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Abstract—This paper introduces the design of a system
capable to heat two magnetically independent ferromag-
netic loads, placed on different horizontal planes, that uses
a combination of induction heating and inductive coupling,
called inductively coupled heating. The system uses a
single primary inductor acting as transmitter to transfer
power to a secondary inductor attached to the bottom,
coupled load, which is connected electrically with a third
inductor that heats the top, independent load. Since no
more degrees of freedom are added, the delivered power
to the second zone is entirely dependant on the system’s
geometry, materials and compensation capacitors. There-
fore, the ratio of the delivered power to each of the zones
becomes very relevant to the design. A finite element model
is used to simulate the magnetic fields generated by in-
ductor currents and calculate the impedance matrix. With
the impedance, capacitor values and inductors’ number of
turns are selected with the objective of achieving a high
power ratio between the top and bottom zone, as well as
minimizing stress in the electronics. A prototype was built
to validate the impedance results in the small signal regime
first and then the full power regime was used to verify
power and current simulations.

Index Terms—Induction Heating, Inductive Coupling,
Home Appliances, Finite Element Method, Electromagnetic
Analysis.

I. INTRODUCTION

INDUCTION heating applied in a household environment is
an advanced technological solution, actively researched on

for more than 35 years [2]–[4]. The successive developments
have made induction heating cooktops efficient [5]–[8], safe
[9], fast and easy to use and clean [10], as well as adding
flexibility regarding the material of cooking vessels [11], and
their size and number [12]–[18]. These features have turned
induction cooktops into a widely accepted industrial product.

In these cooktops, energy is transferred through electromag-
netic induction directly from its inductors to the vessel without
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Fig. 2. Inductor connections diagram.

needing physical contact among its components [19], [20]. In
a similar manner, Wireless Power Transfer (WPT) systems
also use electromagnetic induction to transfer energy from a
transmitting coil to a receiving coil [21]–[23], with continuous
advances in topologies and control [24]–[26] and coil design
[27].

Typical WPT applications use additional power electronics
in their receiver side, such as rectifiers and DC/DC stages,
to better control output voltage and power and make them
immune to load variation and system misalignment. Currently,
there is an increasing demand for small appliances that use
WPT technology, and many of them require heating. More-
over, induction heating (IH) cooktops already have planar
inductors that can transmit power wirelessly to other planar
inductors. Additionally, some of these appliances require heat-
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Fig. 3. Circuit diagrams: (a) generic three-inductor (b) proposed system’s simplified circuit (c) inverter equivalent impedance circuit.

ing areas independent from its bottom surface, unreachable by
IH alone or other conventional cooking technologies, such as
gas or electric glass-ceramic.

Hybrid systems can transfer energy from inductor to induc-
tor, while simultaneously heating ferromagnetic loads. Since
IH and WPT can operate at the same frequencies, rectifica-
tion and further inversion are redundant, and the additional
electronics in the receiver side can be removed.

This kind of hybrid system can be used to create cordless
portable ovens and double-sided pans where both upper and
lower baking sheets are heated simultaneously, as shown in
Fig. 1 and Fig. 2. The main advantages of this kind of cooking
appliance are their enclosed space to prevent heat loss, like an
oven, and their small volume to reduce energy requirements.
Instead of flipping manually to keep both sides heated, the
proposed system will heat both sides simultaneously, with a
single correct ”upright” position.

Whereas previous coupled inductor systems in [12], [14],
[16], [18] actively feed all inductors, the proposed system’s
receiver will not have an internal power source or external
cables. Therefore, its only means to heat the top load will
be the magnetic coupling with the inductor of a conventional
induction heating cooktop.

Inductively coupled heating (ICH), defined as the combina-
tion of IH and magnetic coupling, has been used to improve
working conditions for previously inefficient situations in
conventional IH [28]–[30], and also to give new, inductively
coupled functionality [1], [31]–[33]. Other works offer both IH
and wireless magnetic coupling functionality independent of
one another [34]. In this case, a system with an additional
magnetically independent cooking zone is proposed, where
only a single inductor is fed externally to heat a coupled,
bottom load and transmit power to a secondary inductor
which in turn is electrically connected to a third coil to
heat an independent, top load. Essentially, a single primary
cooktop inductor is able to deliver power to two different
loads simultaneously, where their position prevents coupling
between receivers. In the case of Fig. 1, the uncoupled heating
zone is the top cover of a small, slim oven. In its current
form, the first and second inductors need to be aligned, and
the bottom cooking zone is placed just above the secondary
inductor. Nevertheless, the third inductor and top cooking zone
or vessel can be placed anywhere, requiring only an electric
connection to the secondary coil as depicted in the diagram in
Fig. 2.

