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We study a quantum trimer of coupled two-level
systems beyond the single-excitation sector, where
the coherent coupling constants are ornamented by
a complex phase. Accounting for losses and gain in
an open quantum systems approach, we show how
the mean populations of the states in the system
crucially depend on the accumulated phase in the
trimer. Namely, for non-trivial accumulated phases,
the population dynamics and the steady states display
remarkable non-reciprocal behaviour in both the
singly and doubly excited manifolds. Furthermore,
while the directionality of the resultant chiral current
is primarily determined by the accumulated phase
in the loop, the sign of the flow may also change
depending on the coupling strength and the amount
of gain in the system. This directionality paves the
way for experimental studies of chiral currents at the
nanoscale, where the phases of the complex hopping
parameters are modulated by magnetic or synthetic
magnetic fields.

1. Introduction
Reciprocity in the animal kingdom is manifested by the
evolution of reciprocal altruism: ‘you scratch my back,
and I will scratch yours’ [1]. Aside from mere grooming,
the consequences of reciprocity for the sharing of food,
medicine and knowledge are profound. However, the
breakdown of reciprocity, perhaps fuelled by a lack of
affinity or obligation, can also lead to certain benefits
for the non-reciprocator, who can profit from the non-
reciprocal interaction [2].

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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In condensed matter physics, there is currently a revolution in the fabrication and mastery
of nanostructures which can exploit quantum mechanics [3,4]. This progress promises a new
paradigm of quantum technologies which seek to transform the modern world [5,6]. In particular,
the field of quantum optics provides the ideal framework to describe light–matter interactions
and the quantum aspects of the latest metamaterials, which are commonly built from nanoscopic
lattices of meta-atoms [7–10]. Recently, it was noticed that the introduction of the concept
of non-reciprocity into nanophotonic systems will have sweeping implications for the control
of light–matter coupling [11–14], and hence for future quantum technology. Non-reciprocal
interactions between meta-atoms in metamaterials can immediately be seen to be advantageous
for future chiral devices, such as circulators and isolators, which rely on the directional transfer
of energy and information at the nanoscale [15–22].

In 2017, Roushan et al. [23] reported the directional circulation of photons in a triangular loop of
superconducting qubits. In a pioneering experiment for chiral quantum optics, the team observed
chiral ground-state currents and probed the unusual quantum phases of strongly interacting
photons (for a review of strongly interacting photons, see [24]). The required synthetic magnetic
fields were realized by sinusoidally modulating their qubit–qubit couplings, which led to the
necessary complex phases attached to the coherent coupling constants [25]. Such complex phases
can appear in various ways; for example: in a real magnetic field through the Peierls substitution
[26,27], via a Peierls tunnelling phase even in the absence of an external magnetic field [28], using a
time-dependent coupling Hamiltonian [29,30], constructing synthetic gauge fields using synthetic
lattices [31], using light-induced gauge potentials [32–34], designing inductor–capacitor circuits
[35], by considering circularly polarized dipoles [36] or by careful pumping, which gives rise to
complex potentials [37].

Inspired by the landmark experiment of Roushan et al. [23], who modelled their photonic
system as harmonic oscillators, in this work we study a trimer of two-level systems (2LSs) in order
to probe the whole energy ladder, including the effects of saturation due to the strong interactions.
The 2LS approximation may be realized in an abundance of physical systems, as catalogued
in [38], including superconducting qubits [39,40], cold atoms [41] and plasmons in metallic
nanoparticles [42]. We consider our 2LS trimer in a triangular geometry (figure 1a), in order to
form a loop which may enclose a non-trivial accumulated phase (depending on the phases of
the complex hopping parameters), which is akin to an Aharonov–Bohm ring [43]. Importantly,
we go beyond the single-excitation limit, which allows us to study the circulation of multiple
excitations in our system as we modulate the amount of gain and loss in the trimer. Prior studies
of trimers have primarily focused on including losses in a non-Hermitian Hamiltonian approach
[44–52] (for a review of non-Hermitian classical and quantum physics, see [53]; for a review of
non-Hermitian systems and topology, see [54]), while other investigations have employed an
open quantum systems approach [55–57]. Here we employ a quantum master equation so that
the dynamics is both stable and regular by construction, and in doing so we go beyond models
restricted to strictly obeying non-Hermitian or PT symmetric Hamiltonians [58,59].

The rest of this work is organized as follows: in §2, we introduce our model; we reveal chiral
steady states in §3; we present instances of non-reciprocal dynamics in §4; and in §5 we draw
some conclusions. In addition, the electronic supplementary material provides some calculational
details and figures.

