000110831 001__ 110831
000110831 005__ 20240319080959.0
000110831 0247_ $$2doi$$a10.1021/acs.analchem.1c04118
000110831 0248_ $$2sideral$$a127695
000110831 037__ $$aART-2022-127695
000110831 041__ $$aeng
000110831 100__ $$aIakab, Stefania-Alexandra
000110831 245__ $$aSALDI-MS and SERS Multimodal Imaging: One Nanostructured Substrate to Rule Them Both
000110831 260__ $$c2022
000110831 5060_ $$aAccess copy available to the general public$$fUnrestricted
000110831 5203_ $$aImaging techniques based on mass spectrometry or spectroscopy methods inform in situ about the chemical composition of biological tissues or organisms, but they are sometimes limited by their specificity, sensitivity, or spatial resolution. Multimodal imaging addresses these limitations by combining several imaging modalities; however, measuring the same sample with the same preparation using multiple imaging techniques is still uncommon due to the incompatibility between substrates, sample preparation protocols, and data formats. We present a multimodal imaging approach that employs a gold-coated nanostructured silicon substrate to couple surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) and surface-enhanced Raman spectroscopy (SERS). Our approach integrates both imaging modalities by using the same substrate, sample preparation, and data analysis software on the same sample, allowing the coregistration of both images. We transferred molecules from clean fingertips and fingertips covered with plasticine modeling clay onto our nanostructure and analyzed their chemical composition and distribution by SALDI-MS and SERS. Multimodal analysis located the traces of plasticine on fingermarks and provided chemical information on the composition of the clay. Our multimodal approach effectively combines the advantages of mass spectrometry and vibrational spectroscopy with the signal enhancing abilities of our nanostructured substrate.
000110831 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096061-B-100
000110831 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000110831 590__ $$a7.4$$b2022
000110831 592__ $$a1.733$$b2022
000110831 591__ $$aCHEMISTRY, ANALYTICAL$$b7 / 86 = 0.081$$c2022$$dQ1$$eT1
000110831 593__ $$aAnalytical Chemistry$$c2022$$dQ1
000110831 594__ $$a12.3$$b2022
000110831 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000110831 700__ $$aBaquer, Gerard
000110831 700__ $$0(orcid)0000-0003-2660-3726$$aLafuente, Marta
000110831 700__ $$0(orcid)0000-0001-9897-6527$$aPina, Maria Pilar$$uUniversidad de Zaragoza
000110831 700__ $$aRamírez, José Luis
000110831 700__ $$aRàfols, Pere
000110831 700__ $$aCorreig-Blanchar, Xavier
000110831 700__ $$aGarcía-Altares, María
000110831 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000110831 773__ $$g94, 6 (2022), 2785-2793$$pAnal. chem.$$tANALYTICAL CHEMISTRY$$x0003-2700
000110831 8564_ $$s7199636$$uhttps://zaguan.unizar.es/record/110831/files/texto_completo.pdf$$yVersión publicada
000110831 8564_ $$s3017100$$uhttps://zaguan.unizar.es/record/110831/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000110831 909CO $$ooai:zaguan.unizar.es:110831$$particulos$$pdriver
000110831 951__ $$a2024-03-18-13:58:52
000110831 980__ $$aARTICLE