryonic effects on the
power spectrum and bispectrum.

4.4 Impact of baryons on the bispectrum

In this section we systematically explore the effects that the various baryonic components,
and the free parameters associated to them, produce on the clustering.

We first isolate the effect of each baryonic component by selecting them one-by-one and
considering all the others collisionless (thus behaving like dark matter). As shown in Fig. 4.4,
we find that, in agreement with Schneider and Teyssier (2015a); Aricò et al. (2020b), the
ejected gas largely dominates the suppression in the power spectrum, despite its low mass
fraction. Interestingly, the ejected gas shows the largest effect also in the reduced bispectrum,
but in this case it causes an enhancement of the power at all scales.

As an qualitative explanation, let us consider two overdensity fields, δBCM and δGrO.
Assuming that one is suppressed with respect to the other, δBCM = (1− α)δGrO, it is easy to
show that the ratios between their power spectra and equilateral bispectra are PBCM/PGrO =

(1 − α)2, and BBCM/BGrO = (1 − α)3, respectively. Therefore, the reduced bispectrum
ratio is QBCM/QGrO = (1 − α)−1. In other words, we observe an enhancement of the
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reduced bispectrum because the suppression in the bispectrum is smaller than the squared
suppression of the power spectrum. The other components are, in this particular setting of
the BCM which roughly mimics the BAHAMAS simulation, subdominant, contributing to
about 2% in the power spectrum and reduced bispectrum. The reaccreted gas, in particular,
causes an enhancement at small scales in both the power spectrum and reduced bispectrum.

It is interesting to explore which halo masses contribute the most to the baryonic effects
on clustering. In order to answer this question, we have split the halo catalogue of our
simulation in different mass bins, and then we have applied our BCM separately to each of
them. In Fig. 4.5 we show how haloes between 1013 − 1014h−1M� contribute for more than
50% of the effect on the power spectrum at small scales. Haloes of 1014 − 1015h−1M� are
dominant at large scales in the power spectrum, whereas at the small scales, slightly smaller
haloes contribute more. Haloes withM < 1013h−1M� andM > 1015h−1M� contribute for
less than 2% percent, and only at small scales.

The relative contribution of halos of different mass slightly changes in the case of the
reduced bispectrum. The dominant contribution is still from haloes of 1013 − 1014h−1M�,
but the relative impact of the most massive haloes in the simulation (M > 1015h−1M�) is
not as small as for the power spectrum. The fact that the bispectrum is more sensitive to the
largest haloes is not surprising (see e.g. Foreman et al., 2020), and has as a practical outcome
the slower convergence of the bispectrum with simulated volume compared to that of power
spectrum, which we investigate in Appendix E.

We quantify now the impact of the free parameters in the power spectrum and reduced
bispectrum. To do so, we vary each parameter one by one, while keeping the others fixed to
the value that best fits the BAHAMAS (standard AGN) simulation, described in §4.5. The
intervals in which we vary parameters, in log10 units, are the following: Mc/(h

−1M�) ∈
[9, 15], η ∈ [−0.7, 0.7], β ∈ [−1, 0.7], Mr/(h

−1M�) ∈ [12, 17], M1,z0,cen/(h
−1M�) ∈

[9, 13], θinn ∈ [−2,−0.5], θout ∈ [−0.5, 0],Minn/(h
−1M�) ∈ [12, 16].

Note we do not show any free parameters for satellite galaxies, as they have a negligible
impact on the matter clustering. In fact, they are a biased tracer of the dark matter, and
additionally their mass fraction is very small. Given that the relaxation of the dark matter
contributes only for a few percent in the matter clustering, it is easy to see why the baryonic
effect caused by satellite galaxies is negligible. Thus, we fix their values to the best-fitting of
the stellar profile of the Illustris TNG-300 simulation found in §4.3.1.

In Fig. 4.6 we display the mass power spectra, bispectra, and reduced bispectra obtained
after applying the BCM to a GrON -body simulation. Each panel varies a single parameter of
themodelwhile keeping the others fixed to their fiducial value. Bluer (redder) colors represent
low (high) parameter values. We can see that almost all the parameter combinations predict
a suppression in the power spectrum and an enhancement on the reduced bispectrum, at all
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the scales. Specifically, by increasing η (the parameter which set the maximum range of the
AGN feedback), the suppression (enhancement) of the power spectrum (reduced bispectrum)
is pushed, as expected, towards larger scales. The parameters Mc and β set the fraction of
gas which is retained in haloes of a given mass, and thus also the mass of gas that is expelled.
Therefore, is not surprising that these parameters have a big impact on both power spectrum
and bispectrum, given that the ejected gas component is the dominant one. VaryingMc we
span a 30% range in the clustering; in particular, higher values mean that increasingly larger
haloes are free of gas, thus more ejected gas. In these cases we see, accordingly, a larger
suppression in the power spectrum and enhancement in the reduced bispectrum.

Varying the shape of the bound gas through the parameters θinn, θout and Minn has an
impact only on small scales. Specifically, the model seems very sensitive to θinn, for which
we see a substantial enhancement of both power spectrum and reduced bispectrum when
changing the inner gas slope at increasingly smaller radii. On the other hand, the dependence
onMinn looks negligible. As expected, increasingM1,z0,cen, and thus having the peak of the
star formation at higher halo masses, results in more power at small scales.

Finally, we see that the impact of the late-time reaccreted gas is very modest, despite we
vary its mass fraction from practically zero to a limit value of ≈ 50% for some halo masses.
Arguably, the effect of this parameter in both power spectrum and reduced bispectrum, can
be absorbed by a combination of the other parameters of the model, but might become more
important on smaller scales.

We note that the models shown in Fig. 4.6 are just an illustrative example, and do not
encompass all the possible modifications given by the BCM: even if the described trends
would be likely similar, changing the underlying fiducial model would result in different
amplitude and shapes of baryonic effects.

4.5 Fitting the hydrodynamical simulations

In this section, we explore whether the BCM is able to reproduce the impact of baryons in
six different state-of-the-art hydrodynamical simulations, namely EAGLE, Illustris, Illustris
TNG-300, and three different AGN implementations of BAHAMAS. We remind the reader
that these simulations differ in cosmology, N -body code, sub-grid physics, box size, and
observables with which they have been calibrated. They show a difference of 30% at z = 0

in the power spectrum and 15% in the reduced bispectrum, thus being a good benchmark for
the flexibility and realism of our model.

We fit the power spectrum and the reduced bispectrum of each hydrodynamical simulation
over the range 0.1 < k/(hMpc−1) < 5, both separately and jointly, varying seven free
parameters: Mc, η, β, M1,z0,cen, θinn, θout, Minn within the priors shown in §4.4. We
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Figure 4.7: Measurements of the baryonic impact to the matter power spectrum, S(k) ≡ P/PGrO

(upper panels), equilateral bispectrum, S(k) ≡ B/BGrO (central panels), and reduced equilateral
bispectrum, S(k) ≡ Q/QGrO (bottom panels), in different hydrodynamical simulations according to
the legend (symbols), at z = 0 (left), z = 1 (centre) and z = 2 (right). The best-fitting baryonification
model constrained using only the power spectrum is displayed as dashed lines, whereas the best-fitting
model constrained on both the power spectrum and reduced bispectrum shown with solid lines. Grey
vertical dotted lines mark the scales where the estimated shotnoise contributes to > 1/3 of the
clustering amplitude.
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Figure 4.8: Best-fitting model to Illustris TNG-300 power spectrum and bispectrum, at z = 0. The
contribution of the varyous baryon component are isolated in the power spectrum (left), equilaetral
bispectrum (centre) and reduced bispectrum (right). Note that the bound gas, and the back-reaction to
the dark matter, are the principale causes of the bump visible in the bispectrum at small scales.
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Figure 4.9: Impact of the redshifts evolution in the baryonic correction parameters. We have fitted the
power spectra (upper panels) and reduced bispectra (lower panels) of the hydrodynamical simulations
reported in the legend at z = 0, and then applied the samemodel at higher redshifts z = 1, 2, assuming
our best-fitting parameters to be redshift independent.

assume no correlation among power spectrum and bispectrum nor among the measurements
at different wavenumbers. Specifically, we use an empirical approach similarly to A20, where
the covariance matrix is directly estimated by the intra-data variance, giving the same weights
to power spectrum and bispectrum. We expect the errors associated to the bispectrum ratios to
be larger than the one associated to the power spectrum (see for instance the errors measured
by Foreman et al. (2020) by dividing the hydrodynamical simulation volume in subboxes).
Nevertheless, being the purpose of this test to asses the accuracy of the joint fit of power
spectrum and bispectrum, we avoid to give more weight to the former to not degrade the fit
of the latter.

To perform the fit, we have implemented a particle swarm optimisation (PSO) algorithm
(Kennedy and Eberhart, 1995). In this algorithm, a pack of particles efficiently searches the
minimum of a function in a given parameter space. Each particle communicates with the
others at each step, and they are attracted both to their local and the swarm global minima,
with a relative strength that can be tuned. The velocity and position of the particles are
updated in every step, depending solely on the swarm status in the previous step. Our Python
PSO code is publicly available.9 For our application, we use a swarm of 10 particles and
250 iterations, finding that an average of 100-150 steps are enough to converge to the global

9https://github.com/hantke/pso_bacco
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minimum.
In Fig. 4.7 we present the main result of this chapter. We show the best BCM fits at three

different redshifts, z = 0, 1, and 2. We have marked with a grey dotted line the scales where
we estimate the shotnoise amplitude to be approximately 30% of the clustering amplitude:
k ≈ 2 hMpc−1 at z = 2, and k ≈ 4 hMpc−1 at z = 1. We remind the reader that, in
the cosmology rescaling process, the box of the simulations can vary of length, and so the
shotnoise level can be slightly different. Due to the significant contribution of shotnoise,
results at small scales and high redshifts should be interpreted carefully.

Dashed lines show the results when fitting only the power spectrum measurements. In
this case, we recover the accuracy of 1% found in A20 in the power spectrum at all scales and
redshifts. However, the baryonic impact on the bispectrum can be over- or under-estimated by
up to 20%. In contrast, when fitting the power spectrum and bispectrum together, the accuracy
of the power spectrum slightly degrades, but we obtain significantly better agreement with
the bispectrum.

For all hydrodynamical simulations and at all the redshifts considered, we obtain joint
fits that are 1− 2% accurate for the power spectrum and 3% for the bispectrum. We note that
the worse performance is obtained for the simulations with the most extreme feedback e.g.
Illustris and BAHAMAS high-AGN. In the case of BAHAMAS, which is arguably the most
realistic simulation for our purposes, the fits describe simultaneously the baryonic effects on
the power spectrum and bispectrum to better than 1%.

These results are achieved considering the late-time reaccreted gas fixed to zero. In
particular, we note that the bump around k ≈ 2 − 3hMpc−1 in the bispectrum of Illustris
TNG-300 and EAGLE are correctly reproduced by the model, despite the absence of the
reaccreted gas component. To understand which BCM component causes this enhancement
of the bispectrum at small scales, we isolate the impact of each baryon component to the
clustering, similarly towhat done in § 4.4. This analysis, reported in Fig. 4.8, clearly show that
the bound gas causes an enhancement at small scales in both power spectrum and bispectrum.
Furthermore, the back-reaction of the gas overdensity to the dark matter adds the necessary
power to reproduce correctly the measurements of the Illustris TNG-300. We can conclude
that, by simply assuming the gas as a double power-law, the model has enough flexibility
(over the range of scales we considered) to explain the “bump” in the bispectrum measured
in Illustris TNG-300 and EAGLE.

We have repeated the fits letting free the corresponding mass fraction,Mr, however, this
did not result in noticeably improved fits. This finding is consistent with the hypothesis that,
within the accuracy of our model and simulated data, and over the scales considered, the
reaccreted gas is not necessary to reproduce the clustering of the hydrodynamical simulations
analysed.
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Finally, one could wonder what is the smallest number of free parameters necessary to
produce accurate results. In A20 it is shown that with only 4 parameters it is possible to fit
the power spectrum at 1%, and arguably the 7-8 parameters used here are degenerate, and
effectively recastable into a model with a smaller parameter set. We leave the exploration
of degeneracies between parameters and the finding of a minimal-model parameter set for a
future work.

4.5.1 Redshift dependence of the baryon parameters

As already pointed out in previous works (Chisari et al., 2018; Aricò et al., 2020b), despite the
baryonic parameters do not have a specific redshift dependence, when fitting the clustering
at different redshifts they show a clear evolution. To quantify the inaccuracies obtained by
fixing the baryonic parameters, we apply the baryonification algorithm to our simulation to
snapshots that correspond to high redshifts (z = 1, 2), using the best-fitting parameters at
z = 0 found in § 4.5.

In Fig. 4.9 we show the power spectra and reduced bispectra obtained. The error in the
power spectrum is in most of the cases below 5%, for extreme models around 7-10%. On the
other hand, the reduced bispectrum can be off of 10− 20%. These errors must be taken into
account when fixing at face value a set of baryonic parameters in multiple redshifts.

4.5.2 Baryonic effects on the squeezed bispectrum

We have so far analysed, for simplicity, only the equilateral configuration of the reduced
bispectrum. In this section, we explore the baryonification performance for the “squeezed”
configuration, which measures the correlation between points on isosceles triangles with one
side much smaller than the other two in k-space, so that k1 � k2 = k3. The squeezed
bispectrum might be seen as a “conditional” two-point correlation which quantifies the
dependence of small-scale nonlinearities on the large-scale background overdensity.

It has been shown that, in some cases, the baryonic effect on the squeezed bispectrum
can be directly related to the power spectrum at small scales, when considering a k1 long
enough to not be affected by baryonic physics (Barreira et al., 2019; Foreman et al., 2020).
Specifically, Barreira et al. (2019) have measured the “power spectrum response functions”
in the Illustris TNG-300, using the separate universe approach, finding that they are largely
unaffected by baryonic physics. This suggests that the information in the squeezed bispectrum
is already contained in the power spectrum, and thus knowing the latter we can predict the
former. However, as shown in Foreman et al. (2020), the analytical predictions given from
the power spectrum response function are not always in agreement with the hydrodynamical
simulations, e.g. BAHAMAS. This could be a hint that, in some cases, the response function
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are not fully specified by the power spectra.

Here, we take a somewhat agnostic approach, and test if we can predict correctly the
squeezed bispectrum starting from the information contained in the power spectrum and the
equilateral bispectrum. To do so, we apply to our gravity-only simulations a BCM with the
parameters that reproduce both the power spectrum and reduced equilateral bispectrum for a
given hydrodynamical simulations. Then, we measure the reduced squeezed bispectrum
(k1 = k2 > k1 ∼ 0.1h−1Mpc) and compare it with those measured directly in the
hydrodynamical simulations.

In Fig. 4.10 we show the results obtained at z = 0. First, we can notice that, as for the
case of equilateral configurations, when considering baryon physics the reduced squeezed
bispectrum is enhanced with respect to the gravity-only one. However, the baryonic effects
in the squeezed bispectrum are smaller than those in the equilateral configuration – spanning
a range of 2− 7%, against a 10− 25% measured in the equilateral configuration.

We also see that our predictions for the squeezed reduced bispectrum agree very well
with the simulation measurements, reaching a ∼ 1% accuracy in all cases. This further
supports the idea that the modifications to the density field in the barionification is accurately
capturing the three-dimensional distortions induced by baryons, and not simply fitting an
effective distortion in the power spectrum.