2. Model
We consider a trimer of 2LSs, which interact via coherent qubit–qubit coupling. Importantly, we
allow for the coupling constants to have non-zero complex phases, which is the key ingredient
that allows non-reciprocity to emerge [60–64]. Effectively, we study the Aharonov–Bohm effect
[43] in a tight-binding quantum ring with three sites, in an open quantum systems approach. The
generated phase φ is both gauge invariant (the energies and eigenstates become dependent on
the phase) and physically consequential (non-reciprocity is induced in the quantum transport). In
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Figure 1. (a) A sketch of the trimer system, where each 2LS is of resonance frequency ω0, and the magnitude of the three
coupling constants is g. Each hopping is associated with a phase θnn+1. (b) The four-rung energy ladder of the trimer, codified
by thenumber of excitationsN,when the system is in theuncoupled (left) and coupled (right) regimes. (Online version in colour.)

§2a, where we introduce the Hamiltonian formulation, we show how the phase φ generalizes the
eigenfrequencies. We include dissipation in the system in §2b, where we introduce the quantum
master equation and incoherent gain processes.

(a) Hamiltonian
The Hamiltonian operator Ĥ for the system reads (we take h̄ = 1 throughout)

Ĥ = ω0(σ †
1 σ1 + σ †

2 σ2 + σ †
3 σ3) + g(eiθ12σ †

1 σ2 + eiθ23σ †
2 σ3 + eiθ31σ †

3 σ1 + h.c.), (2.1)

where we have used cyclic boundary conditions, corresponding to the triangle geometry sketched
in figure 1a. The transition frequency of each 2LS is ω0 and the coherent coupling between
2LS-n and 2LS-(n + 1) is of magnitude g ≥ 0 and phase θnn+1. The raising (lowering) operator
of the nth 2LS is σ †

n (σn), which satisfy the algebra of two distinguishable systems, with the
anticommutator relation {σn, σ †

n } = 1 and the commutator relations [σn, σ †
m] = [σn, σm] = 0, where

n �= m. The Hamiltonian Ĥ of equation (2.1) defines four subspaces, spanned by the eigenstates
corresponding to N = {0, 1, 2, 3} excitations. Explicitly, the subspaces are given by

{|0〉}, N = 0, (2.2a)

{σ †
1 |0〉, σ †

2 |0〉, σ †
3 |0〉}, N = 1, (2.2b)

{σ †
2 σ †

1 |0〉, σ †
3 σ †

1 |0〉, σ †
3 σ †

2 |0〉}, N = 2 (2.2c)

and {σ †
3 σ †

2 σ †
1 |0〉}, N = 3, (2.2d)

where the vacuum state, without any excitations, is |0〉 = |0, 0, 0〉. The energy ladder defined by
equation (2.2) is sketched in figure 1b, in the weak (left) and strong (right) coupling regimes. The
ground state is defined by Ĥ|0〉 = ω1|0〉, and has the eigenvalue ω1 = 0 (purple lines in figure 1b).
The triply excited state is characterized by Ĥσ †

3 σ †
2 σ †

1 |0〉 = ω8σ
†
3 σ †

2 σ †
1 |0〉, and is associated with

the maximal eigenvalue ω8 = 3ω0 (pink lines). These two extreme rungs of the energy ladder
are the same in the coupled and uncoupled regimes (left and right in figure 1b), because they
are associated with the wholly unoccupied state and the wholly occupied state. However, for
the intermediate rungs associated with N = {1, 2} excitations the nature of the coherent coupling
is important. In the basis {σ †

1 |0〉, σ †
2 |0〉, σ †

3 |0〉}, the singly excited (N = 1) subspace has the 3 × 3
matrix representation

H1 =

⎛
⎜⎝

ω0 geiθ12 ge−iθ31

ge−iθ12 ω0 geiθ23

geiθ31 ge−iθ23 ω0

⎞
⎟⎠ , (2.3)
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and the eigenvalues readily follow from equation (2.3) as

ω2 = ω0 + 2g cos
(

φ + 2π

3

)
, (2.4a)

ω3 = ω0 + 2g cos
(

φ + 4π

3

)
(2.4b)

and ω4 = ω0 + 2g cos
(

φ

3

)
, (2.4c)

where we have introduced the quantity

φ = θ12 + θ23 + θ31, (2.5)

which describes the accumulated phase φ in the trimer and is tantamount to the Aharonov–Bohm
phase of a quantum ring [43]. Clearly, equation (2.4) exposes the first ramification of including
non-trivial phases, even at the bedrock level of the eigenfrequencies, where it precipitates
degeneracies at the trivial phases φ = {0, π , 2π} and otherwise presents non-trivial splittings of
the energy levels. In the basis {σ †