The objective of this paper, as an extension of the work
presented in [1], is to design and test a 210 mm ∅ ICH system

capable to deliver 3000 W to two ferromagnetic loads, where
at least 50 % of the power is transferred to the uncoupled top
load. This requirement ensures that the system can give more
heat to the top load, in order to cook meals that need higher
temperature on the top, and to correct imbalances in processes
that require homogeneous temperature. The position of the
loads prevents coupling between their corresponding inductors
and thus requires an electrical connection. The system must
also work in conjunction with a commercial IH cooktop to
reduce cost, and so that the secondary inductor itself does not
need a cord to connect to the mains, an inverter topology or
bulky filters.

The power flow in the system goes as follows: the induction
heating cooktop feeds the primary inductor, which simulta-
neously heats the bottom load and transfers power to the
second inductor. The second inductor contributes to heating the
bottom load and is electrically connected to the third inductor.
The third inductor’s sole purpose is to heat the top load.

The main contribution of this work is the transfer of more
than half the total power to the top load using only one
energized inductor with impedance tuning and no additional
active components, despite the fact that there are two inductors
beneath the bottom load and the top load and inductor are
electromagnetically uncoupled from the rest of the system. No
current commercial induction heating appliance can transmit
power simultaneously to both halves of a double-sided pan.
Though there are works that use the same technology, to the
best of our knowledge, no similar enough systems have been
proposed in the literature.

The rest of the paper is organized as follows. Section II
introduces the system’s circuit model and its most relevant
parameters. The system’s simulation and FEA tool are ex-
plained in Section III. Section IV introduces the experimental
verification and simulation validation. Section V presents the
conclusions drawn from this work.

II. SYSTEM MODEL

The modelled system depicted in Fig. 1 consists of a
210 mm ∅ primary inductor with ferrite bars and an aluminum
tray, a 210 mm ∅ secondary inductor attached to the bottom
ferromagnetic load and a third inductor of the same size
attached to the top ferromagnetic load. The first and second
inductors are separated by ceramic glass and the third inductor
has a ferrite plane and a second aluminum tray above it for
magnetic shielding.

The circuit diagram of a generic three inductor system
is shown in Fig. 3 (a). Throughout most of the paper, the
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Fig. 4. Equivalent resistance (a) and inductance (b) breakdown according to (12) and (13).

calculations use phasors in the frequency domain, assuming
that only the first order harmonic is relevant. This circuit can
be expressed in the form of a matrix equation [14]:Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

I1I2
I3

 =

V1V2
V3

 , (1)

where Ii is the current of the ith inductor, Vi is its external
voltage and Zij the elements of the impedance matrix, where
Zii is the self impedance of the ith inductor, Zind,ii, plus that
of the compensation capacitor, Ci, if present, and Zij is the
mutual impedance between inductors:

Zii = Zind,ii + 1/jωCi = Rii + jωLii + 1/jωCi, (2)
Zij = Zind,ij = Rij + jωLij , i 6= j, (3)

where the involved terms are shown in Fig. 3 (a). Coupling
factors can be defined for mutual inductance and resistance,
kl,ij and kr,ij respectively:

kl,ij = Lij/
√
LiiLjj , (4)

kr,ij = Rij/
√
RiiRjj . (5)

In this case, the second and third inductors are connected
in series. Therefore only two resonant capacitors are needed,
one for the primary inductor and another for the receiver
side, that is, the series connected second and third inductors.
The equations can then be simplified, as the current running
through both inductors is the same and the voltage sum is zero
since there is no external feed:

I2 = I3, (6)
V2 + V3 = 0. (7)

Therefore, the reduced order equation system is:(
Z11 Z12 + Z13

Z21 + Z31 Z22 + 2Z23 + Z33

)(
I1
I2

)
=

(
V1
0

)
. (8)

In this system, the third inductor will heat a load inacces-
sible to the first two, as both loads are magnetically inde-
pendent. Consequently, the terms Z13 and Z23 are considered
negligible, which will also be verified in the simulations. The
equations can then be simplified to:(

Z11 Z12

Z21 Z22 + Z33

)(
I1
I2

)
=

(
V1
0

)
, (9)

and the resulting simplified circuit is shown in Fig. 3 (b).
Moreover, the magnetic independence of the top load and third
inductor makes Z33 the only impedance matrix element related
to the top load. Z11, Z12 and Z22 all relate to the bottom load.