For comparison, we also display in Fig. 4.10 the predictions when tuning our model using
only the power spectrum. As for the equilateral bispectrum, the impact of baryons is not
captured very accurately, with discrepancies generally within 5% (EAGLE and BAHAMAS
low-AGN ≤ 2%) to up to 10% (Bahamas high-AGN).

4.5.3 Baryon fractions in haloes

Recently, it has been shown that there is a tight correlation between baryonic effects on the
power spectrum and the baryonic fraction inside haloes ofM ≈ 1014M� (van Daalen et al.,
2020). The best fits of the baryon correction model has been shown to be able to accurately
recover such correlation, even if for large power spectrum suppression, which correspond
to very strong AGN feedback, it tends to underestimate the baryon fraction measured in
hydrodynamical simulation (Aricò et al., 2020b).

We now explore whether adding the information on the bispectrum the baryonic halo
fractions become more constrained, and additionally, whether there is a relation between
reduced bispectrum and baryon fraction, analogous to the one found for the power spectrum.

In Fig. 4.11 we show how, indeed, both the best-fitting parameter set can accurately
reproduce the power spectra of the hydrodynamical simulations, but predict slightly different
baryon parameters, and therefore different baryon fractions. This can be a hint of
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some degeneracies between parameters which is broken when including the bispectrum
information. We note that in most of the cases, both of the predictions are in excellent
agreement with the fitting function provided by van Daalen et al. (2020). For Illustris and
BAHAMAS high-AGN, the opposite is true: both the predictions are off with respect to the
fitting function, and including the bispectrum information does not improve the estimation of
the gas fraction in clusters with respect to hydrodynamical simulations. This likely points to
the fact that some of the baryonification assumptions somewhat break for extreme feedback
scenarios. This could be related to gas fractions that are not monotonic with halo mass, or
that these events affect gas beyond the boundaries of a halo (a process not included in our
model). On the other hand, we note that the gas fractions in these simulations are in clear
tension with observations which prefer values ≈ 0.6.

Regardless of the simulation, the bottom panel of Fig. 4.11 shows that the baryonic effects
on the reduced equilateral bispectrum correlate with the baryonic fraction: the smaller the
baryon fraction, the larger the bispectrum enhancement. Remarkably, the prediction from
our model, when fitted with a simple linear regression, shows a trend as tight as the one
found in the power spectrum (1%). To have an idea of the predictions from hydrodynamical
simulations, we infer the baryon fractions from the power spectra measurements using the
fitting function provided by van Daalen et al. (2020), and combine them to the measurement
of the reduced bispectra enhancement. By doing so, we find that all the predictions are still
within 1%, except for BAHAMAS high-AGN, which is slightly off but still well within 2%.

It would be very interesting to extend the analysis of van Daalen et al. (2020) to the
bispectrum, to check if including a vast number of hydrodynamical simulations the relation
still holds with a low scatter. Nevertheless, we stress that, a priori, the BCM does not
predict a tight relation between baryon fraction and clustering. In A20 (Fig. 8) it was shown
that the baryon fraction-clustering relation is more relaxed when considering the full BCM
parameters ranges. Interestingly, it seems that the calibration and subgrid physics with which
hydrodynamical simulations are run, translates into constraints and degeneracies of the BCM
parameters, and thus constrain the baryon fraction.

4.6 Conclusions

In this chapter, we have used a combination of cosmology scaling and baryonification
algorithms, to reproduce with a negligible computational time the density fields of various
hydrodynamical simulations, up to very small and non-linear scales (k = 5hMpc−1) and for
two- and three-point statistics.

Below we summarise our main findings:

• Baryonic physics causes an enhancement in the reduced equilateral bispectrum at
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all the scales considered, roughly monotonically with the strength of the feedback
mechanisms;

• It is possible to simultaneously reproduce the baryonic effects on the power spectrum
and on reduced bispectrum (with 1% and 2− 3% precision, respectively), as measured
in EAGLE, Illustris, Illustris TNG-300, and three different AGN implementations of
BAHAMAS,

• In contrast, a baryon model tuned to only reproduce the power spectrum, can lead to
up to ∼ 20% discrepancies in the reduced bispectrum;

• We find that a double power-law gas density profile is flexible enough to reproduce the
bump at small scales measured in the bispectrum of some hydrodynamical simulations
(see Foreman et al., 2020). It appears thus that an additional modelling of gas
overdensity at relatively small scales is superfluous.

• The model parameters that best fit the power spectrum and equilateral bispectrum also
predict changes to the squeezed configurations at the ∼ 1% level.

• The baryon parameters are not redshift independent; ignoring their time dependence
results in a 5% inaccuracy in the power spectrum, and 10 − 20% in the reduced
bispectrum, up to z = 2;

• Analysing the best-fitting models to the hydrodynamical simulations, we find a
correlation between baryonic effects on the bispectrum and baryon fraction inside
haloes, similar to the one for the power spectrum found in van Daalen et al. (2020),

Overall, our results support the physical soundness (as well as our specific numerical
implementation) of baryonification algorithms. This also encourages its use not only in
spherically-averaged 2-point statistics, but also in cross-correlations and in other statistics
such as peak counts.

The next generation surveys will produce a huge amount of data, which is only partially
interpretable with the current theoretical models. This work is a contribution to the effort
to overpass models based on only gravitational interactions, and fully exploit the data up
to higher-order statistics. We anticipate that our approach will be a valid tool for a fast
production of mock density fields, accurate to very small scales and statistics of order higher
than 2-point, useful for pipeline validation, blind comparisons or for direct exploitation of
the data, e.g. marginalising over baryonic effects.
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Chapter 5

Cosmology and baryons: a neural
network emulator

In this chapter, adapted from the paper “The BACCO Simulation Project: A baryonification
emulator with Neural Networks” (Aricò et al., 2020a), we present a neural-network emulator
for baryonic effects in the non-linear matter power spectrum. We calibrate this emulator using
more than 50, 000 measurements in a 15-dimensional parameters space, varying cosmology
and baryonic physics. Baryonic physics is described through a baryonification algorithm,
that has been shown to accurately capture the relevant effects on the power spectrum and
bispectrum in state-of-the-art hydrodynamical simulations. Cosmological parameters are
sampled using a cosmology-rescaling approach including massive neutrinos and dynamical
dark energy. The specific quantity we emulate is the ratio between matter power spectrum
with baryons and gravity-only, and we estimate the overall precision of the emulator to be
2 − 3%, at scales k < 5hMpc−1, and redshifts 0 < z < 1.5. We also obtain an accuracy
of 1 − 2%, when testing the emulator against a collection of 74 different cosmological
hydrodynamical simulations and their respective gravity-only counterparts. We show also
that only one baryonic parameter, namely Mc, which sets the gas fraction retained per halo
mass, is enough to have accurate predictions of most of the baryonic feedbacks at a given
epoch. Our emulator is publicly available at http://www.dipc.org/bacco.

5.1 Introduction

Gravity is the dominant force that shapes the structure of the Universe on very large scales.
On small scales, however, hydrodynamical forces and astrophysical processes such as
cooling, star formation, supernovae and AGN feedback, become important and cosmic
structure is the result of their joint co-evolution and interaction with gravity. Details of such
processes are not fully understood nor sufficiently constrained by current observations to
formulate a predictive theory of structure formation on all scales.
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In fact, our limited knowledge about the baryonic physics is one of the main uncertainties in
modelling, and cosmological interpretation, of ongoing weak gravitational lensing surveys,
which map the distribution of density fluctuations in the Universe. For upcoming surveys,
sources of statistical noise will be dramatically reduced and the relative importance of the
baryonic uncertainties will increase. For instance, ignoring the impact of baryonic processes
in a Euclid-like survey (Laureĳs et al., 2011), would result in a ≈ 5σ bias on cosmological
parameters constraints (Semboloni et al., 2011, 2013; Schneider et al., 2020).
An alternative to deal with this uncertainty is to restrict data analyses to scales large enough
to be reasonably unaffected by baryons. However, this would imply discarding a huge
amount of cosmological information, which could be crucial to distinguish between, for
instance, competing theories for cosmic acceleration or the nature of the dark matter particle.
Arguably, the most complete and complex method to evolve simultaneously gravity and
baryon physics is currently given bymagneto-hydrodynamical simulations. These implement
a large number of different physical processes, and recently the optimisations of the algorithms
and the increasing power of super computers have opened-up to simulations of relatively
large cosmological boxes (Schaye et al., 2010; van Daalen et al., 2011; Le Brun et al., 2014;
Vogelsberger et al., 2013; Dubois et al., 2014; Schaye et al., 2015; McCarthy et al., 2017;
Springel et al., 2018). Unfortunately, these simulations are still too computationally expensive
to be directly used in data analysis. Thus, over the last years, a number of different approaches
have been proposed for fast modelling of baryons. A non-complete list is: extensions to the
halo model (e.g. Semboloni et al., 2011; Mohammed et al., 2014; Fedeli, 2014; Mead et al.,
2015; Debackere et al., 2020; Mead et al., 2020); Principal Component Analyses (Eifler
et al., 2015; Huang et al., 2019); machine learning-based methods (Tröster et al., 2019;
Villaescusa-Navarro et al., 2020); Effective Field Theory of Large-Scale Structure (Bragança
et al., 2020). Among these, a promising method is the so-called baryon correction model,
or baryonification (Schneider and Teyssier, 2015a; Schneider et al., 2019; Aricò et al., 2020b).

The main idea of baryonification is to modify the outputs of gravity-only simulations
according to physically motivated recipes for the spatial distribution of baryons. As a result,
the three-dimensional total matter density field can be predicted as a function of cosmology
and baryonic physics (Aricò et al., 2021a). Somemain advantages of this approach are that its
free parameters have a clear physical interpretation, it does not rely on the correctness of any
particular hydrodynamical simulation, it can be linked directly with observations, and that it
predicts the full density field and not only specific correlation functions or power spectra.

The aforementioned advantages come at the price of a significant computational cost
in comparison to e.g. the halo model and other analytic approaches. The computational
cost of baryonification, in fact, roughly scales linearly with the number of haloes in a
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simulation and thus can be rather expensive for large simulations. For instance, to apply
the heavily optimised baryonification algorithm of Aricò et al. (2020b, 2021a) on top of
a 512h−1Mpc-box simulation with 15363 particles takes approximately 10 CPU-minutes.
Although this is a negligible time for many applications, for intensive parameter-space
sampling where hundreds of thousands of evaluations might be required, the baryonification
could make data analysis unfeasible.

To overcome this problem, we build and validate an emulator for the effects of
baryonification on the density power spectrum. This emulator is able to provide very
accurate predictions in a fraction of second. An additional advantage of the emulator over
the full algorithm is its extreme flexibility: the emulator does not need to directly handle
the outputs of N -body simulations, and thus can be easily incorporated to any lensing
analysis pipeline. Recently, emulators have been increasingly popular in cosmology, as they
provide a mean to exploit the statistical power of large numerical simulations with negligible
computational memory and time requirements.

In the last years, emulators of different observables have been built, e.g. matter power
spectrum (e.g. Heitmann et al., 2014; Knabenhans et al., 2019; Winther et al., 2019; Angulo
et al., 2020; Euclid Collaboration et al., 2020; Aricò et al., 2021b; Mootoovaloo et al., 2021),
mass function (e.g. McClintock et al., 2019; Bocquet et al., 2020), and including galaxy
correlation function and Lyman−α Forest (Zhai et al., 2019; Bird et al., 2019; Zennaro
et al., 2021). Alternatively, emulators of the Likelihood function have been proposed for
cosmology inference (e.g. McClintock and Rozo, 2019; Pellejero-Ibañez et al., 2020). An
emulator for the baryonic suppression has been presented by Schneider et al. (2020), based
on the baryonification algorithm presented in Schneider et al. (2019) and the emulation
setup of Knabenhans et al. (2019). Additionally to the baryon parameters, this emulator
includes changes on cosmology through the baryon fraction fb = Ωb/Ωm, which was shown
to be the dominant dependence of the model, but does not explicitly incorporate the effect of
cosmology on the properties of the underlying mass field.

Here, we exploit the framework described in Aricò et al. (2020b, 2021a) and in Angulo
et al. (2020), to build an emulator which encodes all the dependencies on 7 baryon parameters
and also on 8 cosmological parameters, including massive neutrinos and dynamical dark
energy. We train a feed-forward Neural Network with tens of thousands of different
combinations of cosmology and baryonification parameters to learn the changes on the
matter power spectrum induced by baryonic physics.
Wewill show that our emulation is accurate at a∼ 1−2% level over ourwhole 15-dimensional
parameter space, which covers scales 0.01 ≤ k ≤ 5hMpc−1 and redshifts 0 ≤ z ≤ 1.5. We
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note that the majority of statistical power of a stage IV survey is expected to be at z ≈ 1

and 1 ≤ k/(h/Mpc) ≤ 7 (Taylor et al., 2018a), and therefore it should be fairly captured by
our emulator. Nevertheless, we plan to keep updating the training set of our emulator, and
expand its range in scale and redshift in the future.

We will validate the performance of our emulator against a library of 74 hydro-dynamical
simulations and their respective gravity-only counterparts. In particular, we make use
of BAHAMAS, Cosmo-OWLS, OWLS, EAGLE, Illustris, Illustris TNG, and Horizon
simulations. We will show that we can accurately reproduce all of their power spectra,
and subsequently will explore the minimal baryonic parameterisation that could be needed
in future weak lensing data analyses.

This chapter is structured as follows: in §1.2.3 we describe the numerical techniques we
employ; in §5.3 we present our baryonification emulator. In §5.4 we explore the baryonic
effects dependencies on cosmology, and in §5.5 we discuss the model constraints obtained
by fitting measurement from hydrodynamical simulations. We recap our main findings and
conclude in §5.6.

5.2 Numerical methods

In this section we describe the main numerical methods we will employ throughout this
chapter. We start by describing our cosmologicalN -body simulations (§5.2.1). We continue
by recapping the algorithms with which we will model baryonic effects on these simulations
(§5.2.2) and modify their cosmological parameters (§5.2.3). We then briefly discuss our
power spectrummeasurements (§5.2.4) and finish by performing tests to quantify the accuracy
of our predictions (§5.2.5).

5.2.1 Numerical Simulations

In this work, we make use of two different suites of simulations. One, dubbed “main", is the
suite we use to compute the models with which we train the Neural Network emulator. We
employ another suite of simulations, dubbed “test‘", to assess the uncertainty of the model,
by estimating the accuracy of baryonification and cosmology scaling algorithms.

Main suite

Ourmain suite of simulations is part of the “BACCO simulation" project – a set of simulations
specially designed, in terms of cosmology and numerical parameters, to provide highly
accurate predictions for cosmic structure as a function of cosmology.

Specifically, we employ a set of four gravity-only simulations with 15363 particles of
mass mp ∼ 3 × 109h−1M� in a box of L = 512h−1Mpc a side. The initial conditions
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Cosmology Ωcdm Ωb h ns

nenya 0.265 0.050 0.60 1.01
narya 0.310 0.050 0.70 1.01
vilya 0.210 0.060 0.65 0.92
theone 0.259 0.048 0.68 0.96

Table 5.1: Cosmological parameters set used in the BACCO simulation project. All the cosmologies
assume a flat geometry, massless neutrinos (Mν = 0), a dark energy equation of state with w0 = −1
and wa = 0, an amplitude of matter fluctuations σ8 = 0.9, and optical depth at recombination
τ = 0.0952.

were generated using 2LPT at z = 49, and the amplitude of Fourier modes were fixed to
the ensemble average of the linear-theory power spectrum obtaining a significant cosmic
variance suppression (Angulo and Pontzen, 2016). Gravitational evolution was computed
using L-Gadget3 (Springel, 2005; Angulo et al., 2012, 2020) with a Plummer-equivalent
softening length of ε = 5h−1kpc. We consider as our particle catalogue a down-sample of
the full catalogue by a factor of 43.

