FIRST DES CE INDICATED FOR 1-MO DAPT IN HBR PATIENTS

Based on Onyx ONE Global Study results

SEE THE DATA
Incidence, predictors and clinical impact of permanent pacemaker insertion in women following transcatheter aortic valve implantation: Insights from a prospective multinational registry

Johny Nicolas MD¹ | Paul Guedeney MD¹,² | Bimmer E. Claessen MD, PhD¹ | Julinda Mehilli MD³ | Anna Sonia Petronio MD⁴ | Samantha Sartori PhD¹ | Thierry Lefèvre MD⁵ | Patrizia Presbitero MD⁶ | Piera Capranzano MD⁷ | Alessandro Iadanza MD⁸ | Davide Cao MD¹ | Mauro Chiarito MD¹ | Ridhima Goel MD¹ | Anastasios Roumeliotis MD¹ | Rishi Chandiramani MD¹ | Siyan Chen BS¹ | Gennaro Sardella MD⁹ | Nicolas M. Van Mieghem MD, PhD¹⁰ | Sabato Sorrentino MD, PhD¹ | Emanuele Meliga MD, PhD¹ | Didier Tchéché MD¹² | Nicolas Dumonteil MD¹² | Chiara Fracarro MD, PhD¹³ | Daniela Trabattoni MD¹⁴ | Ghada W. Mikhail MD, FRCP¹⁵ | Maria-Cruz Ferrer-Gracia MD¹⁶ | Christoph Naber MD¹⁷ | Peter C. Kievit MD¹⁸ | Usman Baber MD, MS¹ | Samin K. Sharma MD¹ | Marie-Claude Morice MD⁵ | George D. Dangas MD, PhD¹ | Jaya Chandrasekhar MBBS, MS¹ | Alaide Chieffo MD¹⁹ | Roxana Mehran MD¹

¹The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
²Department of Cardiology, Sorbonne Université, ACTION Study Group, INSERM UMRS 1166, Institut de Cardiologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
³Department of Cardiology, Munich University Clinic, Ludwig-Maximilians University and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
⁴Department of Cardiology, AOUP Cisanello, University Hospital, Pisa, Italy
⁵Department of Cardiology, Institut Hospitalier Jacques Cartier, Ramsay Générale de Santé, Massy, France
⁶Department of Cardiology, Instituto Clinico Humanitas, Milan, Italy
⁷Department of Cardiology, University of Catania, Catania, Italy
⁸Department of Cardiology, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
⁹Department of Cardiology, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
¹⁰Department of Cardiology, Erasmus Medical Center, Thoraxcenter, Rotterdam, The Netherlands
¹¹Department of Cardiology, Mauriziano Umberto I Hospital, Turin, Italy
¹²Department of Cardiology, Groupe CardioVasculaire Interventional, Clinique Pasteur, Toulouse, France
¹³Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
¹⁴Department of Cardiology, Centro Cardiologico Monzino, IRCCS, Milano, Italy
¹⁵Department of Cardiology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
¹⁶Department of Cardiology, Hospital Universitario Miguel Servet, Zaragoza, Spain
¹⁷Department of Cardiology, Contilia Heart and Vascular Centre, Essen, Germany

Abbreviations: adjHR, adjusted hazard ratio; AV, atrioventricular; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; PPI, permanent pacemaker insertion; RBBB, right bundle branch block; TAVR, transcatheter aortic valve replacement; VARC-2, valve academic research consortium; WIN-TAVI, Women’s International Transcatheter Aortic Valve implantation.
Abstract

Objectives: To describe the incidence, predictors, and clinical impact of permanent pacemaker insertion (PPI) following transcatheter aortic valve replacement (TAVR) in women.

Background: Data on pacemaker insertion complicating TAVR in women are scarce.