The primary inductor is fed by a half-bridge inverter [10],
forming the LC series resonant tank by connecting the pri-
mary inductor to its capacitor. Therefore, a global equivalent
impedance [29], Zeq = V1/I1, can be defined from the
inverter’s point of view:

Zeq = Z11 −
Z2
12

Z22 + Z33
, (10)

Zeq = Req + j(ωLeq − 1/ωC1), (11)

where Req is the equivalent resistance and Leq is the equiv-
alent inductance. The resulting equivalent circuit is shown in
Fig. 3 (c). Developing (10) and (11), the full expressions of
Req and Leq are:

Req = R11 +
2R12ωL12

(
ωLrec− 1

ωC2

)
−
(
R2

12−ω2L2
12

)
Rrec

R2
rec +

(
ωLrec − 1

ωC2

)2
︸ ︷︷ ︸

R′

,

(12)

Leq = L11 +
2R12ωL12Rrec−

(
R2

12−ω2L2
12

)(
ωLrec− 1

ωC2

)
ω

(
R2

rec +
(
ωLrec − 1

ωC2

)2)
︸ ︷︷ ︸

L′

,

(13)
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where Rrec = R22 + R33, Lrec = L22 + L33 and R′, L′ are
the resistance and inductance reflected to the primary side.
For visual reference, the contributions of the elements R11,
R′, and L11, L′ to Req and Leq respectively are represented in
Fig. 4. R′ increases Req in a frequency range, with a maximum
peak, and decreases it in others. L′ only decreases Leq, as data
below 20 kHz is not shown, with a minimum valley close to
the Req peak. Moreover, the global resonant frequency, ω0,eq,
can also be determined from (11):

ω0,eq = 1/
√
LeqC1. (14)

Similarly, the receiver side composed of the second and
third inductors with the second compensation capacitor have
their own resonant frequency, ω0,rec, defined as [29], [33]:

ω0,rec = 1/
√

(L22 + L33)C2, (15)

which is very relevant for the equivalent impedance and other
parameters, as C2 appears in the expressions for both Req
(12) and Leq (13). Fig. 5 shows simulated impedance values

for the proposed system, changing C2 and keeping the values
of the number of turns and C1 constant. The values of C2

are determined using (15) to achieve the stated ω0,rec for
each color. As shown, the impedance can be in the same
order of magnitude than the values of a typical domestic
induction heating application [7]. Moreover, both Req and Leq

are strongly dependent with frequency, with maximum and
minimum values marked with circles and crosses respectively.
Maximum Req values are found slightly to the left of ω0,rec
while minimum Leq values are found slightly to the right.

These extreme values of impedance close together in
frequency also affect other derived values, such as the
power ratio, PRt, between the top ferromagnetic load power,
Pload,t, and total transferred power, Ptotal, defined as PRt =
Pload,t/Ptotal. Top power ratio, PRt, is simply an indicator of
the power split between the top and bottom load and should
not be confused with efficiency, defined as η = Plosses/Ptotal.
Expressions for the losses’ elements can be found in [7],
[13]. PRt can be expressed in terms of current ratios and
impedances:

PRt =
Pload,t

Ptotal
=
R33|I3|2

Req|I1|2
=

R33|Z21|2

Req|Z22 + Z33|2
, (16)

considering that Ptotal = Pload,b + Pload,t, where Pload,b is the
power delivered to the bottom load. PRt has a maximum value
at frequencies close to the inductance minimums, as shown in
Fig. 6 for the same parameters of Fig. 5. The shift of ω0,rec
causes a change in Leq, as explained previously, which in turn
causes a change in ω0,eq from 35 kHz to 25 kHz.

In Fig. 6 it can also be seen that for most of the power
curve, the ratio is almost constant at 60%, so this design is
most suitable for applications where the power ratio needs to
remain nearly constant for all delivered power values.

A degree of independent power control can be achieved
using a switch on the receiver side. The switch would enable
alternating the power split between 100 % – 0 % and 40 % –
60 %. Time averages can be used to reach intermediate ratios.