We highlight that the force and mass resolution, as well as the numerical parameters
controlling the accuracy of the force computation and time integration were chosen to provide
results converged at the 1% level in the nonlinear power spectrum at z = 0. This numerical
setup, for instance, was shown to perform extremely well in the Euclid Code Comparison
project (Schneider et al., 2016), agreeing within 2% with most of other N -body codes up to
k ∼ 10h−1Mpc (Angulo et al., 2020).

Each of these four simulations adopts a different set of cosmological parameters, carefully
chosen so that together can efficiently cover a large region of cosmologies when combined
with rescaling algorithms. In this work, we add a new cosmology to the three original ones
described in Contreras et al. (2020a), thus improving the accuracy to better than 2% for
ΛCDM parameters up to k = 5hMpc−1, and to better than 3% when extended to massive
neutrinos and dynamical dark energy. The parameters of these four cosmology are specified
in Tab. 5.1. We will show how, thanks to this setup, we will achieve an accuracy of 1% in the
scaling of the baryonic suppression.

We note that these simulations are identical to those of Angulo et al. (2020) but on a
smaller volume, which significantly reduces the computational cost of our calculations while
adding almost no additional noise (see Appendix G for a comparison on selected cases).

Testing suite

To quantify the uncertainty in the cosmology-dependence of our predictions, we will employ
a set of 30 N -body simulations carried out with different cosmologies. These simulations,
presented in Contreras et al. (2020a), feature the same mass and force resolution as our
main suite, but on a smaller volume: each simulation has a side-length chosen to match the
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re-scaled box from a L = 256h−1Mpc simulation.
The cosmological parameter sets of these simulations correspond to that of

nenyasimulation and then systematically varying one of the following parameters θ =

{Ωm, Ωb, σ8, ns, h, Mν , w0, wa} over a range set by roughly 10 times the uncertainty given
by recent CMB analyses combinedwith large-scale structure data (Planck Collaboration et al.,
2018). We note that this range coincides with the parameter range we employ to construct
our baryonification emulator (c.f. §5.3.1 and Eq. 5.1). In the test simulations, the density of
massive neutrinos is followed in a mesh according to Ali-Haïmoud and Bird (2013).

In subsequent sections we will compare our baryonification algorithm when applied to a
rescaled main simulation or when applied directly to one of these test simulations.

5.2.2 Baryonification algorithm

To model the impact of baryonic physics on the mass distribution, we employ the so-called
“baryonification” algorithms (Schneider and Teyssier, 2015a; Schneider et al., 2019; Aricò
et al., 2020b). In short, the approach uses a set of physically-motivated prescriptions for how
different physics – star formation, gas cooling, AGN feedback, etc – are expected to modify
the distribution of mass in the universe. These modifications are then applied to the output
of gravity-only N -body simulations by perturbing accordingly the position of particles.

Given the uncertainties associated with baryonic physics, the baryonification approach
has the huge advantage of being able to explore a large number of possible modifications to
the matter power spectrum. The parameters of the model can be compared, and potentially
constrained, with observations and/or results from hydrodynamical simulations.

Here, we employ the implementation described in Aricò et al. (2021a). Specifically, the
model contains the following components:

• Gas bound in haloes, whose density is described by a double power lawwith a transition
and slopes being free parameters;

• The ejected gas density, described as a constant with an exponential cut-off, set by a
characteristic scale, η;

• Central galaxies with a mass profile given by an exponentially-decaying power law,
here fixed to r−2.

• Satellite galaxies are assumed to follow dark matter and to be 20% of the mass of the
central galaxy1.

1This somewhat arbitrary satellite-galaxy mass fraction is not expected to impact our results, see Aricò et al.
(2021a) for more details.
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• Dark matter. The model accounts for the back-reaction of the baryonic mass
components onto the dark matter, which is assumed to quasi-adiabatically relax in
response to the modified gravitational potential.

The mass fractions of the bound and ejected gas are given by parametric functions of the
host halo mass, whereas that of the central galaxies is derived from abundance matching. The
sum of stellar and gas mass fractions, included the ejected gas, is by construction equivalent
to the cosmic baryon fraction Ωb/Ωm. For further details on the implementation, we refer
the reader to Aricò et al. (2021a, 2020b).

5.2.3 Cosmology Rescaling

To model the cosmology dependence of baryonification, we have employed
cosmology-rescaling algorithms (Angulo and White, 2010). The main idea behind these
is that the outputs of a given simulation can be manipulated so that they represent nonlinear
structure on a cosmology different to that originally adopted to run the simulation. The target
cosmology can be any parameter in ΛCDM, and has recently been extended to include the
effects of massive neutrinos and dynamical dark energy (Zennaro et al., 2019).

Here, we employ the latest version of the rescaling algorithm (Contreras et al., 2020a;
Angulo et al., 2020), which considers the effect of large-scale flows through 2nd order
Lagrangian perturbation theory, and the cosmology dependence of the concentration-mass
relation. In this work, the halo masses are additionally corrected to take into account the
non-universality of the mass function (Ondaro-Mallea et al., 2021). Overall, the algorithm is
extremely fast – usually taking a few minutes per target cosmological model – which allows
to densely sample a given target cosmological parameter space.

5.2.4 Power Spectrum Measurements

We compute the power spectrum of our mass fields with Fast Fourier Transforms and
combining two interlaced grids (Sefusatti et al., 2016) with 3843 points and a Cloud-in-Cell
mass assignment scheme. Since our box sizes are typically ∼ 500h−1Mpc, the Nyquist
frequency is ∼ 1h−1Mpc. Thus, to compute our predictions down to smaller scales, we
repeat the procedure after “folding” the density field 4 times in each coordinate direction
(Jenkins et al., 1998).

We measure the power spectrum on 50 logarithmically-spaced bins over the range 0.01 <

k/(hMpc−1) < 5, with k′ = πN/(2L), where L is the simulation boxsize and N is the cubic
root of the grid points, as the transition scale between the original and folded measurements.
Finally, we estimate and subtract the shot-noise following Angulo et al. (2020) by comparing
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the power spectrum measurements of the unscaled simulations using the full simulation
particle set.

For each simulated or rescaled simulations we obtain power spectrum measurements for
the mass density field with and without modelling the baryonic effects. We refer to these as
gravity only and baryonified outputs, and employ the acronyms GrO and BCM, respectively.

5.2.5 Validation

The cosmology rescaling algorithm has been validated by multiple studies (Ruiz et al., 2011;
Angulo andHilbert, 2015; Renneby et al., 2018). Specifically, Contreras et al. (2020a) showed
that the nonlinear power spectrum can be recovered better than 1% up to k ∼ 1h−1Mpc and
better than 3% up to k ∼ 5h−1Mpc; whereas Ondaro-Mallea et al. (2021) show that the halo
mass function is obtained to better than 2%, over the whole parameter space considered here.

Likewise, the baryonification procedure has been validated by comparing their predictions
to state-of-the-art cosmological hydrodynamical simulations (Schneider et al., 2019, 2020;
Aricò et al., 2020b). Our particular implementation has been tested in Aricò et al. (2020b)
and Aricò et al. (2021a), where we showed baryonic effects in the mass power spectrum and
bispectrum can be simultaneously reproduced to about 1 and 3%, respectively. This over the
scales up to k ∼ 5hMpc−1 and for the Illustris, Illustris-TNG, EAGLE, and BAHAMAS
(standard, low-AGN, and high-AGN versions) hydrodynamical simulations.

Here, we focus on exploring the accuracy of the predictions when both algorithms are
employed together. For this, we have first rescaled our main simulations to each of the
30 cosmologies in our suite of “test” simulations. Then, we applied our baryonification
algorithm employing 5 different set of parameters, consistent with various hydrodynamical
simulations. We compare our measurements against the same baryonification models but
applied directly on our test simulations.

We present our results in Fig. 5.1, where each panel shows variations on different
cosmological parameters, and for different baryonic scenarios, as indicated by the legend.
Note we display the ratio between S(k)s, which can be directly interpreted as the fractional
error on a baryonified power spectrum considering a perfect knowledge of the gravity-only
power spectrum: PBCM(k) = S(k)PGrO(k).

We can see that the cosmology rescaling indeed allows to obtain very accurate predictions
for the cosmological dependence of baryonification. On scales larger than k ∼ 1hMpc−1,
S(k) is almost identical regardless whether it is obtained from a direct or rescaled N -body
simulation, with differences being typically less than 0.005. On smaller scales at z = 0, the
error somewhat increases, however, in all cases it remains below 0.01, which implies that the
full nonlinear power spectrum is predicted to better than 1%. At z = 1, the overall accuracy
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increases, being in most of the cases better than 0.5%. In Appendix H we show that by
varying simultaneously all parameters we recover similar accuracy.

5.3 Baryonification Emulator

In this section we will use the cosmology rescaling and baryonification techniques to build a
Neural Network emulator, and quantify its accuracy and precision. This section is organised
as follows: in § 5.3.1 we define the emulator parameter space and training dataset; in § 5.3.2
we describe the treatement we apply to the dataset prior to the emulation to improve its
stability, and in § 5.3.3 we delineate the specifics of the Neural Network we employ to
perform the emulation.

5.3.1 Parameter Space

We consider a cosmological parameter space given by the main ΛCDMmodel, extended with
massive neutrinos and dynamical dark energy, over the following range:

σ8 ∈ [0.73, 0.9]

Ωm ∈ [0.23, 0.4]

Ωb ∈ [0.04, 0.06]

ns ∈ [0.92, 1.01] (5.1)

h ∈ [0.6, 0.8]

Mν [eV] ∈ [0.0, 0.4]

w0 ∈ [−1.15,−0.85]

wa ∈ [−0.3, 0.3]

whereσ8 is the coldmass linearmass variance in 8h−1Mpc spheres;Ωm andΩb are the density
of cold matter and baryons in units of the critical density of the Universe; ns is the primordial
spectral index; h is the dimensionless Hubble parameter h = H0/(100 km s−1Mpc−1);Mν is
themass of neutrinos in units of eV; andw0 andwa are parameters describing the time-evolving
dark energy equation of state via w(z) = w0 + (1 − a)wa. We note that these are the same
parameter ranges used in Angulo et al. (2020), chosen to be roughly 10σ around Planck2018
best-fitting model (Planck Collaboration et al., 2018).

Additionally, we consider 7 parameters describing the baryonic physics according to our
baryonification algorithm:
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logMc/(h
−1M�) ∈ [9.0, 15.0]

log η ∈ [−0.7, 0.7]

log β ∈ [−1, 0.7]

logM1,z0,cen/(h
−1M�) ∈ [9, 13] (5.2)

logMinn/(h
−1M�) ∈ [9, 13.5]

log θinn ∈ [−2,−0.5]

log θout ∈ [−0.5, 0]

where η parameterises the extent of the ejected gas; {θinn,Minn, θout} describe the density
profiles of hot gas in haloes and {Mc, β} its mass fraction; and {M1,z0,cen} is the characteristic
halo mass scale for central galaxies (see §5.2.2 and Aricò et al. 2021a for further details).
These parameter ranges are very similar to the ones used in Aricò et al. (2021a), where they
were shown to bewide enough to correctly reproduce the clustering of several hydrodynamical
simulations. They are chosen taken into account the specifics of the gravity-only simulations
where the baryonification is applied to, other than broad astrophysical constraints.

To optimally sample the hypervolume, we create a 10, 000-point Latin hypercube on this
15-dimensional parameter space. For each point in this set, we first rescale one of our main
simulations to the corresponding cosmology and then apply our baryonification algorithm
with the corresponding parameters. The simulation used for a given target cosmology is
given by a Neural Network trained to minimise the error in the cosmology scaling process,
as described in Contreras et al. (2020a).

We repeat this for ∼ 10 simulation snapshot times over the range 0 ≤ z ≤ 1.5, and
measure the power spectrum of the gravity-only and baryonified outputs, as described in
§5.2.4. We have heavily optimised all of our codes involved, and this procedure takes
approximately 3 minutes on 12 cores per parameter set, and employed 36, 000 CPU hours as
a whole.

5.3.2 Power Spectrum Data

Overall, we have computed S(k) ≡ Pbcm/PGrO using the power spectrum of the gravity-only
and baryonified field for roughly 50, 000 cases. This constitutes our primary dataset.

To reduce the dimensionality of our problem, and the significant trends present in our
data (which could, for instance, lead to overfitting problems in our Neural Network training),
we filter out small scale noise. First, we apply a Savitzky-Golay filter of order 5 and 11 points
to each of our measured S(k). We then perform a Principal Component Analysis (PCA) with
mean subtraction, and keep in our data only the 6 vectors with the highest eigenvalues.
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Figure 5.2: Principal Analysis Decomposition of our set of baryonified power spectra. In the top
panel we display the first 6 eigenvectors of our Principal Component Analysis. In the bottom panel
we show the ratio of S ≡ PBCM/PGrO as estimated using the aforementioned 6 PCs, SPCA, over the
same quantity without any decomposition, SN−body.

In the upper panel of Fig. 5.2 we display these 6 PC vectors as a function of wavenumber.
We can see that the most important feature, shown as a purple line, is a smooth suppression
of the power spectrum starting at k ∼ 0.5hMpc−1, which can be related to the effect of gas
ejection in haloes. The second most important vector describes an increase in the power on
small scales, linked to gas condensation and the presence of stars at the centre of haloes.

In the bottom panel we show the ratio of S(k) reconstructed using the first 6 PCs over
the full S(k) vector. We show the results for a random 10% of our data. We can appreciate
that the residuals are almost always smaller than 0.5%, indicated by the grey region, which
confirms the accuracy of our PC decomposition. We note that the residuals increase to 1.5%,
and 1% when only the first 3 and 5 PCs are considered, respectively.

It is interesting to note that our PC decomposition indicates that only 6 numbers are
sufficient to accurately describe all possible values of S(k) allowed by our framework,
including variations of both cosmological and baryonic parameters. In § 5.5 we will explore
this issue further and seek for a minimal parameterisation that is able to describe a large
variety of hydrodynamical simulations.

Finally, we note that these 6 PCs could be considered as an optimal and adequate basis
functions for a purely data-driven modelling of baryonic effects on the power spectrum.
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Figure 5.3: Ratio between the predictions of our Neural Network emulator for S ≡ Pbcm/PGrO over
the corresponding measurement on our baryonified simulations, Stest. Coloured lines show the results
for a set of 60 combinations of cosmology and baryonic physics, not included in our training sample.
The shaded regions enclose 68% and 95% of the measurements and the mean is marked by the think
grey line.

5.3.3 Neural Network Emulator

We employ a feed-forward Neural Network to predict the baryonic effects on the power
spectrum, S(k) ≡ PBCM/PGrO for a given set of cosmological and baryonic parameters. Our
network architecture consists on two fully-connected hidden layers with 400 neurons each,
and a Rectified Linear Unit as an activation function.

We randomly select 99% of our data as a training set and the remaining 1% as a validation
sample (∼ 52, 000 and ∼ 500 power spectrum measurements, respectively).