2 σ †
1 |0〉, σ †

3 σ †
1 |0〉, σ †

3 σ †
2 |0〉}, the doubly excited (N = 2) subspace has

the 3 × 3 matrix representation

H2 =

⎛
⎜⎝

2ω0 ge−iθ12 geiθ31

geiθ12 2ω0 ge−iθ23

ge−iθ31 geiθ23 2ω0

⎞
⎟⎠ , (2.6)

such that the three eigenvalues of equation (2.6) are given by

ω5 = 2ω0 + 2g cos
(

φ + 2π

3

)
, (2.7a)

ω6 = 2ω0 + 2g cos
(

φ + 4π

3

)
(2.7b)

and ω7 = 2ω0 + 2g cos
(

φ

3

)
, (2.7c)

which are identical to equation (2.4) up to a constant shift in frequency of ω0. We plot in
figure 2 the eigenfrequencies ωn of the energy ladder using equations (2.4) and (2.7), as a
function of the accumulated phase φ (see equation (2.5)). Most notably, the accumulated phase
φ crucially determines the magnitude, ordering and degeneracy of both the single-excitation
subspace (red, blue and green lines) and double-excitation subspace (orange, cyan and lime lines)
eigenfrequencies, in a manifestation of the Aharonov–Bohm effect [43] for a three-site quantum
ring, going beyond the single-excitation sector.

Notably, a triangular trimer is the most elementary system in which the phase of the coherent
coupling is important at the simplest-level of the eigenfrequencies. In a two-site dimer, with
Hamiltonian Ĥdi = ω0(σ †

1 σ1 + σ †
2 σ2) + g(eiθ12σ †

1 σ2 + h.c.), the single-excitation eigenfrequencies
are unaffected by the phase θ12. They simply read ω± = ω0 ± g, such that the energy ladder of
the dimer is formed by {2ω0, ω+, ω−, 0} [36,65]. Moreover, a linear trimer (or indeed a linear chain
of any size) will not support a gauge-independent phase, since it is crucial to have a ring geometry
in order to mimic Aharonov–Bohm-style physics.

(b) Quantummaster equation
Upon assuming weak coupling to the environment and Markovian behaviour, and after
discarding fast-oscillating (non-resonant) terms, the quantum master equation of the trimer
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Figure 2. The eight eigenfrequenciesωn of the trimer (in units ofω0) in the coupled regime, as a function of the accumulated
phase φ (see equations (2.4), (2.5) and (2.7)). In the figure, the coherent coupling strength g= ω0/25. (Online version in
colour.)

system reads [66]

∂tρ = i[ρ, Ĥ] +
∑

n=1,2,3

γn

2
Lσn +

∑
n=1,2,3

Pn

2
(Lσn)†, (2.8)

where the Hamiltonian operator Ĥ is given by equation (2.1), and where we have used the
following super-operators in Lindblad form:

Lσn = 2σnρσ †
n − σ †

n σnρ − ρσ †
n σn (2.9)

and
(Lσn)† = 2σ †

n ρσn − σnσ †
n ρ − ρσnσ †

n . (2.10)

Here γn ≥ 0 is the damping decay rate of each individual 2LS, and Pn ≥ 0 is the incoherent
pumping rate into 2LS-n. In equation (2.8), the first term on the right-hand side is responsible
for the unitary evolution (the von Neumann equation), and the second term accounts for losses
into heat baths. The third term in equation (2.8) describes gain processes, so that the master
equation can model both a normally ordered system and a variety of inverted systems. The
formal structure of equation (2.8) is tantamount to the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) equation, which has remarkable utility across quantum optics and atomic and condensed
matter physics, as reconfirmed by recent experiments. For example, Barredo and co-workers
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studied blockade-type phenomena in coupled Rydberg atoms [67], where dissipators in the
form of equation (2.9) sufficiently captured the effects of atomic losses due to spontaneous
emission (in this experiment, the coupling g � 5 MHz and the loss γn � 0.3 MHz). Furthermore,
the quantum nature of evanescently coupled optical waveguides satisfying parity–time symmetry
was investigated by Klauck and colleagues [68], who modelled waveguide loss well by a
GKSL master equation (in this experiment, g � 49 GHz and γn � 38 GHz). The aforementioned
experiment of Roushan and co-workers—that with a trio of superconducting qubits—may be
characterized by the parameters g � 4 MHz and γn � 0.1 MHz [23].