III. SYSTEM SIMULATION

A. Finite Element Analysis

In order to obtain the impedance matrix, the system was
simulated in Comsol Multiphysics. The 210 mm∅ inductors
are modelled as low losses disks with a uniform current density
distributed in a single turn and the ferromagnetic loads as
impedance boundary conditions [35]. The material properties
for the loads are the same as those found in [14]. They are
characteristic of the material that will be used for testing at
100 ◦C. The impedance relation between single-turn and multi-
turn coils is [7]:

Zij = ninjZij,s.t., (17)

where ni is the number of turns of the ith inductor and Zij,s.t.
is the single turn impedance of element ij. For this to remain
true when i = j, capacitor values also need to change with
the number of turns:

Ci = Ci,s.t./n
2
i , (18)

jesus
Nota adhesiva
at the low

jesus
Tachado

jesus
Tachado

jesus
Nota adhesiva
at the considered frequency range

jesus
Nota adhesiva
from the point of view of the inverter the resonant frequency of its  equivalent connected impedance is 

jesus
Subrayado

jesus
Subrayado

jesus
Subrayado

jesus
Nota adhesiva
Incluso yo pondría "top" directamente

jesus
Subrayado

jesus
Nota adhesiva
top_load

jesus
Nota adhesiva
top

jesus
Subrayado

jesus
Nota adhesiva
top_load

jesus
Subrayado

jesus
Subrayado

jesus
Subrayado

jesus
Nota adhesiva
top_load

jesus
Subrayado

jesus
Nota adhesiva
bottom_load

jesus
Subrayado

jesus
Nota adhesiva
top_load

jesus
Subrayado

jesus
Subrayado

jesus
Subrayado

jesus
Nota adhesiva
of the power delivered to the top load (para que se acuerden que el 60% no es rendimiento)



(a) (b)

Fig. 7. Simulated magnetic field to deliver 3000 W (a) First inductor only (b) Full ICH system.

(a)

(b) (c)

Fig. 8. Simulated power density to deliver 3000 W (a) First inductor only
(b) Full ICH system bottom (c) Full ICH system top.

TABLE I
RESISTANCE VALUES OF THE IMPEDANCE MATRIX AT 30 KHZ

i
j

Ri1,s.t.(mΩ) Ri2,s.t.(mΩ) Ri3,s.t.(mΩ)

R1j,s.t. 6.72 8.59 0.00202
R2j,s.t. 8.59 11.1 0.00187
R3j,s.t. 0.00202 0.00187 18.8

where Ci,s.t. is a mathematical single-turn capacitor [29] that
enables the relation:

Xii = n2i (ωLii,s.t. − 1/ωCi,s.t.) = n2iXii,s.t., (19)

where Xii is the reactance of the ii matrix element and Xii,s.t.
the single-turn reactance.

Each element of the impedance matrix, Zind,ij,s.t., is ob-
tained by driving an external current through inductor i and
computing induced voltage in inductor j [12].

TABLE II
INDUCTANCE VALUES OF THE IMPEDANCE MATRIX AT 30 KHZ

i
j

Li1,s.t.(nH) Li2,s.t.(nH) Li3,s.t.(nH)

L1j,s.t. 114 76.2 0.00671
L2j,s.t. 76.2 97.4 0.00891
L3j,s.t. 0.00671 0.00891 110

Impedance results at 30 kHz are shown in Tables I and II for
the simulated geometry of 210 mm ∅ inductors shown in Fig.
7, where the simplification made in (9) is justified. Applying
(4) and (5), the coupling factors for the table values are kl,12 =
0.7231 and kr,12 = 0.9946. As expected, the symmetry in
the impedance matrix, that is, the relation Zij = Zji, is also
verified.

Fig. 7 represents the simulated magnetic field generated,
first by only the first inductor and then by the full ICH system
when delivering 3000 W.

Fig. 8 represents the simulated power distribution in the
loads, first by only the first inductor and then by the full ICH
system when delivering 3000 W.

B. System Design
The finite element simulation has provided the single turn

inductor elements of the impedance matrix. Now it remains to
select the number of turns of each inductor and the capacitor
values. As part of a half-bridge IH appliance, the power is
frequency-controlled. Consequently, the ICH system needs to
have a monotonic relation between frequency and power, from
0 W to 3000 W.

