000110792 001__ 110792
000110792 005__ 20240319080948.0
000110792 0247_ $$2doi$$a10.1109/TPEL.2021.3117146
000110792 0248_ $$2sideral$$a127493
000110792 037__ $$aART-2022-127493
000110792 041__ $$aeng
000110792 100__ $$0(orcid)0000-0002-5996-0474$$aPlumed, E.
000110792 245__ $$aInduction heating of two magnetically independent loads with a single transmitter
000110792 260__ $$c2022
000110792 5060_ $$aAccess copy available to the general public$$fUnrestricted
000110792 5203_ $$aThis article introduces the design of a system capable of heating two magnetically independent ferromagnetic loads placed on different horizontal planes, which uses a combination of induction heating and inductive coupling, called inductively coupled heating. The system uses a single primary inductor acting as a transmitter to transfer power to a secondary inductor attached to the bottom load, which is connected electrically with a third inductor that heats the top load. Since power of the whole system is supplied by a simple half-bridge inverter, the ratio of the delivered power to each of the loads, which is critical for cooking results, is entirely dependent on the system's geometry, coil's number of turns, and compensation capacitors. A finite-element model is used to simulate the magnetic fields generated by inductor currents and calculate the impedance matrix. With the impedance, capacitor values and inductors’ number of turns are selected with the objective of achieving a high power ratio between the top and bottom zones, as well as minimizing stress in the electronics. First, a prototype was built to validate the impedance results in the small-signal regime, and then, the full power regime was used to verify power and current simulations
000110792 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103939RB-I00
000110792 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000110792 590__ $$a6.7$$b2022
000110792 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b42 / 274 = 0.153$$c2022$$dQ1$$eT1
000110792 594__ $$a14.1$$b2022
000110792 592__ $$a3.341$$b2022
000110792 593__ $$aElectrical and Electronic Engineering$$c2022$$dQ1
000110792 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000110792 700__ $$0(orcid)0000-0003-4858-9734$$aLope, I.$$uUniversidad de Zaragoza
000110792 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, J.$$uUniversidad de Zaragoza
000110792 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío, J. M.$$uUniversidad de Zaragoza
000110792 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000110792 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000110792 773__ $$g37, 3 (2022), 3391-3402$$pIEEE trans. power electron.$$tIEEE Transactions on Power Electronics$$x0885-8993
000110792 8564_ $$s11853645$$uhttps://zaguan.unizar.es/record/110792/files/texto_completo.pdf$$yPostprint
000110792 8564_ $$s2926581$$uhttps://zaguan.unizar.es/record/110792/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000110792 909CO $$ooai:zaguan.unizar.es:110792$$particulos$$pdriver
000110792 951__ $$a2024-03-18-12:49:11
000110792 980__ $$aARTICLE