In what follows, we shall be interested in the interplay between non-reciprocity in transport,
whose emergence has already been hinted at by the eigenfrequencies of equations (2.4) and (2.7)
becoming sensitive to the gauge-independent phase φ, and the loss and gain in the open quantum
system, which can be controlled through the parameters γn and Pn, respectively.

3. Chiral steady states
The non-reciprocity of the trimer system first manifests itself at the level of the steady-state
populations of the collection of 2LSs. In this section, we characterize the asymmetries in the
steady-state populations and steady-state currents, as a function of the accumulated phase φ

in the system (see equation (2.5)). We relegate the calculations to the electronic supplementary
material.

We consider the trimer in the set-up sketched in figure 3, with equal damping rates γ0
(γn = γ0, where n = {1, 2, 3}) (purple arrows in the figure), and of non-zero pumping rate P1
into 2LS-1 (yellow arrow), while the other pumping rates are zero (P2 = P3 = 0). We show the
resultant steady-state populations in figure 4 for the accumulated phase φ = {0, π/4, π/2} in the
{left, middle, right} panels. Therefore, we can see the standard situation when φ = 0, and two
example non-reciprocal cases when φ = {π/4, π/2}. In the top (bottom) panels, the magnitude of
the coherent coupling g = γ0 (g = 5γ0). The labelling of the mean population of the state |i, j, k〉
is displayed in the legend of figure 4a, and states with N = {0, 1, 2, 3} excitations are shown with
increasingly thick lines.

Let us start by considering figure 4a, where the phase φ = 0. The fine purple line corresponds
to the mean population of the ground state |0, 0, 0〉, which is the only possible state at vanishing
pumping P1 � γ0, and it monotonically decreases with increasing pumping rate P1, since the non-
trivial states become populated. The results for the set of single-excitation states are given by the
thin lines, and comprise the mean populations of the states |1, 0, 0〉, |0, 1, 0〉 and |0, 0, 1〉, which
are denoted by green, blue and red lines, respectively. Since only 2LS-1 is being pumped, the
|1, 0, 0〉 population (green line) grows quickly with increasing pumping rate P1, and approaches
unity within the large pump limit P1 � γ0. Meanwhile, the populations of the states |0, 1, 0〉 and
|0, 0, 1〉 (blue and red lines, respectively) are identical owing to the absence of any accumulated
phase φ, and they form a hump structure since they are not populated in the low or high pump
limits. The results for the set of two-excitation states are given by the medium thickness lines, and
comprise the mean populations of the states |1, 1, 0〉, |1, 0, 1〉 and |0, 1, 1〉, which are denoted by
orange, cyan and lime lines, respectively. The mean populations of the states |1, 1, 0〉 and |1, 0, 1〉
(orange and cyan lines, respectively) are the same, forming a hump structure peaked at a higher
pumping rate than the single-excitation populations of |0, 1, 0〉 and |0, 0, 1〉. As only 2LS-1 is being
fed with gain, the |0, 1, 1〉 mean population (lime line) is negligible, as is the mean population of
the triply excited state |1, 1, 1〉, which is represented by the thick pink line. This panel exemplifies
the standard reciprocal situation, without any asymmetries or surprises.

In figure 4b, we have a non-trivial accumulated phase φ = π/4. The effect is to break two
symmetries in the steady-state populations. In the single-excitation subspace, the populations
of the states |0, 1, 0〉 and |0, 0, 1〉 (blue and red lines, respectively) are no longer identical (see
figure 4a). Similarly, in the two-excitation subspace, the populations of the states |1, 1, 0〉 and
|1, 0, 1〉 (orange and cyan lines, respectively) are now noticeably different. These asymmetries are
the hallmark of non-reciprocity in the trimer system, as caused by the directionality imposed by
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Figure 3. A sketch of the trimer with specific parameter choices (see equations (2.1) and (2.8)). Each 2LS is of resonance
frequencyω0 and damping rateγ0 (purple arrows). The 2LS-1 is subject to gain at a rate P1 (yellow arrow), while P2 = P3 = 0.
The magnitude of the three coherent coupling constants is g, and the hopping between sites n and n + 1 is augmented with
the complex argument θnn+1. (Online version in colour.)

the non-zero phase φ. In figure 4c, the accumulated phase is increased to φ = π/2, showcasing
further population imbalances in both the first and second rung of the energy ladder, in
a manifestation of multi-excitation Aharonov–Bohm physics. Notably, if we were to further
consider φ = 3π/2, the result would effectively be the opposite of that in figure 4c, where φ = π/2.
That is, the populations of |0, 1, 0〉 and |0, 0, 1〉 would be reversed, and those of |1, 1, 0〉 and |1, 0, 1〉
would also be reversed, with respect to figure 4c.