As the system must be compatible with an existing IH
cooktop, the capacitor value and inductor number of turns on
the primary side are predetermined. For this paper, the values
that can be changed by design are the number of turns of
the second and third inductors, as well as the second resonant
capacitor.

In order to operate at a relatively constant PRt, the working
frequencies have to be greater than those of the maximum Req
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and minimum Leq, as seen on Figs. 5 and 6. These extreme
values are related to the resonance of the receiver side, ω0,rec.

In most cases maximum power, Pmax, is obtained at the
global system’s resonance, ω0,eq. The power ratio is desired to
remain constant up to Pmax, so global resonance has to be set
at a slightly higher frequency than the receiver side resonance,
which can be seen on Fig. 6. On the one hand, when ω0,rec is
set at 20 and 30 kHz, ω0,eq is above 30 kHz and PRt ranges
between 50 and 60 %. On the other hand, when ω0,rec is set at
40 and 50 kHz, ω0,eq is below 30 kHz and PRt ranges between
10 and 60 %. Moreover, the receiver side resonance causes an
inflection point in the power curve as well as the impedance
extreme values in Fig. 5.

Combining equations (10) and (17), Zeq can be expressed
in terms of single turn impedance matrix elements:

Zeq = n21

Z11,s.t. −
Z2

12,s.t.

Z22,s.t. +
n2
3

n2
2
Z33,s.t.

 . (20)

This expression shows that the receiver side inductors’ number
of turns only affect the global impedance by their relative
values to each other. Moreover, for each fixed value of n3/n2
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Fig. 11. Efficiency variation with load misalignment.

TABLE III
EXPERIMENTAL SYSTEM DESIGN PARAMETERS

Inductor ni Ci (nF)

1, primary 17 1080
2, secondary 29 150

3, tertiary 29 –

the impedance only depends on the primary inductor’s number
of turns.

The design process goes as follows. In order to be able to
deliver 3000 W with near constant PRt, the system must have
a global resonance at higher frequency than receiver resonance
and the equivalent resistance needs to satisfy V 2

o,rms/Req >
3000W at global resonance [16], where Vo,rms is the inverter
output rms voltage. The half-bridge inverter uses a small DC
bus capacitor, so its output voltage will essentially modulate
the rectified mains voltage: Vo,rms =

√
2/πVmains,rms. In terms

of number of turns and capacitor values, C2,s.t. can be selected
to fix ω0,rec at the desired value:

C2,s.t. = 1/
(
ω2
0,rec(L22,s.t. + n23/n

2
2L33,s.t.)

)
. (21)

After selecting a potential ω0,rec, the designer must ensure
that the 3000 W maximum power condition is met, as well as
verify that ω0,rec < ω0,eq.

Since only the relative value of n2 with n3 affects global
impedance, their absolute values can be used to freely select
the ratio of inductor voltage and current when delivering the
same power. The effects of the n3/n2 ratio on P and PRt

are shown in Fig. 9. An increase of the ratio increases Pmax
and PRt and reduces ω0,eq. In this case, n2 = n3 has been
chosen for simplicity, as it fulfills the PRt requirement using
identical coils, simplifying the manufacturing process.

Usually, small adjustments need to be made in order to end
up with an integer number of turns and available capacitor
values. The prototype in this paper has a predetermined
number of turns and capacitor for the primary inductor, 17
turns and 1080 nF, the selected number of turns for the second
and third inductors are 29 turns, and the selected second
capacitor has 150 nF. This results in a ω0,eq of 35 kHz and
ω0,rec 30 kHz. The system parameters are listed in Table III
for convenience.
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Fig. 12. Resistance (a) and inductance (b) of the impedance matrix elements measured by LCR.

A high number of turns was chosen for the second and third
inductors to show that their absolute value would only affect
the current and voltage ratio in the receiver side, and that the
equivalent impedance would remain constant as long as the
value of C2,s.t. was maintained by changing C2 accordingly.

As a IH application, the system could be subjected to rapid
movements by the user. Fig. 10 shows how P and PRt

changes with radial misalignment, illustrating that for any
misalignment, the system will immediately reduce its power
and power ratio. Moreover, the P and PRt changes are signif-
icant even for displacements smaller than 25 mm. Fortunately,
the simulated efficiency does not decrease considerably with
misalignment, as shown in Fig. 11, where the minimum value
remains above 93 %. Due to how the system works inherently,
it does not need complex control to operate safely, and it is
easy to detect misalignment and warn the user to correct it
and maximize PRt again.