Methods: The Women’s International Transcatheter Aortic Valve implantation (WIN-TAVI) is a prospective registry evaluating the safety and efficacy of TAVR in women. We included patients without preprocedural pacemakers and divided them into two groups: (1) PPI and (2) no-PPI. We identified PPI predictors using logistic regression and studied its clinical impact on the Valve Academic Research Consortium (VARC)-2 efficacy and safety endpoints.

Results: Out of 1019 patients, 922 were included in the analysis. Post-TAVR PPI occurred in 132 (14.3%) patients. Clinical and procedural characteristics were similar in both groups. Pre-existing right bundle branch block (RBBB) was associated with a high risk of post-TAVR PPI (OR 3.62, 95% CI 1.85–7.06, p < 0.001), while implantation of balloon-expandable prosthesis was associated with a lower risk (OR 0.47, 95% CI 0.30–0.74, p < 0.001). Post-TAVR PPI prolonged in-hospital stay by a median of 2 days (11 [9–16] days in PPI vs. 9 [7–14] days in no-PPI, p = 0.005), yet risks of VARC-2 efficacy and safety endpoints at 1 year were similar in both groups (adjHR 0.95, 95% CI 0.60–1.52, p = 0.84 and adjHR 1.22, 95% CI 0.83–1.79, p = 0.31, respectively).

Conclusion: Pacemaker implantation following TAVR is frequent among women and is associated with pre-existing RBBB and valve type. PPI prolongs hospital stay, albeit without any significant impact on 1-year outcomes.

KEYWORDS

gender, pacemaker, TAVI, TAVR

1 | INTRODUCTION

Transcatheter aortic valve replacement (TAVR) is a well-established therapy for patients with severe aortic stenosis and deemed high-risk for surgical aortic valve replacement (SAVR).1,2 Technological developments in transcatheter heart valve systems and higher expertise of the heart teams have expanded TAVR indications to lower-risk populations.3,4 However, despite significant reductions in periprocedural complications and death, the incidence of conduction disturbances requiring permanent pacemaker implantation (PPI) has not changed over time and remains a frequent complication of old and new generation devices.5,6 Various factors impact PPI's need following TAVR, including anatomic, clinical, and procedure-related features as shown in prior studies.7,8

Men and women undergoing TAVR have strikingly distinct aortic root anatomy (i.e., women have smaller ascending aortic diameters, smaller sinuses, lower coronary heights, and smaller annulus compared with men) and baseline clinical characteristics.9–12 The high degree of heterogeneity between the two sexes is reflected by a wide range of PPI rates across different cohorts. In a systematic review of 40 studies, including 17,139 TAVR recipients, women were more frequently found in studies reporting a high incidence of post-TAVR PPI (26.4%–36.1%), whereas men dominated those reporting low incidence of PPI (0%–12.1%).6 Therefore, sex-based comparisons of patients undergoing TAVR appear inadequate, especially when evaluating PPI incidence and predictors. Aiming at better understanding the safety and performance of contemporary TAVR in women with aortic stenosis, the Women’s International Transcatheter Aortic Valve implantation (WIN-TAVI) registry was formed.
as a multinational prospective study dedicated to female patients undergoing TAVR for aortic stenosis. Therefore, we sought to investigate the incidence, predictors, and clinical impact of PPI in the WIN-TAVI registry.

2 | MATERIALS AND METHODS

2.1 | Study design

The WIN-TAVI registry has been previously described. Briefly, this prospective registry included women undergoing TAVR with a commercially available device for symptomatic aortic stenosis in 19 high-volume centers in Europe and the United States between January 2013 and December 2015. All patients were deemed suitable for TAVR by the local heart team and provided informed consent to their data's anonymous processing. Procedural decisions regarding TAVR access site, valve type, aortic pre-and post-dilation, and post-TAVR antithrombotic therapy were at the discretion of the treating physicians. Similarly, post-TAVR indications for PPI were based on local practices and international guidelines. All sites had institutional approval from the local ethics committee, and the study was conducted according to the principles of the Declaration of Helsinki, International Organization for Standardization Guidelines, and Good Clinical Practice guidelines.