In figure 4d–f, the magnitude of the coherent coupling is increased to g = 5γ0 (in
figure 4a–c, g = γ0). This stronger coupling leads to a significantly richer structure of the mean
populations of the system, since the doubly and triply excited states have more chances to
be populated. Figure 4d shows the reciprocal case with φ = 0, where there is a clear region
of large population inversion. Indeed the triply excited state |1, 1, 1〉 has the most chance
of being excited approximately within 10γ0 < P1 < 100γ0 (thick pink line). Non-reciprocity
appears in figure 4e,f, where φ = π/4 and φ = π/2, respectively, and where two population
symmetries have been broken in the same manner as in figure 4b,c. That is, the N = 1
excitation mean populations (red and blue lines) and the N = 2 excitation mean populations
(orange and cyan lines), which coincide in figure 4d, are now completely distinguishable in
figure 4e,f.

Perhaps surprisingly, figure 4e,f also showcases a region in which the population of 2LS-3 is
greater than that of 2LS-2, an area which is bordered by the thin vertical lines. Primarily, this
inversion is because of the population of |1, 0, 1〉 (cyan lines) being greater than the population
of |1, 1, 0〉 (orange lines) for moderate ratios of P1/γ0, where the system is mostly in the two-
excitation sector. Outside of this moderate pumping region, one sees that for low pumping
P1 � γ0, where the system is mostly in the one-excitation sector, 2LS-2 is more excited than
2LS-3, owing to the population of |0, 1, 0〉 (blue lines) being greater than the population of
|0, 0, 1〉 (red lines). Similarly, for large pumping P1 � γ0 the population imbalance is also in
favour of 2LS-2, as guaranteed by the population of |1, 1, 0〉 (orange lines) being greater than the
population of |1, 0, 1〉 (cyan lines). The populations of each individual 2LS, rather than those of
the states |i, j, k〉, can be explicitly seen in the electronic supplementary material, figure S1. Most
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Figure 4. Steady-state populations in the trimer as a function of the pumping rate P1 into 2LS-1, in units of the common decay
rateγ0 (see the configuration infigure 3). The other pumping rates are zero (P2 = P3 = 0).We show results for the accumulated
phase φ = {0,π/4,π/2} in the {left, middle, right} panels. Top (bottom) panels: the magnitude of the coherent coupling
g= γ0 (g= 5γ0). The labelling of the mean population of the state |i, j, k〉 is displayed in the legend in (a), and states with
N = {0, 1, 2, 3} excitations are shownwith increasingly thick lines. Thin, vertical lines in (e,f ): guides for the eye at the ratios of
P1/γ0, which form a region in which 2LS-3 is more populated than 2LS-2. (Online version in colour.)

notably, the region of inverted population imbalance only occurs within the thin vertical lines
in figure 4e,f, since it requires both a non-trivial accumulated phase φ and a sufficiently strong
coupling g.

An important observable to consider is the steady-state current across the three sites of the
trimer. To do so, let us consider the continuity equation at each site n,

∂t(σ †
n σn) = i[σ †

n σn, Ĥ] = Inn+1 − In−1n, (3.1)

where the Hamiltonian operator Ĥ is given by equation (2.1). In equation (3.1), we have
introduced the local current operator Inn+1, describing the transfer of excitations between two
neighbouring sites n and n + 1 in the trimer (we assume modular arithmetic for the indices), as

Inn+1 = ig(eiθnn+1σ †
n σn+1 − e−iθnn+1σ †

n+1σn). (3.2)

The global current operator I naturally follows as

I = I12 + I23 + I31, (3.3)

and we donate the mean versions of these quantities as

J = 〈I〉 (3.4a)

and
Jnn+1 = 〈Inn+1〉. (3.4b)