IV. EXPERIMENTAL MEASUREMENTS

First, in order to verify the impedance simulation results,
measurements of the impedance matrix have been taken in a
small signal regime at several frequencies. Then, the system
has been tested delivering full power to two ferromagnetic
loads to validate the proposed design.

A. Small signal regime

A LCR meter has been used to measure self impedance of
inductors one, two and three as well as the mutual impedance
between one and two. Given that the third inductor is de-
coupled from the rest, as verified in the simulations, mutual
impedances with the third inductor have not been considered.

While self impedances were measured directly, the mutual
impedance was calculated from two indirect measurements.
The difference between in-phase and opposite-phase measure-
ments of the series connected inductors cancels out the self
impedance contribution [1].

Fig. 12 shows simulated values with continuous lines and
experimental values in dots. Most impedance curves show very

IGBTs
C1

Inductor 1 cables

Bottom Load

Top Load
Inductor 2 cables

Inductor 3 cables

C2

Fig. 13. Experimental setup with both bottom and top loads boiling
water.

good agreement, with a maximum error of 7%. The coupling
factors, as indirect measurements, are more divergent.

Overall, these measurements verify the simulation accuracy
for the given geometry and frequencies, with material prop-
erties congruent with small signal analysis. The results are
encouraging to go ahead to the following full power test.

B. Full power regime
As mentioned in Section II, the system is fed by a half-

bridge inverter, which modulates the rectified mains voltage
[10]. The relevant parts of the simulated geometry stay the
same, such as distances between inductors and loads, diam-
eters and so on. However, in order to help heat dissipation
in the experimental measurements and maintain ferromagnetic
material properties with constant temperature, the independent
load is a second water filled pan as seen on Fig. 13, flipping
the top half of the small oven. This partition of the geometry
is valid as long as each half maintains their relative geometry
and materials of the original, and the inductors are kept far
enough away to avoid coupling.

In the experimental setup,the first inductor is connected to
the IH appliance’s inverter and placed beneath the ”bottom”
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Fig. 15. Oscilloscope captures (a) 500 W, (b) 3000 W.

(a)
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and Inductor 2
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and Inductor 3

Hidden
Electronics
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Fig. 16. Functional prototype: (a) closed lid (b) fully open.

load. The second inductor is placed beneath the first inductor
and the bottom load and connected to the C2 capacitor board
and the third inductor. The third inductor is likewise connected
to the second inductor and the C2 board, and it is placed
beneath the ”top” load.

The circuit diagram of the commercial cooktop used is
shown in Fig. 14. The main differences with Fig. 3 are the
voltage input to the system and the bifurcation of C1. The
mains voltage is rectified in a full diode bridge, it is filtered
by a 3.3 µF capacitor and it is inverted by a IGBT half-
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Fig. 17. Comparison between simulated and experimental impedance: (a) R and (b) L.
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Fig. 18. Inductor voltages, both simulated and measured.

bridge inverter. The transistors use 15 nF snubber capacitors to
minimize turn-off losses. The C1 capacitor is split to ensure
zero DC voltage and eliminate all even harmonics.

The commercial cooktop has been used with frequency
control to deliver power up to 3000 W. Waveforms have
been captured with an oscilloscope of inverter output voltage,
Vo, primary inductor voltage, VL1, second inductor voltage,
VL2, third inductor voltage, VL3, primary inductor current,
I1 and secondary inductor current, I2. Sample captures when
delivering 500 W and 3000 W are shown in Fig. 15. At low
power, in Fig. 15 (a), the waveforms have almost triangular
and exponential shapes, while at high power, in Fig 15 (b) the
waveforms are more sinusoidal.

In addition to the experimental setup to take measurements,
a functional prototype has also been built and shown in Fig. 16.
The compartmentalization of the electronics and their position
near the hinge, away from the loads, are enough to prevent
the high temperatures from reaching the ceramic capacitors.