2.2 | Data management

Information on pre-operative medical history, as per local standard of care, were collected. The Icahn School of Medicine at Mount Sinai (New York, United States) acted as the clinical and data coordinating center responsible of data entry and monitoring, database management, and statistical analysis. All data, including-in-hospital complication and follow-up, were site-reported. An independent Clinical Event Committee adjudicated all events.

2.3 | Study population and endpoints

Patients with a prior pacemaker or implantable cardiac defibrillator were excluded from the present analysis. The primary outcomes of interest were the one-year rates of the valve academic research consortium criteria 2 (VARC-2) efficacy and safety endpoints. The VARC-2 efficacy endpoint was defined as a composite of all-cause mortality, stroke, myocardial infarction (MI), and hospitalization for valve-related symptoms or worsening congestive heart failure. The VARC-2 safety endpoint was defined as the composite of all-cause mortality, stroke, major vascular complication, life-threatening bleeding, stages 2 or 3 acute kidney injury, coronary artery obstruction requiring intervention, or repeat procedure for valve-related dysfunction. Follow-up was conducted by phone contact or clinic visit at 1, 6, and 12 months after TAVR.

2.4 | Statistical approach

Categorical data are presented as frequencies and percentages and compared using the chi-square or Fischer's exact test. Continuous variables are presented as mean ± standard deviation or median and interquartile range and compared using the Student's t-test or Wilcoxon signed-rank test whenever appropriate. The association between relevant baseline characteristics and post-TAVR PPI was assessed using a logistic regression model and expressed as odds ratios (OR). The covariates included in the model included: age (per one-year increase), use of non-balloon expandable prosthesis, pre-existing right bundle branch block (RBBB), pre-existing left bundle branch block (LBBB), left anterior fascicular block, pre-existing first or second-degree atrioventricular (AV) block, device diameter ≥ 26 mm (based on initial results from the WIN-TAVI registry showing worse outcomes with device diameter ≥ 26 mm) and balloon post-dilation. Time-to-event analyses were performed using the Kaplan-Meier method, and outcomes were compared using the log-rank test. The association between PPI and clinical outcomes at 1 year was studied using multivariable Cox regression with adjustment for clinically relevant recorded baseline characteristics: age, logistic EuroSCORE I, diabetes, atrial fibrillation, and peripheral artery disease. All analyses were performed using Stata version 14.0 (StataCorp, Texas), and p values <0.05 were considered significant.

3 | RESULTS

3.1 | Incidence and predictors of post-TAVR PPI

Out of 1019 patients in the WIN-TAVI registry, 922 (90.5%) were included in this study after the exclusion of 97 (9.5%) patients with a prior pacemaker or cardiac defibrillator. Overall, the mean age was 82.4 ± 0.2 years, and mean EuroSCORE I was 17.6 ± 0.4. Post-TAVR PPI occurred in 132 (14.3%) patients, including 120 (11.8%) patients within the first 30 days following TAVR. Baseline clinical and procedural characteristics are detailed in Tables 1 and 2, respectively, with no significant differences between the two groups except for prosthetic valve type and baseline conduction abnormalities. Around 72% of PPI patients had a non-balloon expandable valve implanted during the procedure compared with 54% of those in the no-PPI group (p < 0.001). Among patients who received a self-expandable valve (Medtronic Evolut R or CoreValve), 31.2% had a post-TAVR pacemaker implanted while only 18.8% of patients with balloon-expandable valves (Edwards SAPIEN XT or SAPIEN 3) needed a pacemaker (Figure 1). Remarkably, 27.8% of patients with mechanically-expandable valves (Lotus) underwent pacemaker insertion. In addition, RBBB at baseline was the most common conduction defect in patients who underwent PPI, and its prevalence was higher (12.4%) than that in the opposite group (4.1%) (p < 0.001). Indeed, 34% of patients with baseline RBBB needed a pacemaker following aortic valve implantation, compared with 22% of patients with AV-block and 8.8% of those with baseline left bundle branch block (LBBB).
After adjustment, pre-existing RBBB remained significantly associated with an increased risk of post-TAVR PPI (OR 3.62, 95% CI 1.85–7.06, p < 0.001), while the use of a balloon-expandable device was associated with a lower risk as compared with self-expanding prosthesis (OR 0.47, 95% CI 0.30–0.74, p < 0.001) (Figure 3). Other factors, such as pre-existing LBBB and older age, did not significantly impact post-TAVR PPI.