The steady-state (ss) versions of these quantities, Jss and Jss
nn+1, portray how the excitations in the

system are transferred at large time scales. The results are presented in figure 5a,b, as a function
of the pumping rate P1 into 2LS-1. We show results for the accumulated phase φ = {0, π/4, π/2}
with increasingly thin lines, and in the left (right)-hand panels the magnitude of the coherent
coupling g = γ0 (g = 5γ0). Figure 5a highlights the absence of a steady-state current when φ = 0
(thick green line). When φ = π/4 (medium pink line), a non-zero steady-state current is able to be
supported because of the population imbalance between 2LS-2 and 2LS-3, and it has a maximal
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Figure 5. (a,b) Global steady-state current Jss in the trimer, as a function of the pumping rate P1 into 2LS-1, in units of the
common decay rate γ0 (see the configuration in figure 3). The other pumping rates are zero (P2 = P3 = 0). We show results
for the accumulated phases φ = {0,π/4,π/2} with increasingly thin lines. (c–h) Local currents Jssnn+1 for the three phases
φ corresponding to (a,b) (see equation (3.4)). The dashed, solid and dotted lines represent Jss12, J

ss
23 and J

ss
31 , respectively. Thin

vertical lines: guides for the eye at the ratio of P1/γ0 corresponding to sign changes of the global steady-state current Jss. Left
(right)-hand panels: the magnitude of the coherent coupling g= γ0 (g= 5γ0). (Online version in colour.)

value around P1 � 10γ0. The case of φ = π/2 (thin cyan line) displays the greatest steady-state
current, as follows from figure 4c,f, where the mean population asymmetries are also greatest.

In figure 5b, the effect of increased coherent coupling g leads to a notably different behaviour.
While the reciprocal case current remains zero (thick green line), and the currents in the non-
reciprocal cases (thinner lines) remain zero in the limiting cases of vanishing pumping and
large pumping (these asymptotics are guaranteed from figure 4, because of saturation), the
intermediate behaviour is more interesting. The steady-state current Jss becomes a sign-changing
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Figure 6. Population imbalance ξ23 between 2LS-2 and 2LS-3 in the steady state, as a function of the pumping rate P1 into
2LS-1, in units of the common decay rate γ0 (see equation (3.5)). The other pumping rates are zero (P2 = P3 = 0). We show
results for increasingly strong coherent coupling strengths gwith increasingly thin and dark lines. In (a) ((b)) the accumulated
phaseφ = π/4 (φ = π/2), and the phase-dependent constant C = 2.72 (C = 2.77) is associated with the smallest ratio of
g/γ0 at which ξ23 may cross zero. (Online version in colour.)

quantity with a varying pumping rate, owing to multi-excitation effects. As can be seen from
figure 4d–f, the higher coupling g allows for states beyond the single-excitation sector to become
significantly populated, and for the population of 2LS-3 to be higher than that of 2LS-2 for certain
regions in figure 4e,f, that is, inside the thin vertical lines. In figure 5b, this population inversion
leads to a breakdown of the single-signed steady-state current behaviour showcased in figure 5a,
suggesting that it is not simply the phase φ which governs the directionality.

Figure 5c–h shows the constituent local steady-state currents Jss
nn+1, between two consecutive

sites n and n + 1. Figure 5c makes explicit how there is no global current when
φ = 0, since the J12 and J31 local steady-state currents (dashed and dotted lines) are exactly
opposite because of the reciprocal coupling. In figure 5e,g, where φ = π/4 and φ = π/2,
respectively, the non-reciprocal nature of the coupling leads to a non-zero component J23 (solid
lines), which engenders the global current result shown in figure 5a. In figure 5b,d,f,h, where the
coherent coupling strength g is stronger, some differences may be observed in the non-trivial
phase cases, as shown in figure 5f,h. Principally, J23 becomes a sign-changing quantity at certain
pumping rates (marked by the thin vertical lines) owing to the population imbalance between
2LS-2 and 2LS-3. This leads directly to the corresponding global current sign-changing behaviour,
as is shown in figure 5b.
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In order to examine the sign change in J23 in more detail, we define the steady-state (ss)
population imbalance between 2LS-2 and 2LS-3,

ξ23 = 〈σ †
2 σ2〉ss − 〈σ †

3 σ3〉ss

〈σ †
2 σ2〉ss + 〈σ †

3 σ3〉ss
. (3.5)