Calculations up to now have assumed the first order har-
monic for its frequency calculations. In order to better deter-
mine the accuracy of the FEA simulations, the half-bridge
inverter has been simulated in LTspice in order to obtain

waveforms and electrical parameters.
The simulated circuit is that of Fig. 14 with small modifi-

cations. Due to convergence problems, the IGBTs are repre-
sented by ideal switches in the simulations. The inductive cou-
pling is simulated with the built-in coupled inductor feature,
using the component “ind2”. The effect of the real part of the
mutual impedance is implemented as an arbitrary behavioural
voltage source “bv”, where the voltage induced by i in j, Vr,ij ,
is generated by the mutual resistance, Rij , and the current of
the opposite inductor, Ii, Vr,ij = RijIi. The polarity of these
elements had to be chosen carefully to produce valid results. A
Matlab script was used to change impedance values for each
frequency, run all simulations and store results.

Fourier transformations were used to calculate the exper-
imental impedance values from inductor voltage, Vli, and
current, Ii, waveforms:

Zeq = Vl1/I1, (22)
Z33 = Vl3/I3. (23)

Z11 and Z12 can be obtained from measurements with the
receiver in open circuit, if I2 = 0:

Zind,11 = Vl1/I1, (24)
Z12 = Vl2/I1. (25)

Knowing all other terms, Z22 can be extracted from (10):

Z22 =
Z2
12

Z11 − Zeq
− Z33. (26)

The results are shown in Fig. 17, where the measured values
are predicted for the most part by the FEA simulations.

Fig. 18 represents the simulated and measured inductor
voltages. Fig. 19 represents the comparison between the
simulated and measured values of power, power ratio and
currents when the receiver side is either disconnected: (a) and
(b), or connected: (c) and (d). Fig. 19 (a) shows that the P
peak at ω0,eq is much higher than the desired Pmax, 3000 W.
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Fig. 19. Power measurements with a disconnected receiver: (a) P (b) I. Measurements with connected receiver: (c) P and PRt and (d) I1 and I3.
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Fig. 20. Thermographic camera measurements with 3000 W. (a) Frame
at 6.8 s. (b) Temperature evolution of indicated points.

Consequently, the equivalent impedance is more inductive at
3000 W and more I is required to deliver the same amount of
power than the full system, as shown by comparing Fig. 19
(b) and (d). Therefore, reduction of time-average PRt can be
achieved by disconnecting the receiver, bearing in mind that
high power could be too stressful to the electronics. In Fig.
19 (c), the small error in Leq causes a shift of ω0,eq and a
slight reduction of PRt, but otherwise simulations were able
to predict the experimental results, confirming the validity of
the calculation and design method.

As a result of a PRt higher than 50 %, more than half of
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Fig. 21. Measured P and PRt variation with load misalignment.

the total power goes to the top load, which is qualitatively
shown in Fig. 16 with the bubble density of the boiling
water. For further confirmation, Fig. 20 shows the temperature
distribution with a thermographic camera when 3000 W are
applied to the system with empty vessels until 100 ◦C are
reached.

Fig. 21 shows experimental measurements of P and PRt

with radial misalignment. The measurements confirm the
validity of the simulations.
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V. CONCLUSIONS

The simulations and analytical calculations presented in
this paper show that induction heating and inductive coupling
can be used in conjunction to deliver power to multiple
ferromagnetic loads with a single source in an uncommon IH
application. A single cooktop inductor can be used to heat two
different loads with adequate power ratio. This allows heating
uncoupled elements that are not directly placed on top of the
cooktop or extending the heating zone for long vessels, such
as rectangular grills.

The experimental verification affirms the accuracy of the
simulated impedance matrix. In order to maintain a consistent
power ratio, global system resonant frequency must be higher
than the receiver side resonant frequency. The ratio between
turns of the second and third inductors can be used to modify
the power ratio, though their absolute value does not affect
equivalent impedance. This degree of freedom can be used to
select the relative voltage and current in the receiver side. Full
power delivery measurements clearly verify the simulations,
with only a small shift in resonant frequency and a small
reduction in calculated power ratio.

Considering that the power ratio between both loads is
currently fixed by geometry and design, further steps should
be taken to be able to control the amount of power delivered
to each load. For example a switch in the receiver side could
be used to change between operating in a conventional IH
configuration with the primary inductor only and the full
ICH configuration. The addition of independent power control
could also lead to food temperature control inside the oven
with additional sensors and electronics.

System misalignment reduces power delivery to the top
load, but the system can still operate safely and efficiently.
Therefore, the misalignment can be detected and communi-
cated to the user, so that they may correct it. Future work
could investigate the compatibility of this kind of system
with total active surface cooktops to completely mitigate the
misalignment problem.
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