3.2 | Clinical impact of post-TAVR PPI

Patients who underwent pacemaker implantation had a longer in-hospital stay (11 days [interquartile range 9–16 days]) compared with those who did not (9 days [interquartile range 7–14 days]) (p = 0.005). One-year clinical outcomes are reported as Kaplan–Meier estimates in Table 3. At a one-year follow-up, the VARC-2 efficacy endpoint occurred in 17.6% of patients who underwent PPI compared with a lower risk as compared with self-expanding prosthesis (OR 0.47, 95% CI 0.30–0.74, p < 0.001) (Figure 3). Other factors, such as pre-existing LBBB and older age, did not significantly impact post-TAVR PPI.

Post-procedural pacemaker implantation occurred in 14.3% of female patients enrolled in the WIN-TAVI registry. A self-expanding or mechanically expanding valve was implanted in most of these patients. Pre-existing RBBB increased the likelihood of post-TAVR PPI by almost fourfold, while the use of balloon-expandable devices was associated with a lower risk compared with other valve types. As for the clinical impact, post-TAVR PPI prolonged hospital stays by a median of 2 days but did not increase the risk of adverse clinical outcomes at 1 year.

The incidence of PPI in the current analysis (14.3%) falls within the full interval of PPI rates (2.3%–39.9%) reported in prior studies. The majority of study participants who underwent pacemaker implantation (120 out of 132) did so within the first 30 days after TAVR. Around 8.5%–25.9% of all patients, men and women, undergoing TAVR require PPI within 30 days after the procedure compared with only 7% of patients who undergo surgical
valve replacement. However, data specific to women is limited. Due to the extension of TAVR indications towards lower-risk patients and substantial improvement in prosthetic valve design and delivery techniques, a gradual decline in post-TAVR PPI incidence is observed. Indeed, a report from the German TAVI registry showed that the incidence of post-TAVR PPI decreased from 12.6% in 2015 to 11.4% in 2016 (p = 0.002). In contrast, the incidence has increased in other national registries such as the Society of Thoracic Surgeons/American Heart Association transcatheter valve therapy (STS/ACC TVT) and the FRANCE-TAVI registries. The increase has been mainly attributed to a surge in self-expandable CoreValve use following its worldwide approval in 2014. Self-expandable devices have been commonly associated with higher rates of post-TAVR PPI as compared with balloon-expandable prosthetic valves. In particular, Medtronic CoreValve use was linked in several studies to an increased risk of conduction abnormalities requiring a permanent pacemaker. Indeed, more than half of patients who needed a pacemaker in our studied cohort had a CoreValve implanted during the procedure. The newer generation self-expandable valve, Evolut R, was associated with a lower incidence of PPI than CoreValve due to less ventricular implantation depth at the non-coronary cusp. In a recent study, Giannini et al.