We plot this population imbalance ξ23 in figure 6, as a function of the pumping rate P1 into
2LS-1. We show results for increasingly strong coherent coupling strengths g with increasingly
thin and dark lines. In figure 6a, where the accumulated phase φ = π/4, one notices ξ23 > 0
(for all P1) for weaker couplings g (thicker, brighter lines). When the critical strength C = 2.72
is reached (medium orange line), ξ23 may first touch zero for some value of P1. For stronger
couplings (thinner, darker lines), the inverted population imbalance ξ23 < 0 becomes apparent
for intermediate pumping regimes, leading to the sign-changing current shown in figure 5f.
In figure 6b, where φ = π/2, the same qualitative behaviour is displayed. The most prominent
differences are an increase in the critical strength to C = 2.77, and changes in the ranges of
the regions of pumping supporting inverted population imbalances (ξ23 < 0), explaining the
sign-changing current shown in figure 5h. Taken together, figures 4 and 5 provide an atlas
describing how non-reciprocity can be observed once a pumped system has reached its steady
state. Importantly, it goes beyond the single-excitation limit, and shows how asymmetries arise
in both singly and doubly excited manifolds, which can lead to an interesting sign-changing
behaviour of the formed chiral steady-state currents, as demonstrated in figure 6.

4. Non-reciprocal dynamics
The impact of the accumulated phase φ in the triangular cluster of 2LSs is also felt in the
population dynamics, which gives rise to dynamic chiral currents. In this section, we investigate
the transient population and current in the trimer, in the configuration sketched in figure 3
and used throughout §3. We leave the supporting calculations to the electronic supplementary
material.

In figure 7, we show the behaviour of the mean populations 〈σ †
n σn〉 of 2LS-n as a function of

time t, in units of the inverse decay rate γ −1
0 . We display results for the phases φ = {0, π/4, π/2},

corresponding to one reciprocal and two non-reciprocal cases, in the left, middle and right
columns. We consider weak (P1 = γ0/10), moderate (P1 = γ0) and strong (P1 = 10γ0) pumping
into 2LS-1 in the top, middle and bottom rows, respectively. The magnitudes of the coherent
coupling g = 5γ0 and the other pumping rates are zero (P2 = P3 = 0). These parameter choices
correspond to figure 4d–f in §3. Reciprocal population dynamics is clearly observed in figure 7a,
where the phase φ = 0, since the populations of 2LS-2 (orange line) and 2LS-3 (cyan line) are
equivalent. In figure 7b, there is a non-trivial phase of φ = π/4 in the trimer, which causes a
breakdown of the aforementioned equivalence, such that some directionality starts to appear in
the system. Figure 7c presents the most obviously directional circulation, 2LS-1 → 2LS-2 → 2LS-3
(lime → orange → cyan), which corresponds to the special phase φ = π/2.

Let us now consider the influence of higher pumping rates by looking at figure 7d–f, where
P1 = γ0. Figure 7d illustrates the reciprocal case (φ = 0), which notably reaches its steady-state
behaviour faster than in figure 7a, since the gain dominates the coherent coupling g sooner.
In figure 7e, the non-trivial phase φ = π/4 breaks the equivalence of 2LS-2 and 2LS-3, but the
directionality is less pronounced than in figure 7b. This is because the extra gain has led to higher
rungs of the energy ladder becoming populated (see figure 1b), blurring the population cycles. An
explicit plot tracking the transient population of each individual state |i, j, k〉 is given in the middle
row of panels in electronic supplementary material, figure S2, illustrating this fact. The spoiling of
the asymmetric population transfer is most evident in figure 7f, where φ = π/2. In stark contrast
to figure 7c, in figure 7f there are only a few directional population cycles before the steady state
is reached because of the dominant pumping rate.
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Figure 7. Population dynamics in the trimer as a function of time t, in units of the inverse decay rateγ −1
0 (see the configuration

in figure 3). The population 〈σ †
n σn〉 of 2LS-n is denoted in the legend in (a). Themagnitude of the coherent coupling g= 5γ0,

two of the pumping rates are zero (P2 = P3 = 0) and the initial condition at t = 0 is the state |1, 0, 0〉. We show results for
the accumulated phaseφ = {0,π/4,π/2} in the {left, middle, right} columns. (a–c)Weak pumping into the first 2LS, P1 =
γ0/10. (d–f ) Moderate pumping, P1 = γ0. (g–i) Strong pumping, P1 = 10γ0. (Online version in colour.)

We investigate the limiting case of large pumping in figure 7g–i, where P1 = 10γ0. The
reciprocal coupling case in figure 7g highlights that the large amount of gain in the system washes
out any population cycles. The same effect is seen for the non-reciprocal cases, in figure 7h,i,
respectively, where the high pumping rate sees the second and third excitation manifolds
quickly become populated and the steady state reached (see figure 4e,f ), without any chance for
meaningful directional circulation. We explicitly show how each individual state |i, j, k〉 behaves
in the lower row of panels in the electronic supplementary material, figure S1.