We construct our Neural Network using the Keras library together with the TensorFlow
back-end (Chollet et al., 2015; Abadi et al., 2016). We use the adaptive stochastic optimization
algorithm Adam with a learning rate 10−3, and define the mean squared error as the loss
function. For the training we employ 20, 000 epochs, which takes approximately 20 hours on
a single GPU to complete. We note that we have experimented with the inclusion of batch
normalization and dropouts, finding no significant improvements in the accuracy nor in the
degree of overfitting of our network.

5.3.4 Performance Test

To estimate the accuracy of our Neural Network emulator, we have compared its predictions
for S(k) against the value directly measured in our training sample. We display the results in
Fig. 5.3 with coloured lines showing the measurement for each of the individual parameter
sets in our testing sample, and the thick line and shaded grey areas indicating the average and
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Figure 5.4: Dependence of the accuracy of our Neural Network emulator on the number of training
points. Blue, orange, and green lines show the results measured at three wavenumbers: 0.1, 1, and
5hMpc−1, respectively.

regions containing 68% and 95% of the data, respectively.

Firstly, we see that our emulator is unbiased at the 0.1% level, and has a very high precision
up to k ∼ 1hMpc−1 where deviations are typically less than 0.2%. On smaller scales the
precision somewhat degrades but it is typically within 1% up to k = 5hMpc−1 with only 2
cases deviating more than 3%. We have tried different combinations of the Neural Network
finding that these results are fairly insensitive to architecture details and are limited by a finite
number of training points, as we will discuss next.

In Fig. 5.4 we display the typical precision of our Neural Network as a function of the
number of points in the training set. To do this, we retrain our emulator employing a random
selection of points in our training set. For a fair comparison, we estimate the uncertainty
using always the same 500 testing cosmologies. The precision of the emulation scales roughly
as N−0.5

T , where NT is the number of points in the training set. In this work, we feed our
emulator with a number of power spectra such that the uncertainty in the emulation is of the
same order as our model error, i.e. 1%. Thus, the overall expected precision is conservatively
of 2− 3%.

We note that, however, in principle the emulation precision can be improved further by
adding extra training points. We plan to constantly update our public emulator, until the
uncertainty in the interpolation is negligible compared to the other sources of errors.
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Figure 5.5: Cosmology dependence of the baryonic effects on the non-linear mass power spectrum.
We display ∆S(k) = S(k, θ̂) − S(k, θ̄), where S(k) = Pbcm/PGrO, θ̂ are the extreme values in
our parameter range consider and θ̄ is the centre of that range (c.f. Eq. 5.1). Solid and dashed
lines represent left and right differences, respectively Different panels show the results for θ =
{Ωm, σ8,Ωb, ns, h,Mν , w0, wa, a,Ωb/Ωm}, as estimated from our Neural Network emulator by using
baryonic parameters consistent with different hydrodynamical simulations, as indicated in the legend.
Grey shaded regions denote a 1% and 2% change in S(k) over the parameter range we consider in our
emulator.

Figure 5.6: Same as Fig. 5.5 for Ωm and Ωb (but considering a smaller ∆θ range), with free (upper
panels) and fixed to 0.13 (lower panels) cosmic baryon fraction Ωb/Ωm.
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Figure 5.7: Upper panels: The symbols show the baryonic impact on the matter power spectrum at
z = 0, defined as S(k) = PHydro/PGro, as measaured in BAHAMAS (first column), Cosmo-OWLS
(second column), OWLS (third column), and EAGLE, Illustris, Illustris TNG, and Horizon
hydrodynamical simulations. The solid line represents the best-fitting models obtained with our
emulator. Lower panels: ratio between the measurements of the suppression in the power spectrum
induced by baryons, as measured in the hydrodynamical simulations and in our best-fitting model,
considering 7 (top), 3 (middle), and 1 (bottom) free parameters.

Figure 5.8: Same as Fig. 5.7 but at z = 1.
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5.4 The cosmology dependence of baryonic effects on the
power spectrum

It is sometimes assumed that the effects of baryonic physics and galaxy formations are
independent of most, if not all, cosmological parameters. For instance, van Daalen
et al. (2011) shows that the suppression of the power spectrum is very similar among
hydrodynamical simulations assuming parameters consistent with the analysis of 3rd and
7th-year WMAP data. On the other hand, van Daalen et al. (2020) find small but significant
differences in a more recent analysis employing larger simulations but considering similar
changes in cosmology.

In Fig. 5.5 we explore the cosmological dependence expected in our baryonification
algorithm. In each panel we display the difference in S(k) obtained with the maximum
change allowed by the cosmological parameter range in our emulator. Note we also display
the expansion factor, a, and the cosmic baryon fraction, Ωb/Ωm. We show results for
different baryonification parameter sets consistent with BAHAMAS, EAGLE, Illustris, or
Illustris-TNG.

We can see that in general baryonic physics and cosmology are not independent. The
strength on the dependence varies with baryonic physics and the cosmological parameter
considered. The main dependence appears to be with respect to Ωm and Ωb, followed by σ8.
The other parameters show variations within 1%, consistent with the emulator precision.

In our model, cosmological dependence can appear only through three channels: the halo
mass function, which modulates the contribution of baryonic effects in haloes of different
mass; the baryon fraction, which sets the overall importance of baryonic effects; and the
concentration-mass relation, which regulate the displacement field on small-scales. We will
explore these next.

To investigate the role of baryon fraction, we have computed the variation in the baryonic
suppression by varyingΩm andΩb, but keeping fixed their ratio toΩb/Ωm = 0.13. We display
our results in Fig. 5.6 for variations in Ωm and Ωb, since these are the only two parameters that
can be affected. We can appreciate that now baryonic suppression and cosmology become
largely independent of each other.

Since w0 and wa only affect the cosmic growth history – leaving intact the linear power
spectrum and the baryon fraction, we can employ variations with respect to them to estimate
the role of the cosmology-dependence of the concentration-mass relation. Indeed, over the
parameter range we consider, the concentration of 1013h−1M� haloes varies from 4 to 8, but
the value of S(k) barely changes. This points to a very minor role of the concentration-mass
relation for realistic cosmological variations.

Conversely, variations with respect to σ8 change primarly the halo mass function, and in
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this case, we observe small but non-negligible variation in the baryonic effects, of 2− 3% in
our entire parameter range.

In summary, ourmodel for baryonic physics shows clear dependencewith cosmology. The
primary correlations are induced by variations on the baryon fraction, whereas remaining
correlations can be explained by variations in the underlying halo mass function. The
concentration-mass relation introduces a very minor effect. These results can serve as a guide
to, for instance, simulations campaigns that seek to explore the cosmological dependence of
the baryonic effects with hydro-dynamical calculations.

5.5 Constraints on the baryon parameter space

We test the accuracy of our emulator with a large collection of gravity-only and
hydrodynamical simulations. Specifically, we use 16 BAHAMAS simulations2 (McCarthy
et al., 2017, 2018), 23 Cosmo-OWLS (Le Brun et al., 2014), 29 OWLS (Schaye et al., 2010;
van Daalen et al., 2011), EAGLE3 (Schaye et al., 2015; Crain et al., 2015; McAlpine et al.,
2016; Hellwing et al., 2016; The EAGLE team, 2017), Illustris4 (Vogelsberger et al., 2013,
2014b,a; Sĳacki et al., 2015), 2 Illustris TNG (100 Mpc and 300 Mpc)5 (Springel et al.,
2018; Pillepich et al., 2018; Nelson et al., 2018; Naiman et al., 2018; Marinacci et al., 2018;
Nelson et al., 2019), and 2 Horizon (with and without AGN)6 (Dubois et al., 2014). We note
that a large part of this dataset, specifically the power spectra from OWLS, Cosmo-OWLS
and BAHAMAS, have been collected and published by van Daalen et al. (2020)7.

The simulations considered implement a wide range of different physical processes.
Among others, AGN feedback, supernovae feedback, mass loss from Asymptotic Giant
Branch stars, radiative cooling, stellar winds, and stellar initial mass function are varied.
Furthermore, the simulations have different mass resolutions and box sizes, and this can
mildly impact the expected suppression given by baryons. However, as pointed out in
van Daalen et al. (2020), the main driver of the differences in hydrodynamical simulations
predictions is the calibration of the subgrid processes. In fact, the hydrodynamical simulations
are usually calibrated to reproduce one or more observables, even though their agreement
with non-calibrated observables might be rather poor.

The most important quantity for determining the impact of baryonic physics on the
power spectrum is how much gas has been retained in group-size haloes. Considering this
specific observable, we choose BAHAMAS as our main test suite of simulations, whose

2http://www.astro.ljmu.ac.uk/~igm/BAHAMAS/

3http://icc.dur.ac.uk/Eagle/

4https://www.illustris-project.org/

5https://www.tng-project.org

6https://www.horizon-simulation.org/

7http://powerlib.strw.leidenuniv.nl
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Figure 5.9: Best-fitting parameters obtained by fitting the hydrodynamical simulations BAHAMAS
(blue), C-OWLS (red), OWLS (green), and EAGLE, Illustris, Illustris TNG, Horizon (orange).

Figure 5.10: Akaike Information Creterion (AIC) computed by using a baryonic model which use
from 0 to 7 free parameters, at z = 0 (top panels) and z = 1 (bottom panels). We consider as data
the hydro/gravity-only power spectra ratios measured in BAHAMAS (first column), Cosmo-OWLS
(second column), OWLS (third column), and Illustris-TNG, EAGLE, Illustris and Horizon (fourth
column). Each different color refer to a single simulation run.
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sub-grid recipes were calibrated using the observed stellar and gas fractions in clusters.8
Nevertheless, we include all the power spectra in our analysis, as we expect their diversity to
be an excellent benchmark for the flexibility of our emulator.

5.5.1 Baryonification Parameter Constraints

We use our emulator to fit the measured power spectrum ratio S(k) in the 74 different
hydrodynamical simulations and their respective gravity-only counterparts, at two different
redshifts, z = 0 and z = 1.9. We note that the various models span a range of effects which
goes from a 30% suppression to a 20% enhancement.

In each case, we first fix the value of cosmological parameters to those used in each
simulation and then constrain the values of the free baryonification parameters. We sample
the posterior distribution function using the public code emcee (Foreman-Mackey et al.,
2013) with 14 walkers of 5000 points, removing as a burn-in phase the first 3000 points of
each walker. To homogenise the different measurements, we rebin all the power spectra in
30 linear bins over the range k ∈ [0.1, 5]hMpc−1.

We estimate covariance matrix empirically following Aricò et al. (2020b):

CS,ij = E(ki)K(kj, ki)ETj (kj), (5.3)

where E is an “envelope” function that describes the typical amplitude of the uncertainty as
a function of wavenumber, andK(k) the correlation of this uncertainty, which we model as a
Gaussian distributed random variable K = N (|ki− kj|, `). For all the models, we assume at
large scales E to be a constant fS(k) with f = 1%, and a correlation length ` = 1hMpc−1.
To model the small-scale noise we use E = [1 + 0.5 erf(k − 2)]fS(k), where f = 2%.

We note that we do not expect this covariance matrix to provide a fair description of all
possible uncertainties associated toS(k) in all the simulations considered. The simulations, in
fact, have box sizes ranging from≈ 60h−1Mpc to≈ 400h−1Mpc, different mass resolutions,
different implementation of sub-grid physics, and have even been carried out with different
simulation codes, whose impact we do not model in our covariance matrices. Therefore,
accurately describing the measured S(k) will be an even more stringent test of the flexibility
of our emulator. We note, however, that a more careful estimation of the covariance matrix
is required in case, for instance, of cosmological parameters estimation.

In Figs. 5.7 and 5.8 we show the best-fitting models for all the 74 hydrodynamical
simulations at z = 0 and z = 1, respectively. We see that the emulator is able to reproduce
remarkably well the very diverse set of baryonic effects here considered. In particular, the

8These simulations have also box sides of 400h−1Mpc, and therefore we expect the ratio S(k) to be little
affected by cosmic variance and finite-volume effects.

9For some simulations, the power spectrum at z = 1 is not available.
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BAHAMAS suite – arguably the most realistic set of simulations for estimating baryonic
effects – is particularly well reproduced, with differences being less than 1% at both z = 0

and z = 1. The OWLS suite is also very well fitted by our emulator, with an accuracy
comparable to that in BAHAMAS. On the other hand, although most of the simulations
in the C-OWLS suite are also accurately reproduced, specially at z = 0, few simulations
featuring very strong AGN feeback at z = 1 are not captured very accurately. This specific
simulations (cyan and blue symbols in the second column) display a step-like suppression at
k ∼ 0.8hMpc−1 not seen in any other simulation. Elucidating the origin of such feature is
beyond the scope of this thesis, and here we simply highlight that even in this very extreme
case, the measurements are reproduced at the 5% level with our emulator.

The value of the z = 0 best-fitting parameters for all the simulations are shown in Fig. 5.9.
Most of the simulations prefer a value of the AGN range η ≈ 0.5, which suggest this is set by
gravitational, rather than sub-grid, physics. We also see a correlation betweenMc and β: low
values of Mc compensate for low values of β such that the gas fraction retained in the halo
is preserved, which is expected to be the main quantity determining S(k) on intermediate
scales. Finally, relatively large values of θinn are preferred, which disfavours steep inner gas
profiles. Although not shown here, similar trends are found at z = 1, with a consistent shift
of η to smaller values.

On the other hand, the values for M1,z0,cen, θout, and Mout do not show any clear
common trend among the hydrodynamical simulations. By inspecting one by one the
marginalised posteriors of single hydrodynamical simulations, we notice that in many cases
these parameters are actually unconstrained by our simulated data.

The results of this section suggest that, in most cases, hydrodynamical simulations can
be modelled by a subset of the baryonic parameters. We explore this further in the next
subsection.

5.5.2 A minimal parameterisation for baryonification

Our default baryonic model includes seven free parameters describing multiple galaxy
formation and baryonic physics. Arguably, some of these parameters present degeneracies
among them and/or do not significantly change the power spectrum over the range of scales
and redshifts we seek to model. For instance, in §5.3.2 we showed that only 5 PCs are
needed to describe at 1% the full range of power spectrum suppression that our model allows.
Moreover, by fitting our set of 74 hydrodynamical simulations, we found that three parameters
–M1,z0,cen, θout, andMout – are unconstrained in most cases.

We now focus on the question of how many free parameters are needed to fit the power
spectrum suppression measured in the set of hydrodynamical simulations described above.
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Figure 5.11: Number of hydrodynamical simulations which prefer a model with a given number
of free parameters according to the Akaike Information Criterion. The simulations used are from
BAHAMAS (blue), Cosmo-OWLS (red), OWLS (green), and Illustris-TNG, EAGLE, Illustris and
Horizon (orange), at z = 0 (top panel) and z = 1 (bottom panel).

In addition to the full model discussed in the previous subsection, we consider seven stripped
down versions, which we fit to the same library of power spectra.

We consider a baseline model with no free parameters, where we fix the baryonic
parameters to the mean of the best-fitting values of all the hydrodynamical simulations
used in §5.5. Following, we free an increasing number of parameters while keeping fixed
the others to the same values as in the baseline model. In a second model, we vary only
the parameter Mc, and thus the gas fraction in haloes; a third model additionally varies the
AGN range, η, and a forth one includes further the slope of the halo mass-bound gas relation,
β. We consider also a 4-parameter model which includes the central galaxy massM1,z0,cen,
and 5 and 6 parameter models which consider also the gas shape parameters θinn andMinn,
respectively.