TABLE 2	Baseline procedural characteristics		
	Post-TAVR permanent pacemaker insertion		p-value
	No n = 790 (85.7%)	Yes n = 132 (14.3%)	
Femoral vascular approach	710 (89.6%)	121 (91.7%)	0.48
Access technique		0.67	
Percutaneous	687 (87.0%)	113 (85.6%)	
Surgical cut down	103 (13.0%)	19 (14.4%)	
Sheath size ≤ 18 French	585 (74.4%)	103 (78.0%)	0.38
Balloon aortic valvuloplasty	558 (71.2%)	84 (63.6%)	0.08
Rapid pacing during deploymenta	535 (77.0%)	79 (68.7%)	0.06
Valve generationb		0.13	
Old	425 (56.4%)	82 (63.6%)	
New	329 (43.6%)	47 (12.5%)	
Valve modelc	<0.001		
Balloon-Expandable			
Edwards SAPIEN 3	189 (25.1%)	20 (15.5%)	
Edwards SAPIEN XT	157 (20.8%)	16 (12.4%)	
Non-Balloon expandable			
Medtronic Corevalve	268 (35.5%)	66 (51.2%)	
Medtronic Evolut R	62 (8.2%)	8 (6.2%)	
Portico	25 (3.3%)	4 (3.1%)	
Lotus	8 (1.1%)	0 (0.0%)	
Syetris ACURATE neo	39 (5.2%)	15 (11.6%)	
Device diameter ≤ 26 mm	650 (82.7%)	98 (74.2%)	0.02
Balloon post-dilation	109 (14.0%)	23 (17.4%)	0.31
Perioperative event			
Blood product transfusion	50 (6.7%)	6.9 (6.9%)	0.90
Post-TAVR grade 2 or 3 aortic regurgitation	53 (6.7%)	7 (5.3%)	0.55
Antithrombotic regimen at discharge (n = 822)			
Dual antiplatelet therapy	372 (53.5%)	53 (42.1%)	0.018
Oral anticoagulation	168 (24.1%)	48 (38.1%)	0.001
Triple therapy	25 (3.6%)	7 (5.6%)	0.3

Note: Numbers are shown as n (%).
Abbreviation: TAVR, transcatheter aortic valve replacement.
aData are available in 810 patients.
bData are available in 883 patients - old-generation devices comprised Edwards SAPIEN XT (Edwards Lifesciences, Irvine, California) and Medtronic CoreValve (Medtronic Inc., Minneapolis, Minnesota), all other prostheses types are considered new-generation devices.

cData are available in 883 patients - old-generation devices comprised Edwards SAPIEN XT (Edwards Lifesciences, Irvine, California) and Medtronic CoreValve (Medtronic Inc., Minneapolis, Minnesota), all other prostheses types are considered new-generation devices.
revealed no significant difference in the need for pacemaker insertion between new generation self-expandable and balloon-expandable valves (10.1% vs. 8.0%, \(p = 0.56 \)). Nevertheless, our logistic regression model showed that the use of balloon-expandable devices decreased the odds of requiring a pacemaker following TAVR.

In addition to prosthetic valve choice, several factors contribute to the new onset of conductive disturbances after TAVR. One of these factors is the close anatomical relationship between the AV conduction pathway and the aortic valve; therefore, any manipulation of the valve can disrupt this pathway resulting in complete AV-block and need for a permanent pacemaker following TAVR.

In addition to prosthetic valve choice, several factors contribute to the new onset of conductive disturbances after TAVR. One of these factors is the close anatomical relationship between the AV conduction pathway and the aortic valve; therefore, any manipulation of the valve can disrupt this pathway resulting in complete AV-block and need for a permanent pacemaker following TAVR. Moreover, the procedure itself can injure the AV node, and the left bundle of His. Pre-procedural defects also can contribute to the development of conductive disturbances following TAVR. Our analysis showed that baseline RBBB is a strong predictor of post-TAVR PPI. Indeed, RBBB was the strongest electrocardiographic predisposing factor (\(p < 0.001 \)) for post-TAVR PPI in the Placement of Aortic Transcatheter Valves (PARTNER) randomized trial, which included 1973 high-risk patients undergoing TAVR. Moreover, a meta-analysis including 11,210 TAVR patients showed a three-fold increase in the risk of post-TAVR PPI in individuals with baseline RBBB (Relative risk 2.89; \(p < 0.01 \)). In fact, any injury to the left branch due to mechanical stress exerted by the prosthetic valve will undoubtedly lead to a complete AV-block in patients with pre-existent RBBB. However, the pre-existent LBBB did not carry an additional risk for post-TAVR PPI, which is in accordance with previously published reports. Instead, LBBB is commonly reported as a complication of TAVR occurring in up to 40% of patients.

