000110761 001__ 110761 000110761 005__ 20230519145357.0 000110761 0247_ $$2doi$$a10.1109/TIE.2020.3007083 000110761 0248_ $$2sideral$$a125679 000110761 037__ $$aART-2021-125679 000110761 041__ $$aeng 000110761 100__ $$0(orcid)0000-0003-0379-4347$$aVilla, J 000110761 245__ $$aSoc-based in-cycle load identification of induction heating appliances 000110761 260__ $$c2021 000110761 5060_ $$aAccess copy available to the general public$$fUnrestricted 000110761 5203_ $$aThe equivalent load of an induction hob is strongly dependent on many parameters such as the switching frequency, the excitation level and the size, type, and material of the vessel. However, real-time methods with the ability to capture the variation of the load with the excitation level have not been proposed in the literature. This is an essential issue as most of the commercial induction hobs are based on an ac-bus voltage arrangement. This article proposes a method based on a phase-sensitive detector that offers an online tracking of the equivalent impedance for this type of arrangements. This algorithm enables advanced control functionalities such as clustering of vessels, material recognition, and premature detection of ferromagnetic saturation, among others. After simulation and experimental validation, the method is implemented into a prototype with a system-on-chip to verify its real-time behavior. The proposed approach is applied to different real-life situations that prove its great performance and applicability. 000110761 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2016-78358-R 000110761 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000110761 590__ $$a8.162$$b2021 000110761 592__ $$a3.519$$b2021 000110761 594__ $$a17.1$$b2021 000110761 591__ $$aAUTOMATION & CONTROL SYSTEMS$$b6 / 65 = 0.092$$c2021$$dQ1$$eT1 000110761 593__ $$aControl and Systems Engineering$$c2021$$dQ1 000110761 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b3 / 64 = 0.047$$c2021$$dQ1$$eT1 000110761 593__ $$aComputer Science Applications$$c2021$$dQ1 000110761 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b28 / 277 = 0.101$$c2021$$dQ1$$eT1 000110761 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000110761 700__ $$0(orcid)0000-0003-4633-4551$$aBarragan, LA$$uUniversidad de Zaragoza 000110761 700__ $$0(orcid)0000-0002-8007-5613$$aArtigas, JI$$uUniversidad de Zaragoza 000110761 700__ $$0(orcid)0000-0002-0795-8743$$aNavarro, D$$uUniversidad de Zaragoza 000110761 700__ $$0(orcid)0000-0001-5832-1163$$aDominguez, A 000110761 700__ $$aCabeza, T 000110761 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica 000110761 773__ $$g68, 8 (2021), 6762-6772$$pIEEE trans. ind. electron.$$tIEEE Transactions on Industrial Electronics$$x0278-0046 000110761 8564_ $$s5273334$$uhttps://zaguan.unizar.es/record/110761/files/texto_completo.pdf$$yPostprint 000110761 8564_ $$s3054107$$uhttps://zaguan.unizar.es/record/110761/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000110761 909CO $$ooai:zaguan.unizar.es:110761$$particulos$$pdriver 000110761 951__ $$a2023-05-18-13:33:59 000110761 980__ $$aARTICLE