We show the fits using the 1, 3, and full 7-parameter models in the bottom panels of
Fig. 5.7 at z = 0, and in Fig. 5.8 at z = 1. The emulator performs surprisingly well even
when considering just a single free parameter. Considering the BAHAMAS simulations, the
1-parameter model fits at the 1% level most of the data at z = 0 and z = 1. The accuracy of
the simulation that features the strongest AGN feedback somewhat degrades to ∼ 3%. The
bulk of the the other simulations is reproduced at 2− 3%, with few extreme cases exceeding
6%.

We compare the relative performance of these models using the Akaike Information
Creterion (AIC) (Akaike, 1974). This criterion maximises the information entropy or, in
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other words, minimises the information loss of a model given some data. In practice, the
AIC has one term which rewards the goodness of the fit, and one term that discourages large
number of parameters to avoid overfitting.

For each model and target power spectrum ratio, we compute the AIC as:

AIC ≡ −2 logP (di|θ̂) + 2Nθ, (5.4)

where P (di|θ̂) is the maximum likelihood estimate, andNθ the number of free parameters of
the model. Thus, models which minimise the AIC are considered preferred by the data.

In Fig. 5.10 we compare the distribution of the AIC values for all of our models and
hydrodynamical simulations. Each panel shows results for a given simulation suite and
redshift, as indicated by the figure legend. In most of the cases, the AIC values go from ≈ 0

in the 1-parameter model, to≈ 15 in the 7-parameter model. For some simulations, the AIC is
systematically higher, AIC > 30. In these cases, where the fit to the data is somewhat poorer,
the minima are consistently shifted toward a larger number of free parameters. The baseline
model, which feature no free parameters, has AIC values tipically 1-3 orders of magnitude
larger than the other models. This means that the emulator is generally not able to describe
properly the hydrodynamical simulations, when fixing all its parameters to their averaged
best-fitting values. Finally, we note that the results at z = 0 and z = 1 are qualitatively
similar.

We show in Fig. 5.11 a histogram of the number of hydrodynamical simulations that
prefer a model with a given number of free parameters. At both z = 0 and z = 1,
most of the simulations are best described by models with 1 or 2 free parameters, whereas
models with larger number of parameters are needed only in a few cases. In some of the
OWLS and Cosmo-OWLS suites, where the subgrid processes are varied more aggressively
compared to a standard BAHAMAS simulation, a 3 or 4 parameter model is preferred. When
fitting very extreme scenarios, such as Illustris or Horizon no-AGN, a model with at least
4 parameters is required. Most of the BAHAMAS simulations, our fiducial suite, seem to
prefer a 2-parameters model, where both the gas fraction retained in haloes, Mc, and the
AGN feedback range, η, are varied. However, the η best-fitting values for the BAHAMAS
are broadly consistent between the different simulations of the suite, being their mean and
standard deviation η̄(z = 0) = 0.51 ± 0.06 and η̄(z = 1) = 0.38 ± 0.09, whereas taking
into account all the 74 hydrodynamical simulations we obtain η̄(z = 0) = 0.63 ± 0.23 and
η̄(z = 1) = 0.47±0.42. Therefore, it is possible that a 2-parametermodel is favoured because
in the 1-parameter model we have fixed η to a large value, incompatible with the BAHAMAS
suite. We confirm this hypothesis by running again our MCMC chains, this time using in
the baseline model the mean of the best-fitting parameters in the BAHAMAS simulations.
As expected, in this case, the AIC for the BAHAMAS suite largely favours the 1-parameter
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model, where onlyMc is varied. Specifically, only two simulations prefer a model with more
than 1 free parameters on a total of 16.10 We note that by varying just one parameter, the
baryonic suppressionmeasured in all the BAHAMAS simulations is reproduced at 1%, except
for the case that features the most extreme AGN feedback, BAHAMAS high-AGN, which
has an accuracy of 3%. We conclude that, considering only our fiducial suite of simulations,
the BAHAMAS, only one free parameter is enough to fairly describe the baryonic effects on
the power spectrum at a given redshift. However, by adding an additional parameter we can
accurately reproduce most of the 74 hydrodynamical simulations here considered, whereas
in a few extreme cases more parameters are required. This finding is particularly interesting,
since with upcoming observations of the gas distribution, from e.g. SZ or X datasets, it will
be likely possible to put tighter constraints on baryonic parameters such asMc or η.

5.6 Summary and Conclusions

In this chapter, we have built and validated a 15-dimensional emulator of the baryonic “boost
factor”, that is the baryonic to gravity-only ratio in the non-linear matter power spectrum, for
scales 0.01 < k < 5hMpc−1, and redshifts 0 < z < 1.5.

Specifically, we considered 8 cosmological parameters – 5 standard ΛCDM parameters
plusmassive neutrinos and dynamical dark energy – and 7 baryonic parameters. The baryonic
parameters are physically motivated and describe the gas fraction retained in haloes, AGN
feedback strength, characteristic galaxy mass and the dependence of gas fractions on halo
mass. In our approach, cosmology and baryon physics are consistently treated, by exploiting
a combination of cosmology rescaling and baryonification algorithms, within the framework
described in Aricò et al. (2020b, 2021a).

The range in cosmological and baryonic parameters employed by our emulator is set
to cover values currently allowed by observations and hydrodynamical simulations. The
emulator, a feed-forward Neural Network composed by two hidden layers of 400 neurons
each, is trained with 50, 000 power spectra which yields a nominal precision of 2-3% (1−2%

from the baryonification plus cosmology rescaling and 1% from the emulation). This level
of uncertainty, however, can decrease in future by adding further training spectra. We note
that, when combined with the emulator of the non-linear matter power spectrum presented in
Angulo et al. (2020), the two joined emulators are expected to deliver predictions accurate at
4− 5% level.

We have assessed the accuracy of our emulator by using a large suite of 74 state-of-the-art
hydrodynamical simulations and their gravity-only corresponding counterparts, taken from

10One simulation prefers a 2-parameters model, but the difference in AIC with the 1-parameter model is only
≈ 2.
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theBAHAMAS,Cosmo-OWLS,OWLS, Illustris-TNG,EAGLE, Illustris, andHorizon suites.
It is noteworthy that all (but the two most-extreme C-OWLS simulations) data at z = 0 and
z = 1 are reproduced within the accuracy of the emulator precision.

By using our emulator, we have shown that cosmology impacts the baryonic processes
mainly through the cosmic baryon fraction,Ωb/Ωm, in agreementwith Schneider et al. (2020).
Additionally, we have found secondary dependences caused bymodifications to the halo mass
function, given for instance by the overall normalisation of the matter fluctuations amplitude,
while the internal concentration of haloes, which are caused for example by different dark
energy models, are negligible.

Finally, we have searched for a minimal set of free baryonification parameters. To do
that, we have compared the ability of models with a different number of free parameters to
reproduce the simulation power spectrum ratios. At a given redshift, just one parameter is
enough to accurately span all the range of feedback predicted by the BAHAMAS simulations.
This parameter, namelyMc, makes the trade-off between the quantity of gas retained in haloes
and expelled by the AGN. We note that our approach naturally takes into account the redshift
evolution of the halomass function and concentration-mass relation. However, only the stellar
parameters are redshift dependent, while the gas parameters,Mc included, are currently not.
If not properly taken into account, this is expected to have a mild repercussion on the accuracy
of the predictions across different redshifts.

Although the BAHAMAS suite is arguably the best proxy for baryonic effects in the real
universe, as it was specifically calibrated using observed stellar and gas fractions in clusters,
other simulation suites are also described relativelywell with a single free parameter, although
they prefer more complicated models.

We anticipate that this emulator will be a valuable tool in the exploitation of current and
forthcoming weak lensing surveys.
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Summary and Conclusions

In this thesis, we have developed an accurate and fast framework to model the
three-dimensional distribution of the cosmic matter density field and its time evolution.
We have run N -body simulations to reach the widest dynamical range allowed by modern
supercomputers, and employed a state-of-the-art cosmology rescaling algorithm, to capture
the cosmological dependence of the matter density field. Motivated by the systematic
uncertainties which heavily affect ongoing weak lensing surveys, particular care has been
devoted to gain physical insight on how different astrophysical processes impact the Large
Scale Structure. To do so, we have implemented a baryon correctionmodel, a hybrid technique
that couples analytical prescriptions based on theoretical assumptions with numerical
predictions given by simulations. To make our model fast enough to be directly used in
parameter inference, we have used machine learning and built emulators of the power spectra
measured in our simulations.

In §2, we have presented our main set ofN -body simulations, constituted by 6 simulations
of ≈ 2 Gpc and 34403 (≈ 80 billion) particles, run with 3 different cosmologies and “pair
and fixed” initial conditions to suppress cosmic variance (Angulo and Pontzen, 2016). The
cosmologies of the simulations have been chosen to minimise the error of the rescaling
algorithm in a broad parameter range. The original cosmology rescaling algorithm (Angulo
and White, 2010) has been updated to take into account of concentration-mass relation and
non-universality of halo the mass function (Contreras et al., 2020a; Ondaro-Mallea et al.,
2021), and extended to dynamical dark energy andmassive neutrinos (Contreras et al., 2020a;
Zennaro et al., 2019). In this way, the power spectrum of (gravitational-only) matter, haloes,
and sub-haloes can be recovered at better than 2%accuracywithinΛCDMand 3%considering
the extensions to massive neutrinos and dynamical dark energy, up to k = 5hMpc−1, and
the halo mass function at better than 2% up toM = 5 · 1014 h−1M�.

In §3 we have described our implementation of the Baryon Correction Model (BCM)
algorithm (Schneider and Teyssier, 2015a). The idea is to displace the particles of a
gravity-onlyN -body simulation, to take into account the non-gravitational effects that reshape
the spatial distribution of different baryonic components. In our full model, these components
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are, specifically, central and satellite galaxies, and bound, ejected, and re-accreted gas onto
haloes. Also the back-reaction on the dark matter caused by the baryon gravitational potential
is taken into account. Once the density profiles of all these components are computed, the
particles of the simulations are moved accordingly to the analytical predictions. The free
parameters of our model (up to 8) can be constrained by observations or hydrodynamical
simulations, and we have checked that our implementation is flexible enough to fit the density
profiles of hydrodynamical simulations, e.g. the Illustris TNG.

Our numerical implementation is highly optimised, and one of the main speed-up factors
is obtained neglecting the displacement fields of the particles initially outside of haloes,
which follow closely the dark matter distribution.

We have tested our BCM against several state-of-the-art simulations: the baryonification
is able to recover their power spectra within percent accuracy (Aricò et al., 2020b). When
fitting the power spectrum, we recover the same anti-correlation between the fraction of
baryons retained in haloes and the suppression in the power spectrum found in different
hydrodynamical simulations (van Daalen et al., 2020). This is a hint that our model is
correctly capturing the net mass flow induced by baryonic processes. Overall, our model
suggests that galaxy formation increases the power at small scales, due to the presence of
the bright central galaxies, whereas the contribution of satellite galaxies is negligible. The
gas ejected by the accreting supermassive black holes at the center of galaxies can cause
significant suppression of power up to large scales. The hot gas inside haloes has a modest
impact on the clustering, whereas the dark matter is more concentrated at the center and
flatter in the outskirts of the halo, due to the back-reaction caused by the central galaxy and
ejected gas, respectively.

By using a Fisher matrix formalism, we have shown that there is a wealth of cosmological
information lying on small scales (k ≥ 1hMpc−1) in the power spectrum. Unfortunately, by
marginalising over the baryonic parameters, we expect a mild degradation of the constraining
power in cosmology, up to a factor of 4, depending on the parameter considered.

To maximise the information that can be extracted, we can go to higher-order statistics
than 2-point. In fact, baryonic processes impact differently the 2-point and 3-point statistics,
and thus going to higher-order can help to break degeneracies between parameters (Semboloni
et al., 2013). Motivated by this, in §4 we have studied the predictions of the bispectrum made
by baryonification. We have found that baryonification can reproduce the power spectrum
and bispectrum of several state-of-the-art cosmological hydrodynamical simulations at better
than 3% up to k = 5hMpc−1. Interestingly, we find a tight anti-correlation between
baryon fractions inside haloes and baryonic effects on the bispectrum, similarly to what
was previously found with power spectra. Finding such correlations, which link a direct
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observable to the matter clustering, paves the way to minimal phenomenological models
which could be used up to higher-order statistics.

Thanks to the heavy optimisations involved, the process of scaling cosmology,
baryonification, and measurement of the power spectrum of a simulation takes only up
to few minutes, depending on the size of the simulation. Nevertheless, this could be the main
limitation when doing parameter inference analysis: a standard MCMC can require hundreds
of thousands of evaluations of a model, depending on the number of free parameters.

To get around the computational cost of the model, we have used emulators, which are
interpolators of a (costly) function defined in a given hyper-parameter space. By evaluating
the function in such a way to cover evenly the hyper-volume, the emulator provides quick and
accurate predictions in thewhole parameter space. A possible approach could be, for instance,
to emulate the likelihood function, which in cosmology applications is usually Gaussian, and
thus well captured by Gaussian Processes (see e.g. Pellejero-Ibañez et al., 2020). Here, we
have followed a more flexible approach, emulating directly the model predictions, to be able
to apply the same emulators to different data sets. The emulation has been performed by
using machine learning, and specifically Gaussian Processes and artificial neural networks.
We have found that the latter ones should be preferred when using large training sets, given
their computational and memory requirements.

In this way, the hundreds of Terabytes contained in our simulations data are compressed
in a model of only a few Megabytes, that can be downloaded and used in a couple of lines
in Python. Moreover, the artificial neural network scheme that we have used to build our
emulators allows evaluating multiples models in the order of a millisecond, when running
on a single core of a common laptop. Overall, the error introduced in the emulation is
subdominant compared to other sources of errors in the modelling.

For convenience, we have split the full power spectrum measured in our post-processed
simulations into three different parts: linear, non-linear, and baryonic contributions.

In §1 we have used about 160,000 spectra computed with the Boltzmann code CLASS

(Lesgourgues, 2011a), to build a neural network emulator for the linear matter power
spectrum. We have shown that its accuracy is better than 0.3% and that it is compatible
with the statistical requirements of stage IV weak lensing surveys (Aricò et al., 2021b);

In §2 we have presented our Gaussian Process emulator of the non-linear matter power
spectrum “boost factor”, that is the non-linear to linear ratio. We obtained it by scaling the
cosmology of our main simulations to 800 different cosmologies, finding a percent level
accuracy (Angulo et al., 2020) in the emulation. We have also built a version of this emulator
with artificial neural networks.
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In §5 we have built a neural network emulator of the baryonic boost factor, that is
the baryonic to non-linear ratio. This emulator depends on 15 parameters, 8 relative to
cosmology (included massive neutrinos and dynamical dark energy) and 7 to astrophysical
processes. We have tested our emulator against 74 different state-of-the-art cosmological
hydrodynamical simulations, including OWLS, Illustris, Horizon, Cosmo-OWLS, EAGLE,
BAHAMAS, Illustris-TNG, presented in Schaye et al. (2010); Vogelsberger et al. (2014b);
Dubois et al. (2014); Le Brun et al. (2014); Schaye et al. (2015); McCarthy et al. (2017);
Pillepich et al. (2018). These simulations are very different for hydrodynamical solvers,
sub-grid physics implementations, cosmology, and initial conditions. Nonetheless, our
emulator is able to fit all their baryonic boost factors at percent accuracy, while providing
predictions in a few milliseconds (Aricò et al., 2020a). Exploiting the speed and flexibility of
this emulator, we have shown that cosmology impacts the baryonic processes mainly through
the cosmic baryon fraction, Ωb/Ωm, in agreement with what was found in Schneider et al.
(2020). Additionally, we have found secondary dependencies caused by modifications to
the halo mass function, given e.g. by the overall normalisation of the matter fluctuations
amplitude. On the contrary, the internal concentration of haloes, which are caused for
example by different dark energy models, are negligible.