PPI’s clinical impact is vast and includes additional procedures that carry its risks, prolonged hospital stay, loss of AV synchrony, and hemodynamic changes that contribute to the onset of atrial fibrillation and subsequent cerebrovascular events. In our analysis, patients who needed post-TAVR PPI had a more extended hospital stay but a similar risk of adverse clinical outcomes at 1 year as those who did not. However, longer-term data are required. Over the past years, there has been much controversy surrounding the long-term impact of post-TAVR PPI on survival. A recent meta-analysis, including data from 17 studies, showed no association between long-term clinical outcomes and PPI status. However, most of these studies had follow-up periods shorter than 2 years, which is considered insufficient for the observation of events directly related to chronic ventricular pacing. On the other hand, an analysis from a US national registry showed an increase in mortality risk (HR 1.31; 95% CI 0.52-3.31) in patients with post-TAVR PPI.

FIGURE 1 Need for pacemaker insertion with respect to valve prosthesis type (\(n = 883 \)). *Grouped under one category due to low prevalence (includes Symetris Acurate Neo, Portico, and Direct flow valves).

FIGURE 2 Need for pacemaker insertion with respect to pre-existing conduction defect (\(n = 890 \)). AV-block, atrioventricular block; LAFB, left anterior fascicular block; LBBB, left bundle branch block; PPI, permanent pacemaker implantation; RBBB, right bundle branch block.
1.09–1.58, p = 0.003) at 1 year in patients who undergo post-TAVR PPI. However, reported deaths were not secondary to cardiovascular etiologies hinting to potential confounders in the studied cohort. Therefore, amid these conflicting results, future research focusing on the long-term clinical impact of pacemaker implantation following TAVR is much needed.

Although prior TAVR studies have reported data from both men and women, the full range of PPI rates across these studies revealed the heterogeneity of the studied populations, which limited the generalizability of the results and its clinical implications on both sexes. The present analysis brings sex-specific real-word evidence on the incidence and predictors of post-TAVR PPI in women undergoing TAVR. Therefore, this study aims to provide insights on post-TAVR PPI in women rather than to explore sex-related differences in outcomes. The main findings of this study suggest that post-TAVR PPI incidence in women undergoing TAVR is lower or at least similar to the general population. Moreover, a thorough pre-procedural screening for baseline conduction abnormalities (i.e., RBBB) and adequate device choice (i.e., balloon-expandable valves) is needed to lower the risk of PPI in women undergoing TAVR. Overall, predictors of post-TAVR PPI in women are more or less similar to those reported in previous studies including both sexes.

TABLE 3 One-year clinical outcomes presented as Kaplan–Meier estimates

<table>
<thead>
<tr>
<th>Post-TAVR permanent pacemaker insertion</th>
<th>OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No n = 790 (85.7%)</td>
<td>Yes n = 132 (14.3%)</td>
<td></td>
</tr>
<tr>
<td>VARC-2 efficacy endpoint<sup>a</sup></td>
<td>1.03 (0.99 – 1.06)</td>
<td>0.09</td>
</tr>
<tr>
<td>VARC-2 safety endpoint<sup>b</sup></td>
<td>0.47 (0.30 – 0.74)</td>
<td>0.001</td>
</tr>
<tr>
<td>Death, MI, stroke or bleeding</td>
<td>0.52 (0.24 – 1.14)</td>
<td>0.10</td>
</tr>
<tr>
<td>Death, MI or stroke</td>
<td>3.62 (1.85 – 7.06)</td>
<td><0.001</td>
</tr>
<tr>
<td>All-cause death</td>
<td>1.64 (0.80 – 3.36)</td>
<td>0.18</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>1.34 (0.83 – 2.17)</td>
<td>0.23</td>
</tr>
<tr>
<td>Major vascular complications</td>
<td>1.24 (0.74 – 2.09)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Note: All values are shown as n (Kaplan–Meier estimate %).