The global current J around the trimer measures the dynamic transfer of excitations in the
looped system. The results are presented in figure 8a–c, where the magnitude of the coherent
coupling remains at g = 5γ0. The accumulated phase φ = {0, π/4, π/2} is denoted by increasingly
thin lines. The left, central and right columns describe weak (P1 = γ0/10), moderate (P1 = γ0) and
strong (P1 = 10γ0) pumping rates, respectively. Common across figure 8a–c is the absence of any
global current J when φ = 0 (thick green lines), since the system is completely reciprocal in this
circumstance. Meanwhile, the non-reciprocal cases of φ = π/4 and φ = π/2 (medium pink and
thin cyan lines, respectively) display non-trivial global currents along figure 8a–c owing to the
population imbalance in the system. In the low pumping case of figure 8a, the non-reciprocal
angle cases display chiral currents over several population cycles, in line with figure 7a–c.
With moderate pumping in figure 8b, the waveform is similar to that in figure 8a, although
the magnitude of the current is larger. However in figure 8c, where the pumping is strong, a
significant differences emerges. Similar to figure 7d–i, the high pumping rate sees the steady-state
current Jss be reached quickly.

Figure 8d–l shows the constituent local currents Jnn+1 between two successive sites n and n + 1.
Let us consider figure 8d–f, where the accumulated phase is trivial φ = 0. The inherent reciprocity
ensures that the local currents J12 (dashed green lines) and J31 (dotted green lines) are equal
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Figure 8. (a–c) Global current J in the trimer as a function of time t, in units of the inverse decay rate γ −1
0 (see

the configuration in figure 3). The magnitude of the coherent coupling g= 5γ0, two of the pumping rates are zero
(P2 = P3 = 0) and the initial condition at t = 0 is the state |1, 0, 0〉. We show results for the accumulated phase φ =
{0,π/4,π/2} with increasingly thin lines. (d–l) Local currents Jnn+1 for the three phases φ corresponding to (a–c)
(see equation (3.4)). The dashed, solid and dotted lines represent J12, J23 and J31, respectively. (a,d,g,j) Weak pumping into the
first 2LS, P1 = γ0/10. (b,e,h,k) Moderate pumping, P1 = γ0. (c,f,i,l) Strong pumping, P1 = 10γ0. (Online version in colour.)

and opposite, leading to their exact cancellation, while J23 (solid green lines) is consequentially
zero. In figure 8g–i, there is a non-trivial phase φ = π/4. This non-reciprocity results in a non-
zero local current J23 (solid pink lines), leading to a noticeable global current J. Going across
figure 8g–i, the impact of higher pumping rates is to see the steady states be reached sooner,
quenching the dynamic current cycles. Figure 8j–l, where φ = π/2, shows similar behaviour, but
the increased non-reciprocity leads to higher directional circulation and so larger amplitudes in
the current cycles. Collectively, figures 7 and 8 exhibit how dynamic directional circulation arises
in a trimer of 2LSs for a range of strengths of incoherent pumping and accumulated phases, and
takes account of effects beyond the single-excitation limit. This demonstration has implications for
the optimal design of non-reciprocal devices built from more complicated arrays of meta-atoms,
particularly with regard to the balance of gain and losses.

5. Discussion
We have considered a trimer of 2LSs in an open quantum systems approach, where both the
magnitude and phase of the coherent coupling constants are important. Including losses and gain
via a quantum master equation, we have calculated the mean populations of all of the possible
states in the system, beyond the single-excitation sector. Remarkably, for non-trivial accumulated
phases, the mean populations have a non-reciprocal character in both the transient and steady
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states, in a manifestation of an Aharonov–Bohm-like effect. The non-reciprocity is exemplified
by population imbalances of both singly and doubly excited states, leading to the formation of
chiral currents both dynamically and in the steady state. Perhaps surprisingly, in addition to the
accumulated phase in the loop, the sign of the population imbalance may also be controlled by
the coupling strength and the amount of gain in the system, which determined the direction of
the current.

The presented (and rather general) theory paves the way for the experimental detection of
chiral currents in trimers of meta-atoms in the latest quantum metamaterials, including with
photonic [69–72] and plasmonic [73–76] excitations, as well as with circuit QED platforms [77–79],
clusters of ions [80], and Rydberg [81,82] and ultracold [83–86] atoms. The tantalizing prospect
of the realization of a building block of future non-reciprocal nanophotonic circuitry, such as a
circulator or isolator [15–22], is within reach.
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