Finally, we have searched for a minimal set of free baryonification parameters. To do
that, we have compared the ability of models with a different number of free parameters to
reproduce the predictions from hydrodynamical simulations, using the Akaike Information
Creterion (AIC). This criterion minimises the information loss of a model given some data.
We have found that, at a given redshift, just one free parameter is enough to accurately span all
the range of feedback predicted by the BAHAMAS simulations. This parameter, namelyMc,
makes the trade-off between the quantity of gas retained in haloes and expelled by feedback
processes e.g. supernovae and accretion onto supermassive black holes.

In the upcoming years, missions e.g. Euclid11, LSST12, and the Roman Space Telescope13,
plan to shed light on some of the biggest mysteries in modern physics, the nature of dark
energy and dark matter. Among the cosmological probes included in these experiments,
e.g. supernovae and Baryonic Acoustic Oscillations (BAO), weak gravitational lensing will
have a key role, because of its unique sensitivity to the dark matter field and growth of
structures. In this context, we expect the techniques and results presented here to be highly
valuable. In fact, including astrophysical and hydrodynamical processes will be paramount
for a correct interpretation of the data, and to avoid a biased inference of the relevant

11https://www.euclid-ec.org/

12https://www.lsst.org/

13https://roman.gsfc.nasa.gov/
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cosmological parameters. Additionally, it could provide precious information on poorly
understood baryonic physics, for example on the feedback from supermassive black holes
accreting gas at the center of galaxies.

The framework developed in this thesis provides a powerful tool for the exploitation of ongoing
and future LSS surveys, because of its accuracy, speed, range of validity, and flexibility.
The three-dimensional nature of our approach opens up to analyses of different statistics,
including cosmological and baryonic dependencies. For instance, one could investigate how
astrophysical processes impact the halomass function, and therefore the galaxy clusters count,
or build lightcones to have convergence maps varying different baryonic scenarios.
We have made publicly available at this url14 three emulators with the linear, non-linear,
and baryonic contribution to the matter power spectrum, indispensable to compute the
cosmic shear and galaxy-galaxy lensing correlation functions. When combined all together,
our emulators can provide predictions accurate at better than 5%, in a large cosmological
parameter space, about 10σ around Planck best-fitting parameters (Contreras et al., 2020a;
Planck Collaboration et al., 2018), on scales of 0.001 ≤ k/(hMpc−1) ≤ 5 and redshifts
z ≤ 1.5. We note that the majority of statistical power of a stage IV survey is expected to be
at z ≈ 1 and 1 ≤ k/(hMpc−1) ≤ 7 (Taylor et al., 2018b), and therefore it should be fairly
captured by our emulators. Nevertheless, we plan to keep updating the training set of our
emulators, to increase their accuracy and expand their scale and redshift ranges.

The work done so far opens up to many different applications and follow-up projects:

• Applying the neural network emulators to current weak lensing data. A dataset
e.g. DES Collaboration et al. (2021), covering 5,000 square degrees of the sky, has
potentially the statistical power to constrain astrophysical processes e.g. AGN feedback
from supermassive black holes;

• Joining Sub-Halo Abundance Matching (SHAM) methods with baryonification and
cosmology rescaling algorithms. A self-consistent modelling of galaxy and gas
distributions, where the BCM is informed by the SHAM, would provide an accurate
method for cross-correlations up to small scales. This would benefits analyses like the
3x2pt, i.e. cosmic shear, galaxy clustering and galaxy-galaxy lensing;

• Extending the baryonification to other hydrodynamical properties than density, e.g.
pressure (thermal and non-thermal) and temperature. By doing so, it would be possible
to predict thermal Sunyaev-Zel’dovich power spectra, and including to generate fast
Compton-y and X-rays maps.

14https://bitbucket.org/rangulo/baccoemu/
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• Extending the rescaling algorithm to modified gravity models, and investigate the
interplay with baryonic effects;

• Studying the degeneracy between the effects of baryons and massive neutrinos on the
LSS clustering;

• Investigating the time dependence of the baryonic effects, seeking for a
physically-motivated parametrisation;

• Investigating and modelling the baryonic effects on the LSS velocity field. Such studies
can be helpful to model the kinetic Sunyaev-Zel’dovich effect;

Future extensions of this framework could constrain simultaneously cosmology and
astrophysics, by using cross-correlations of different fields, from galaxy to matter (given by
the cosmic shear) and gas pressure (given by the thermal Sunyaev-Zel’dovich), while being
robust to the systematics relative to each individual field. As the accuracy of the observations
increases, so should our theoretical modelling, while being physically interpretable and
flexible enough to explore all the viable scenarios.
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Resumen y Conclusiones

En esta tesis, hemos desarrollado un marco preciso y rápido para modelar la distribución
tridimensional del campo de densidad de la materia cósmica y su evolución temporal. Hemos
realizado simulaciones de N -cuerpos para alcanzar el rango dinámico más amplio que
permiten los superordenadores modernos, y hemos empleado un algoritmo de reescalado
cosmológico de última generación, para capturar la dependencia cosmológica del campo de
densidad de la materia. Motivado por las incertidumbres sistemáticas que afectan en gran
medida a los estudios de lentes débiles en curso, se ha prestado especial atención a obtener
una visión física sobre cómo los diferentes procesos astrofísicos afectan a la Estructura a
Gran Escala. Para ello, hemos implementado un modelo de corrección bariónica, una técnica
híbrida que combina prescripciones analíticas basadas en teóricas con predicciones numéricas
dadas por las simulaciones. Para que nuestro modelo sea lo suficientemente rápido como
para ser utilizado directamente en la inferencia de parámetros, hemos utilizado el aprendizaje
automático y hemos construido emuladores de los espectros de potencia medidos en nuestras
simulaciones.

En §2, hemos presentado nuestro conjunto principal de simulaciones de N -cuerpos,
constituido por 6 simulaciones de ≈ 2 Gpc y 34403 (≈ 80 miles de millones) de partículas,
ejecutadas con 3 cosmologías diferentes y “ paired and fixed” condiciones iniciales para
suprimir la varianza cósmica (Angulo and Pontzen, 2016). Las cosmologías de las
simulaciones se han elegido para minimizar el error del algoritmo de reescalado en un
amplio rango de parámetros. El algoritmo original de reescalado cosmológico (Angulo and
White, 2010) se ha actualizado para tener en cuenta la relación concentración-masa y la no
universalidad de la función demasa de los halos (Contreras et al., 2020a; Ondaro-Mallea et al.,
2021), y se ha extendido a la energía oscura dinámica y a los neutrinos masivos (Contreras
et al., 2020a; Zennaro et al., 2019). De este modo, el espectro de potencia de la materia (sólo
gravitacional), de los halos y de los subhalos puede recuperarse con una precisión mejor
del 2% dentro de ΛCDM y del 3% considerando las extensiones a los neutrinos masivos y
a la energía oscura dinámica, hasta k = 5hMpc−1, y la función de masa del halo con una
precisión mejor del 2% hastaM = 5 · 1014h−1M�.
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En §3 hemos descrito nuestra implementación del algoritmo de corrección barionica
(BCM) (Schneider and Teyssier, 2015a). La idea es desplazar las partículas de una simulación
de N -cuerpos sólo gravitacional, para tener en cuenta los efectos no gravitacionales que
remodelan la distribución espacial de los diferentes componentes bariónicos. En nuestro
modelo completo, estos componentes son, en concreto, las galaxias centrales y satélites,
y el gas vinculado, expulsado y re-acreditado en los halos. También se tiene en cuenta la
reacción a posteriori de lamateria oscura causada por el potencial gravitatorio de los bariones.
Una vez calculados los perfiles de densidad de todos estos componentes, las partículas de
las simulaciones se desplazan de acuerdo con las predicciones analíticas. Los parámetros
libres de nuestro modelo (hasta 8) pueden ser restringidos por observaciones o simulaciones
hidrodinámicas, y hemos comprobado que nuestra implementación es lo suficientemente
flexible como para ajustarse a los perfiles de densidad de las simulaciones hidrodinámicas,
por ejemplo el Illustris-TNG.

Nuestra implementación numérica está altamente optimizada, y uno de los principales
factores de aceleración se obtiene no considerando los campos de desplazamiento de las
partículas inicialmente fuera de los halos, que siguen de cerca la distribución de la materia
oscura.

Hemos comparado nuestro BCM con varias simulaciones del estado del arte: la
barionificación es capaz de recuperar sus espectros de potencia con una precisión porcentual
(Aricò et al., 2020b). Al ajustar el espectro de potencia, recuperamos lamisma anticorrelación
entre la fracción de bariones retenidos en los halos y la supresión en el espectro de potencia
encontrada en diferentes simulaciones hidrodinámicas (van Daalen et al., 2020). Esto es
un indicio de que nuestro modelo capta correctamente el flujo de masa neto inducido por
los procesos bariónicos. En general, nuestro modelo sugiere que la formación de galaxias
aumenta la potencia a escalas pequeñas, debido a la presencia de las galaxias centrales,
mientras que la contribución de las galaxias satélites es insignificante. El gas expulsado por
los agujeros negros supermasivos en acreción en el centro de las galaxias puede causar una
supresión significativa de la potencia hasta escalas grandes. El gas caliente en el interior de
los halos tiene un impacto modesto en la agrupación, mientras que la materia oscura está más
concentrada en el centro y más plana en las afueras del halo, debido a la reacción a posteriori
causada por la galaxia central y el gas expulsado, respectivamente.

Utilizando un formalismo matricial de Fisher, hemos demostrado que existe una gran
cantidad de información cosmológica en escalas pequeñas (k ≥ 1hMpc−1) en el espectro de
potencia. Desafortunadamente, al marginar sobre los parámetros bariónicos, esperamos una
leve degradación del poder de restricción en cosmología, hasta un factor de 4, dependiendo
del parámetro considerado.
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Para maximizar la información que se puede extraer, podemos ir a estadísticas de orden
más alto que las de 2 puntos. De hecho, los procesos bariónicos impactan de forma diferente
en las estadísticas de 2 puntos y 3 puntos, por lo que ir a un orden superior puede ayudar a
romper las degeneraciones entre parámetros (Semboloni et al., 2013). Motivados por esto,
en §4 hemos estudiado las predicciones del biespectro realizadas por barionificación. Hemos
encontrado que la barionificación puede reproducir el espectro de potencia y el biespectro de
varias simulaciones hidrodinámicas cosmológicas de última generación a un nivel mejor que
3% hasta k = 5hMpc−1. Curiosamente, encontramos una estrecha anticorrelación entre las
fracciones de bariones en el interior de los halos y los efectos bariónicos en el biespectro, de
forma similar a lo encontrado anteriormente con los espectros de potencia. El hallazgo de
tales correlaciones, que vinculan un observable directo con la agrupación de la materia, allana
el camino hacia modelos fenomenológicos mínimos que podrían utilizarse hasta estadísticas
de orden superior.

Gracias a las optimizaciones implicadas, el proceso de escalado de la cosmología, la
barionización y la medición del espectro de potencia de una simulación sólo lleva unos
minutos, dependiendo del tamaño de la simulación. Sin embargo, esta podría ser la principal
limitación a la hora de realizar el análisis de inferencia de parámetros: un MCMC estándar
puede requerir cientos de miles de evaluaciones de un modelo, dependiendo del número de
parámetros libres.

Para sortear el coste computacional del modelo, hemos utilizado emuladores, que son
interpoladores de una función (costosa) definida en un espacio hiperparamétrico dado.
Evaluando la función de forma que cubra uniformemente el hipervolumen, el emulador
proporciona predicciones rápidas y precisas en todo el espacio de parámetros. Un posible
enfoque podría ser, por ejemplo, emular la función de verosimilitud, que en las aplicaciones
de cosmología suele ser gaussiana, y por tanto bien capturada por los procesos gaussianos
(véase por ejemplo Pellejero-Ibañez et al., 2020). Aquí hemos seguido un enfoque más
flexible, emulando directamente las predicciones del modelo, para poder aplicar los mismos
emuladores a diferentes conjuntos de datos. La emulación se ha realizado utilizando
el aprendizaje automático, y en concreto los procesos gaussianos y las redes neuronales
artificiales. Hemos comprobado que estas últimas son preferibles cuando se utilizan grandes
conjuntos de entrenamiento, dados sus requerimientos computacionales y de memoria.

De este modo, los cientos de Terabytes que contienen los datos de nuestras simulaciones
se comprimen en un modelo de sólo unos pocos Megabytes, que puede ser descargado y
utilizado en un par de líneas en Python. Además, el esquema de red neuronal artificial que
hemos utilizado para construir nuestros emuladores permite evaluar múltiples modelos en
el orden de un milisegundo, cuando se ejecuta en un solo núcleo de un ordenador portátil
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común. En general, el error introducido en la emulación es subdominante en comparación
con otras fuentes de error en la modelización.

Por comodidad, hemos dividido el espectro de potencia completo medido en nuestras
simulaciones posprocesadas en tres partes diferentes: contribuciones lineales, no lineales y
bariónicas.

En §1 hemos utilizado unos 160.000 espectros calculados con el código Boltzmann
CLASS (Lesgourgues, 2011a), para construir un emulador de red neuronal para el espectro de
potencia de la materia lineal. Hemos demostrado que su precisión es mejor que 0,3% y que
es compatible con los requisitos estadísticos de los estudios de lentes débiles de la fase IV
(Aricò et al., 2021b);

En §2 hemos presentado nuestro emulador de Proceso Gaussiano del espectro de potencia
de la materia, y específicamente la fracción entre esoectro no lineal y lineal. Lo hemos
obtenido escalando la cosmología de nuestras simulaciones principales a 800 cosmologías
diferentes, encontrando una precisión de nivel porcentual (Angulo et al., 2020) en la
emulación. También hemos construido una versión de este emulador con redes neuronales
artificiales.

En §5 hemos construido un emulador con redes neuronales del factor bariónico, es
decir, la fracción entre espectro con efectos bariónicos y no lineal. Este emulador depende
de 15 parámetros, 8 relativos a la cosmología (incluyendo neutrinos masivos y energía
oscura dinámica) y 7 a procesos astrofísicos. Hemos probado nuestro emulador contra 74
simulaciones hidrodinámicas cosmológicas diferentes, incluyendo OWLS, Illustris, Horizon,
Cosmo-OWLS, EAGLE, BAHAMAS, Illustris-TNG, presentadas en Schaye et al. (2010);
Vogelsberger et al. (2014b); Dubois et al. (2014); Le Brun et al. (2014); Schaye et al. (2015);
McCarthy et al. (2017); Pillepich et al. (2018). Estas simulaciones son muy diferentes en
lo que respecta a los solucionadores hidrodinámicos, las implementaciones de la física de
subgrilla, la cosmología y las condiciones iniciales. Sin embargo, nuestro emulador es capaz
de ajustarse a todos sus factores bariónicos con un porcentaje de precisión, mientras que
proporciona predicciones en unos pocos milisegundos (Aricò et al., 2020a).