Abbreviations: MI, myocardial infarction; VARC-2, valve academic research consortium; TAVR, transcatheter aortic valve replacement.

^aComposite of mortality, stroke, myocardial infarction, hospitalization for valve-related symptoms or heart failure or valve-related dysfunction;

^bComposite of mortality, stroke, major vascular complication, life-threatening bleeding, stage 2 or 3 acute kidney injury, coronary artery obstruction, or repeat procedure for valve-related dysfunction.

1.09–1.58, p = 0.003) at 1 year in patients who undergo post-TAVR PPI. However, reported deaths were not secondary to cardiovascular etiologies hinting to potential confounders in the studied cohort. Therefore, amid these conflicting results, future research focusing on the long-term clinical impact of pacemaker implantation following TAVR is much needed.

Although prior TAVR studies have reported data from both men and women, the full range of PPI rates across these studies revealed the heterogeneity of the studied populations, which limited the generalizability of the results and its clinical implications on both sexes. The present analysis brings sex-specific real-word evidence on the incidence and predictors of post-TAVR PPI in women undergoing TAVR. Therefore, this study aims to provide insights on post-TAVR PPI in women rather than to explore sex-related differences in outcomes. The main findings of this study suggest that post-TAVR PPI incidence in women undergoing TAVR is lower or at least similar to the general population. Moreover, a thorough pre-procedural screening for baseline conduction abnormalities (i.e., RBBB) and adequate device choice (i.e., balloon-expandable valves) is needed to lower the risk of PPI in women undergoing TAVR. Overall, predictors of post-TAVR PPI in women are more or less similar to those reported in previous studies including both sexes.
We acknowledge the existence of several limitations that could have impacted our results. First, the WIN-TAVI registry is by design limited to female patients undergoing TAVR; hence, no conclusion regarding sex differences can be drawn from the present analysis. Second, several variables that have been shown to be strongly associated with post-TAVR PPI were not collected in this registry, including depth of prosthesis implantation, left ventricular outflow tract and mitral annulus, and size of the prosthesis relative to the aortic annulus. Third, the registry lacked an assessment of left ventricular ejection fraction (LVEF) at follow-up; thus, the impact of post-TAVR PPI on LVEF was not determined. Fourth, the specific indication for pacemaker implantation was left at the discretion of each physician according to guidelines and local practices. In addition, due to funding limitations, we did not collect data on pacemaker type, pacemaker dependency over time, need for biventricular pacing in patients who developed LBBB, and outcomes at 2-year follow-up (as initially stated in the WIN-TAVI study design). Finally, data collection in the WIN-TAVI registry occurred only from 2013 till 2015; therefore, advances in the field that occurred over the past 5 years must be considered while interpreting the results.

5 | CONCLUSIONS

In this study of female patients undergoing TAVR, PPI frequently occurred within the first 30 days following the procedure. Pre-existing RBBB was a strong predictor of post-TAVR PPI, whereas balloon-expandable devices were associated with a lower risk of PPI than self-expanding valves. Although post-TAVR PPI prolonged in-hospital stay, it did not significantly impact adverse clinical outcomes at 1 year. Further exploration of the clinical impact of PPI beyond 1 year is needed.

ACKNOWLEDGMENT

We would like to thank patients who participated in this study.