Aprovechando la velocidad y la flexibilidad de este emulador, hemos demostrado que la
cosmología afecta a los procesos bariónicos principalmente a través de la fracción cósmica de
bariones, Ωb/Ωm, de acuerdo con lo encontrado en Schneider et al. (2020). Además, hemos
encontrado dependencias secundarias causadas por modificaciones en la función de masa de
los halos, dadas, por ejemplo, por la normalización global de la amplitud de las fluctuaciones
de la materia. Por el contrario, la concentración interna de los halos, causada por ejemplo
por diferentes modelos de energía oscura, es inapreciable.

Por último, hemos buscado un conjunto mínimo de parámetros libres de la barionización.
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Para ello, hemos comparado la capacidad de los modelos con un número diferente de
parámetros libres para reproducir las predicciones de las simulaciones hidrodinámicas,
utilizando el criterio Akaike Information Creterion (AIC). Este criterio minimiza la pérdida
de información de unmodelo dados unos datos. Hemos descubierto que, a un desplazamiento
al rojo determinado, basta con un solo parámetro libre para abarcar con precisión todo el
rango de retroalimentación predicho por las simulaciones de BAHAMAS. Este parámetro,
Mc, hace que el compromiso entre la cantidad de gas retenida en los halos y la expulsada por
los procesos de retroalimentación, como las supernovas y la acreción a los agujeros negros
supermasivos.

En los próximos años, misiones e.g. Euclid15, LSST16, y Roman Space Telescope17, planean
descubrimientos sobre algunos de los mayores misterios de la física moderna, la naturaleza
de la energía oscura y la materia oscura. Entre las sondas cosmológicas incluidas en estos
experimentos, por ejemplo las supernovas y las BAO, las lentes gravitacionales débiles
tendrán un papel clave, debido a su sensibilidad única al campo de la materia oscura y
al crecimiento de las estructuras. En este contexto, nos esperamos que las técnicas y los
resultados presentados aquí sean muy valiosos. De hecho, incluir los procesos astrofísicos
e hidrodinámicos será muy importante para una correcta interpretación de los datos, y para
evitar una inferencia incorrecta de los parámetros cosmológicos relevantes. Además, podría
proporcionar información valiosa sobre la poco conocida física bariónica, por ejemplo, sobre
la retroalimentación de los agujeros negros supermasivos que acrecionan gas en el centro de
las galaxias.

El marco desarrollado en esta tesis proporciona una poderosa herramienta para la explotación
de los estudios actuales y futuros, debido a su precisión, velocidad, rango de validez y
flexibilidad. La naturaleza tridimensional de nuestro enfoque se abre a los análisis de
diferentes estadísticas, incluyendo las dependencias cosmológicas y bariónicas. Por ejemplo,
se podría investigar cómo los procesos astrofísicos afectan a la función de masa del halo y,
por tanto, al recuento de cúmulos de galaxias, o construir conos de luz para tener mapas de
convergencia que varíen diferentes escenarios bariónicos.
Hemos puesto a disposición del público en esta url18 tres emuladores con la contribución
lineal, no lineal y bariónica al espectro de potencia de la materia, indispensables para calcular
las funciones de correlación de esquilado cósmico y de lentes galaxia-galaxia. Cuando se
combinan todos juntos, nuestros emuladores pueden proporcionar predicciones precisas con

15https://www.euclid-ec.org/

16https://www.lsst.org/

17https://roman.gsfc.nasa.gov/

18https://bitbucket.org/rangulo/baccoemu/
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más del 5%, en un gran espacio de parámetros cosmológicos, alrededor de 10σ alrededor de
los parámetros de mejor ajuste de Planck (Contreras et al., 2020a; Planck Collaboration et al.,
2018), en escalas de 0.001 ≤ k/(ihMpc) ≤ 5 y corrimientos al rojo z ≤ 1.5. Observamos
que la mayor parte de la potencia estadística de un sondeo de fase IV se espera que esté en
z ≈ 1 y 1 ≤ k/(hMpc−1) ≤ 7 (Taylor et al., 2018b), y por lo tanto debería ser bastante
captada por nuestros emuladores. No obstante, tenemos previsto seguir actualizando el
conjunto de entrenamiento de nuestros emuladores, para aumentar su precisión y ampliar sus
rangos de escala y desplazamiento al rojo.

El trabajo realizado hasta ahora se abre a muchas aplicaciones diferentes y proyectos de
seguimiento:

• Aplicar los emuladores de redes neuronales a los datos actuales de lentes débiles. Un
conjunto de datos, por ejemplo, DES Collaboration et al. (2021), que cubre 5.000
grados cuadrados del cielo, tiene potencialmente el poder estadístico para restringir los
procesos astrofísicos, por ejemplo AGN la retroalimentación de los agujeros negros
supermasivos;

• La unión de losmétodos de Sub-HaloAbundanceMatching (SHAM) con los algoritmos
de barionificación y reescalado de la cosmología. Una modelización autoconsistente
de las distribuciones de galaxias y de gas, en la que el BCM es informado por el
SHAM, proporcionaría unmétodo preciso para las correlaciones cruzadas hasta escalas
pequeñas. Esto beneficiaría a análisis como el 3x2pt, es decir, la cizalla cósmica, la
agrupación de galaxias y las lentes galaxia-galaxia;

• Ampliar la barionización a otras propiedades hidrodinámicas distintas de la densidad,
por ejemplo, la presión (térmica y no térmica) y la temperatura.

Al hacerlo, sería posible predecir los espectros de potencia de Sunyaev-Zel’dovich
térmico, e incluso generar mapas rápidos de Compton-y y rayos X.

• Extender el algoritmo de reescalado a losmodelos de gravedadmodificados, e investigar
la interacción con los efectos bariónicos;

• Estudiar la degeneración entre los efectos de los bariones y los neutrinos masivos;

• Investigar la dependencia temporal de los efectos bariónicos, buscando una
parametrización motivada físicamente;

• Investigar y modelar los efectos bariónicos en el campo de velocidad. Estos estudios
pueden ser útiles para modelar el efecto Sunyaev-Zel’dovich cinético;
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Las futuras extensiones de este marco podrían restringir simultáneamente la cosmología y
la astrofísica, mediante el uso de correlaciones cruzadas de diferentes campos, desde la
galaxia hasta la materia (dada por el esquilado cósmico) y la presión del gas (dada por el
Sunyaev-Zel’dovich térmico), siendo al mismo tiempo robustos a la sistemática relativa a
cada campo individual. A medida que aumente la precisión de las observaciones, también
debería hacerlo nuestro modelo teórico, siendo al mismo tiempo físicamente interpretable y
lo suficientemente flexible como para explorar todos los escenarios viables.
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Data Availability

All our Neural Network emulators are publicly available at http://www.dipc.org/bacco,
or equivantly at the github repository https://bitbucket.org/rangulo/baccoemu/.

Our Particle Swarm Optimisation algorithm is publicly available at
https://github.com/hantke/pso_bacco.

The Boltmann solver we have used, CLASS (Lesgourgues, 2011a), is available at
https://lesgourg.github.io/class_public/class.html.

The code we have used to measure the bispectrum in our simulations, bskit
(Foreman et al., 2020), is available at https://github.com/sjforeman/bskit.

The measurements of the power spectra and bispectra of the BAHAMAS, EAGLE, Illustris,
and Illustris TNG simulations are available at
https://github.com/sjforeman/hydro_bispectrum (Foreman et al., 2020).

The measurements of the power spectra of the hydrodynamical and gravity-only
runs of the BAHAMAS, Cosmo-OWLS and OWLS simulations are available at
http://powerlib.strw.leidenuniv.nl/ (van Daalen et al., 2020).

Other data underlying this thesis will be shared on reasonable request.
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Appendix A

Class setup

In this Appendix we provide some details on our CLASS setup and compare its predictions
against those of CAMB .

In our CLASS calculations, we set the primordial helium fraction to YHe = 0.24, the
optical depth at reionisation τreio = 0.0952, the number of (degenerate) massive neutrinos
to Nν = 3, and the number of relativistic species Nr = 3.046. The neutrino to photon
temperature is computed accounting for non-instantaneous neutrino decoupling and spectral
distortions induced by the reheating, Tν = 0.71611.

To get an estimate of the absolute accuracy of the CLASS power spectra, we make a
comparison against the predictions of another Boltzmann solver, CAMB (Lewis and Bridle,
2002). We use in CAMB , whenever possible, an analogous setup, specifying a degenerate
neutrino hierarchy, and furthermore setting to True the accurate_massive_neutrino_transfer
and Reionization options.

We compare both codes in 100 points distributed as a Latin hyper-cube, in a pure ΛCDM
scenario, addingmassive neutrinos, in aΛCDMplusw0wa dynamical dark energy, and finally
in our full extended cosmological space. In Fig. A.1 we show the results of this comparison.

In the minimal ΛCDM scenario and in the w0wa cosmologies, the two codes agree at
the 0.1% level, except for k > 10hMpc−1 where CAMB underestimates the CLASS solution
by 0.2%, likely due to CAMB neglecting the impact of reionisation on the baryon sound speed
(Lesgourgues, 2011b). When considering the massive neutrinos, the agreement degrades to
a 0.5%, a value larger than what found in Lesgourgues and Tram (2011) but in agreement
with Zennaro et al. (2017).
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Figure A.1: Comparison of the linear power spectrum provided by two independent Bolztmann
solvers CLASS and CAMB . Each panel displays the ratio for multiple cosmologies in the minimal
ΛCDM model, ΛCDM plus neutrinos, ΛCDM plus dynamical dark energy, and in ΛCDM plus
neutrinos and dynamical dark energy.
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Appendix B

Analytical profiles of baryons and dark
matter

In this appendix we report the analytical formulae used in this work to compute the density
profiles of each component of the BCM. In the end, we obtain a total “baryon corrected”
mass profile that we have to invert in order to find the Lagrangian displacement required to
make the halo particles match the new profile. For every halo of the simulation, we fit a NFW
profile, and we model our initial, gravity-only density profile as follow:

ρGrO(x) =

{
ρ0 · x−1(1 + x)−2 r ≤ r200

0 r > r200,
(B.1)

where x = r/rs and rs is the scale radius. We sharply truncate the profile at r = r200, so that
MTOT ≡M200, whereMTOT is the integral of equation B.1 to infinity, r200 is the radius which
enclose a massM200 where the density is 200 times the critical density ρc(z) ≡ 3H(z)2/8πG,
H(z) is the Hubble function and G the gravitational constant. The truncation of the initial
profile imply a null displacement of the particles beyond r200, hence we can consider just
the particles inside r200. Furthermore, we can avoid the modelling of the background as in
Schneider and Teyssier (2015b), or the computationally expensive measurement of the 2-halo
term e.g. Schneider et al. (2019).
We can compute now the four different components of the final profile. The different density
profiles are normalised such as that for each componentMi(r) =

∫∞
0

4πr2ρi(r)dr = fi·M200,
so that

∑
Mi(r) = M200, thus obviously

∑
fi = 1. Furthermore we truncate all the density

profile at r200, except for the ejected gas.
The central galaxy is modelled with a power-law with an exponential cut-off (Mohammed
et al., 2014),

ρCG(r) = fCG ·
M200

4π3/2Rhr2
· exp

(
−
(

r

2Rh

)2
)
, (B.2)

where the half-mass radius is approximated as Rh ≈ 0.015 · r200 (Kravtsov et al., 2018).
There is no need to truncate the galaxy profile, because the exponential cut-off assures that
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the density at r200 is practically zero.
The hot, bound gas is modelled assuming hydrostatic equilibrium (Martizzi et al., 2013) up to
r < r200/

√
5, after which the gas is considered collisionless, thus following the NFW profile

(Eq. B.1):

ρBG(x) = fBG ·





y0 · (x−1 ln(1 + x))
Γeff (c)

r < r200/
√

5
y1 · x−1(1 + x)−2 r ≤ r200

0 r ≥ r200,

(B.3)

The effective polytropic index Γeff is defined such that the hydrostatic gas has the same slope
of the NFW at r = r200/

√
5:

Γeff(c) =
(1 + 3c/

√
5) ln(1 + c/

√
5)

(1 + c/
√

5)ln(1 + c/
√

5)− c/
√

5
, (B.4)

where c = r200/rs is the halo concentration. The normalisation factors y0 and y1 are defined
such that the profile is continuous and

∫∞
0

4πr2ρBG(r)dr = fBG ·M200 = MBG(r).
The ejected gas profile is computed assuming a Maxwell-Boltzmann velocity distribution of
the particles expelled by the AGN, and behave as a constant with an exponential cut-off,

ρEG(r) =
M200

(2πr2
ej)

3/2
exp

(
−1

2

(
r

rej

)2
)
, (B.5)

where the ejected radius rej is the maximum radius reached by the expelled gas:

rej ≡ η · 0.75 resc, (B.6)

with η as a free parameter. The halo escape radius is estimated assuming a constant halo
escape velocity and a time-scale of a half Hubble time:

resc ≡ ∆t · vesc ≈ ∆t

√
8

3
πG∆200ρcrit ≈

1

2

√
∆200r200. (B.7)

Finally, we compute the dark matter profile, defined as a piece-wise function: a NFW up
to a scale r′, a constant ρDM(r200), between r′ and r200 and 0 afterward. We make sure that
the density profile is continuous at all scales by forcing the matching of the profiles at r200

and at r′. Within r200, the density is given by the sum of all our BCM components, whereas
beyond r200 the only contribution is given by the ejected gas, that must be be summed to the
initial GrO density of the halo:

∑
ρi(r200) = ρEG(r200) + ρGrO(r200). Since ρCG(r200) ≈ 0,

we obtain ρDM(r200) = ρGrO(r200)− ρBG(r200); we force the new NFW to pass through the
point (r′, ρDM,200),

ρNFW(x′, ρ′0) =
ρ′0

x′(1 + x′)2
, (B.8)

where x′ = r′/rs. We also impose the mass conservation, i.e.
∫ r′

0

4πr2ρNFW(r, ρ′0)dr +

∫ r200

r′
4πr2ρNFW(r′)dr = MDM . (B.9)
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We can obtain r′ and the new normalisation ρ′0 minimising the function

r′(rs + r′)2 [ρGrO(r200)− ρBG(r200)]

[
ln

(
1 +

r′

rs

)
− r′

r′ + rs

]
=

= −ρGrO(r200)− ρBG(r200)

3

(
r3

200 − r′3
)

+
fDMM200

4π
. (B.10)

We compute then the expected baryonic back-reaction on the dark matter. We allow
the dark matter profile to relax, so that the particles will expand (contract) depending if the
total gravitational potential is shallower (deeper). Let us call Mi the initial mass contained
in a sphere of radius ri, whereas Mf will be the mass after relaxation inside a final radius
rf . Numerical simulations show that the halo relaxation is not perfectly adiabatic, i.e.
rf/ri 6= Mi/Mf , but it follows the equation

rf
ri

= 1 + a

[(
Mi

Mf

)n
− 1

]
, (B.11)

where a = 0.3 and n = 2 (Abadi et al., 2010). Considering

{
Mi(ri) = MOG(ri)
Mf (rf ) = fDMMi +MEG(rf ) +MBG(rf ) +MCG(rf ),

(B.12)

we can solve the system of Eq.s B.12 and B.11 iteratively for ξ = r/ri, furthermore imposing
that ξ(r200) = 1. The relaxed dark matter mass profile is thus

MRDM(r) = fDM ·MGrO(r/ξ), (B.13)

and the density profile will be

ρRDM(r) =
1

4πr2

d

dr
MRDM(r). (B.14)

We now report the components mass fractions used in this work. The dark matter fraction
is fixed at the cosmic density value, fRDM = 1−Ωb/Ωm. The central galaxy fraction is given
by the parametrisation from abundance matching by Behroozi et al. (2013):

fCG(M200) = ε

(
M1

M200

)
10g(log10(M200/M1))−g(0), (B.15)

g(x) = − log10(10αx + 1) + δ
(log10(1 + exp(x)))γ

1 + exp(10−x)
. (B.16)

We use the best-fitting parameters at z = 0 given by Kravtsov et al. (2018), while assuming
the redshift dependence given by Behroozi et al. (2013):
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ν(a) = exp(−4a2)

log10(M1) = M1,0 + (M1,a(a− 1) +M1,zz)ν

log10(ε) = ε0 + (εa(a− 1))ν + εa,2(a− 1)

α = α0 + (αa(a− 1))ν

δ = δ0 + (δa(a− 1) + δzz)ν

γ = γ0 + (γa(a− 1) + γzz)ν,

(B.17)

with M1,a = −1.793, M1,z = −0.251, ε0 = log10(0.023), εa = −0.006, εa,2 = −0.119,
α0 = −1.779, αa = 0.731, δ0 = 4.394, δa = 2.608, δz = −0.043, γ0 = 0.547, γa = 1.319,
γz = 0.279.