CONFLICT OF INTEREST

Dr. Usman Baber received institutional research grant from AstraZeneca; personal fees from Amgen, AstraZeneca, and Boston Scientific. Dr. Anna Sonia Petronio received consultancy fees from Medtronic, Abbott, Boston and funds by Boston and Abbott. Dr. Julinda Mehilli received institutional grants from Boston Scientific and lecture fees from AstraZeneca, Bristol-Myers Squibb, Boston.
Scientific and Edwards Lifescience. Dr. Thierry Lefèvre proctors for Edwards, Boston and Abbott. Dr. Gennaro Sardella received sponsorships from Medtronic in terms of technical training courses and congress assistance. Dr. Nicolas M Van Mieghem received research grant support and advisory fees from Abbott, Boston Scientific, and Medtronic and research grant support from Edwards Lifesciences. Dr. Nicolas Dumontelle received procuring and consultancy fees from Abbott Vascular, Boston Scientific, Edwards LifeSciences, Medtronic. Dr. Ghada W Mikhail is the Director of Imperial Valve and Cardiovascular Course (IVCC) which is supported by a number of device and pharmaceutical companies; has received educational grant from Abbott for an Interventional Fellowship. Dr. Maria-Cruz Ferrer-Gracia received sponsorships from Medtronic and Edwards companies in terms of: Technical training courses and congress assistance. Dr. Samin K. Sharma served on the Speakers Bureau of Abbott Vascular, Boston Scientific, and Cardiovascular Systems, Inc. Dr. Marie-Claude Morice is CEO and shareholder of CERC, a CRO based in Massy that had no role in WINTAVI. Dr. George D. Dangas received consulting fees from GE Healthcare, Janssen Pharmaceuticals, Inc., and Medtronic, Inc.; <1% equity with Claret Medical and Elixir Medical; delivered industry sponsored lectures for The Medicines Company; and is on Scientific Advisory Board of AstraZeneca. Dr. Alaide Chieffo received speaker/consultant fees from Abiomed, Abbott vascular, Biosensor, Cardinal Health, GADA, Magenta Medical. Dr. Roxana Mehran reports institutional research grants from Abbott Laboratories, Abiomed, Applied Therapeutics, AstraZeneca, Bayer, Beth Israel Deaconess, Bristol Myers Squibb, CERC, Chiesi, Concept Medical, CSL Behring, DSI, Medtronic, Novartis Pharmaceuticals, OrbusNeich; consultant fees from Abbott Laboratories, Boston Scientific, Janssen Scientific Affairs, Medscape/WebMD, Medtelligence (Janssen Scientific Affairs), Roivant Sciences, Sanofi, Siemens Medical Solutions; consultant fees paid to the institution from Abbott Laboratories, Bristol-Myers Squibb; advisory board, funding paid to the institution from Spectranetics/Philips/Volcano Corp; consultant (spouse) from Abiomed, The Medicines Company, Merck; Equity <1% from Claret Medical, Elixir Medical; DSMB Membership fees paid to the institution from Watermark Research Partners; consulting (no fee) from Idorsia Pharmaceuticals Ltd., Regeneron Pharmaceuticals. Associate Editor for ACC, AMA.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Johny Nicolas https://orcid.org/0000-0002-3015-3361
Julinda Mehili https://orcid.org/0000-0002-8750-5567
Piera Capranzano https://orcid.org/0000-0001-8434-7367
Alessandro Iadanza https://orcid.org/0000-0002-6435-1155
Ridhima Goel https://orcid.org/0000-0003-2626-2423
Rishi Chandiramani https://orcid.org/0000-0001-8659-6850
Gennaro Sardella https://orcid.org/0000-0002-5951-1513
Nicolas M. Van Mieghem https://orcid.org/0000-0002-7322-1205
Daniela Trabattoni https://orcid.org/0000-0002-6319-4119
Maria-Cruz Ferrer-Gracia https://orcid.org/0000-0002-3413-6024
George D. Dangas https://orcid.org/0000-0001-7502-8049
Jaya Chandrasekhar https://orcid.org/0000-0001-8776-326X
Roxana Mehran https://orcid.org/0000-0002-2012-4137

REFERENCES