We set the characteristic halo mass, M1,0, for which the galaxy-to-halo mass fraction is
ε0, as a free parameter of the model. Notice that, however, we quote throughout the paper the
derived parameterM1.

The hot gas mass fraction reads

fBG(M200) =
Ωb/Ωm − fCG

(1 + (Mc/M200)β)
, (B.18)

withMc and β free parameters. Notice that, forMc = M200 we obtain fBG = 0.5 Ωb/Ωm −
fCG, i.e. half of the gas is retained in the halo.

The ejected gas mass fraction is simply

fEG(M200) = Ωb/Ωm − fCG(M200)− fBG(M200). (B.19)

In this way, high values of Mc imply that all the gas is expelled even from massive haloes,
and vice versa for low values ofMc progressively smaller halos are gas rich.
To recap, in our modelling we have four free parameters: η, directly proportional to the halo
ejected radius, escape radius and critical radius;Mc is the characteristic halo mass for which
half of the gas is retained; β describes how fast the depletion of gas increase going toward
smaller haloes;M1, which is the characteristic halo mass that host a central galaxy of a given
mass.
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Appendix C

Subsampling of components particles

Once we have the galaxy, hot gas, ejected gas and dark matter analytical profiles, we can tag
and re-scale the mass of the gravity-only particles to match those profiles. In this way, we
can get a “baryonic” simulation. The main steps of the algorithm are the following:

• Compute the theoretical cumulative and differential mass profiles of the different
components;

• Compute the theoretical bin/total mass fraction for each component f ;

• Count the number of halo particles per radial bin C;

• The quantity N = f · C gives the number of particles per radial bin per component;

• Iteratively add to N the particles missing for discretisation (roundoff);

• The mass of the particles per component and per radial bin is given by

m = mp ·
C

N
Mc

Mbcm

, (C.1)

where mp is the particle mass in the gravity-only original simulation and Mc and
Mbcm are the component and the total baryonic correction differential mass profiles,
respectively.
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Appendix D

Convergence of the baryon simulation

We have test the convergence of the baryonic suppression by running three simulations with
increasing volume and number of particles, while keeping same resolution. In particular,
we have run simulations with 64h−1Mpc, 128h−1Mpc and 256h−1Mpc of box side, with
N = 192, N = 384 and N = 768 cubic particles, respectively. All the simulations share
the same initial conditions, and for each different volume we have run two simulations
with fixed amplitude and shifted phases as reported in §3.2. In Fig. D.1 we show the
suppression S(k), defined as the ratio between baryonic and gravity only matter power
spectra, for the three simulations at z = 0. We consider a BCMwith the following parameters:
Mc = 1.2 · 1014 h−1M�, η = 0.5, β = 0.6,M1 = 2.2 · 1011h−1M�. We note that even if the
cosmic variance is consistently different, this contribution is canceled out at first order in the
ratio of the power spectra, which are consistent with each other well within 1%. In the bottom
panel of Fig. D.1, we show the difference in suppression between using standard and paired
and fixed simulations. For the biggest volume considered the suppression is practically the
same (solid line), and even for the smallest volume the difference is well within 1% (dotted
line).

We have investigated moreover the contribution of different halo masses to the total
baryonic suppression. As shown in the upper panel of D.1, the biggest relative contribution
is given by haloes of massM = 1014 − 1015 h−1M� and 1013 − 1014 h−1M�. It appears that
the number of very massive haloes (M ≥ 1015 h−1M�) is not sufficient to produce an effect
lager than 1%, even for the largest simulation considered in this work. Haloes with masses
M ≤ 1013 h−1M� have an impact of ≈ 2% on small scales, k ≈ 5hMpc−1.
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Figure D.1: Upper panel: Baryon suppression of the matter power spectrum, defined as S(k) ≡
PBCM/PGrO at z = 0. Solid, dashed and dotted lines are computed with simulations of box side 256,
128 and 64h−1Mpc and 7683, 3843 and 1923 particles, respectively. Colors are referred to different
halo mass bins, expressed in decimal logarithm of h−1M�, with which the baryon corrections have
been computed, according to the legend. Lower panel: Difference in suppression between two paired
and fixed simulations and a single one, for the three different volumes specified in the legend of the
upper panel.
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Appendix E

Convergence test

In this Appendix, we show the tests we have performed to assure that the baryonic effects on
the clustering measurements have converged.

First, we test the convergence with the simulation box size. For this, we have used our
suite of simulations with 64h−1Mpc, 128h−1Mpc, 256h−1Mpc, and 512h−1Mpc of box
side, withN = 192, N = 384, N = 768 andN = 1536 cubic particles, respectively. All the
simulations have same force and mass resolution, and share the same initial conditions. For
each different volume we have run two simulations with fixed amplitude and shifted phases
as reported in §4.2.

In Fig. E.1 we show the suppression S(k), defined as the ratio between baryonified and
gravity-only matter power spectra and equilateral bispectra, measured in the four different
boxes at z = 0.

We have also separated the contribution to the clustering of different halo masses, to get
more insight on the origin of the discrepancies between the different boxes. As expected,
we note that the boxsize does not affect sensibly haloes of M ≤ 1014 h−1M�. However,
the abundance of massive haloes (M = 1014 − 1015 h−1M�) varies consistently among the
various boxes, leading to discrepancies in the baryonic effects that are still within 1% in the
power spectrum, but slightly higher in the bispectrum (3− 4%).

In the bottom panels of Fig. E.1 we display the impact of using a paired and fixed
simulation against a single realisation. Also in this case, the biggest impact is found in the
bispectrum, with a maximum of ≈ 2.5% bias when using a 64h−1Mpc box, whereas we
detect a maximum of ≈ 1% in the power spectrum. In the analysis, we make use of a single
realisation of the 256h−1Mpc box, which is shown to be converged within 2%.

We have performed also a mass resolution test, by using four simulation with the same
box size, 133h−1Mpc, and different number of particles: N = 2563, N = 3843, N = 5123,
N = 7683 particles. Also in this case, we split the contribution of different halo mass bins.
As shown in Fig. E.2, we have found that resolution effects are larger in large haloes, and
their impact in the power spectrum and bispectrum is within ≈ 2%.
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Figure E.1: Upper panel: Baryon suppression of the matter power spectrum (left) and reduced
bispectrum (right), defined as S(k) ≡ T (k)BCM/T (k)GrO for T (k) = P (k), Q(k), at z = 0. Solid,
dashed, dashed-dotted and dotted lines are computed with simulations of box side 512, 256, 128 and
64h−1Mpc and 15363, 7683, 3843 and 1923 particles, respectively. Colors are referred to different
halo mass bins, expressed in decimal logarithm of h−1M�, with which the baryon corrections have
been computed, according to the legend. Lower panel: Difference in suppression between a paired
and fixed simulation and a single realisation, for the four different volumes specified in the legend of
the upper panel.
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Figure E.2: Baryon suppression of the matter power spectrum (left) and reduced bispectrum (right),
defined as S(k) ≡ T (k)BCM/T (k)GrO for T (k) = {P (k), Q(k)}, at z = 0. Solid, dashed,
dashed-dotted and dotted lines are computed with simulations of box side 133h−1Mpc and 7683,
5123, 3843 and 2563 particles, respectively. Colours are referred to different halo mass bins, expressed
in decimal logarithm of h−1M�, with which the baryon corrections have been computed, according
to the legend.
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Appendix F

Folding of the particle distribution

Measuring the three-point clustering with the classical Fourier estimators can be very
expensive in terms of memory and CPU, especially when using covering larger dynamical
ranges. In fact, it is easy to see that, being kNy = πNg/Lbox the Nyquist frequency of the
grid, increasingly large number of grid points Ng are required to get a given accuracy at
a fixed wavenumber, when using progressively larger simulation boxes Lbox. Additionally,
when using “interlacing” to suppress aliasing, the number of grids used must be doubled
(Sefusatti et al., 2016).

However, since our measurements are limited by discreteness noise (and not cosmic
variance), we can obtain accurate estimates of Fourier statistics on small scales by folding
the density field (Jenkins et al., 1998; Colombi et al., 2009). The idea is to fold the particle
distribution by re-applying the periodic boundary conditions assuming a new boxsize L′ =

L/f , where we call f the number of foldings. If L′ is large enough to assure that the modes
inside the new box are uncorrelated, we can measure in principle the clustering from a new
effective fundamental wavenumber k′f = 2π/L′ up to a new effective Nyquist frequency,
given by k′Ny = πNg/L

′. For instance, by folding the box 4 times, we will get to Nyquist
frequency 4 times higher.

In Fig. F.1 we apply this technique to our 512h−1Mpc simulation, folding the particles up
to 6 times, and reaching a kNy ≈ 2hMpc−1 with a 643 and a 1283 grid for the power spectrum
and the bispectrum, respectively. Even using a TSC scheme on interlaced grids, we note that
it is safer to use the measurements up to k = k′Ny/2 in the bispectrum. Also, the measurement
of the largest modes of the folded box are noisy because they are sparsely sampled; for this
reason, it is convenient to discard these modes, taking for instance wavenumbers k > 10k′f .

Using these precautions, we show in Fig. F.2 that using this technique we can achieve an
accuracy well within 1% in the estimation of the ratios, using a small fraction 1 − 10% of
the computational resources. Although it is common to use the folding technique to compute
power spectra, to our knowledge, this is the first time it has been shown to be accurate for
bispectrum measurements.
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Figure F.1: Left panels: Matter power spectrum measured in a 643 (interlaced) mesh, folding the
box up to 6 times, following the technique explained in the text (coloured dots). For comparison, the
matter power spectrum measured with a 6963 mesh and not folding the box is plotted as a black solid
lines. The equivalent Nyquist frequencies for each folded box is plotted as a solid line. In the bottom
panel, we display the ratio between the power spectrum measure with a 643 and a 6963 mesh. Right
panels: Similarly to the left panels, we display the measured bispectra using a 1283 mesh and the
folding of the box, and compare with a not-folded 6963 mesh.
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Figure F.2: Left panels: Ratio of baryonified and GrO matter power spectra S(k), measured in a 643

(interlaced) mesh, folding the particles up to 6 times, following the technique explained in the text
(coloured dots). For comparison, the measurements with a 6963 mesh is plotted as a black solid lines.
The equivalent Nyquist frequencies for each folded box is plotted as a coloured solid line. In the
bottom panel, we display the difference of the ratios ∆S(k) measured with a 643 and a 6963 mesh.
Right panels: Similar to the left panels, but displaying the matter bispectrum instead of the power
spectrum.
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Appendix G

Impact of cosmic variance

In this Appendix, we explore the expected impact of cosmic variance in our analysis. In
particular, in the training process, § 2.3, we feed the Neural Network with power spectra
computed by applying the cosmology scaling to a 512h−1Mpc box simulation. Furthermore,
in § 5.2.5 we validate the combination of baryonification and cosmology scaling algorithms
by using 256h−1Mpc simulations. To estimate the expected impact of the cosmic variance,
we compare the power spectrum suppression obtained by applying the baryonification to a box
of 256h−1Mpc, 512h−1Mpc, and 1440h−1Mpc, while keeping the same mass resolution.
We vary four different BCM set of parameters, chosen to reproduce the clustering of EAGLE,
Illustris, Illustris TNG-300, and BAHAMAS. We note that, generally, we do not expect the
same level of convergence for different baryonic parameter sets. In fact, models with strong
feedback, which expel large amount of gas even from verymassive haloes, aremore dependent
on the high-mass end of the halo mass function. Therefore, we expect such models to be
more sensitive to the shot noise in the mass function when using small boxes. Nevertheless,
as reported in Fig. G.1, we find that in all cases we get results converged at 1%, even when
not using the “pairing and fixing” technique. Given that, after the scaling process, our box
has typically a size between 300− 700h−1Mpc, we are reasonably confident that the cosmic
variance have a negligible impact on our predictions.
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Figure G.1: Upper panel: Suppression S(k) in the matter power spectrum caused by baryons as
predicted by baryonification in four different scenarios, as reported in the legend. The simulations
used are run with the “pairing and fixing” technique to suppress the cosmic variance, and have box
sizes of 1440h−1Mpc (symbols), 512h−1Mpc (solid lines), and 256h−1Mpc (dashed lines). Lower
panels: Ratios of the suppressions S(k) over the suppression predicted by our 1440h−1Mpc-side
box simulation, averaging between two “paired and fixed” simulations (upper panel) and using single
realisations (lower panel).
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Appendix H

Joint accuracy of cosmology rescaling
and baryonification

In this Appendix, we extend the analysis done in §5.2.5 to validate the joint use of cosmology
rescaling and baryonification algorithms. In §5.2.5 we have shown the accuracy of our
framework when varying a single parameter, here we discuss the case when all the parameters
are simultaneously varied. We use a set of 20 cosmological simulations disposed as two
random Latin hypercubes of 10 points each, one defined varying the standard ΛCDM
parameters, and the other varying all the parameters, included Mν , w0, wa. Similarly to
our test suite, these simulations have a box size chosen to match the re-scaled box from a
L = 256h−1Mpc simulation, while keeping the same mass and force resolution. We refer
to the Appendix A of Contreras et al. (2020a) for more details on these simulations. We
measure the power spectra of these simulations after applying to each of them 4 different
baryonification models, which mimic the clustering of the BAHAMAS, EAGLE, Illustris and
Illustris TNG hydrodynamical simulations. Similarly, we measure the power spectra after
applying the same baryonification models on a set of simulations obtained rescaling our main
bacco simulations to the cosmologies of the Latin hypercubes. We display the comparison
between these two sets of power spectra in Fig.H.1. We find that in most of the cases, the
accuracy is within 1%, with few extreme models being within 2%. This results are in broad
agreement with what found in §5.2.5, and thus support the robustness and reliability of our
framework.
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Figure H.1: Accuracy of the cosmology rescaling algorithm with baryonification at z = 0. We display
the ratios of S ≡ Pbcm/PGrO estimated on a simulation whose cosmology has been rescaled (Sscaled)
over the same quantity but computed on a simulation carried out directly with the target cosmology
Starget. We test 20 cosmologies, and 4 baryonic models for each cosmology. Different colours
show the results adopting 4 different baryonification parameter sets consistent with the modifications
predicted by different hydrodynamical simulations, according to the legend. The grey bands highlight
1% and 2% accuracy in the resulting “baryonified” power spectrum.
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