TESIS DE LA UNIVERSIDAD 2021
DE ZARAGOZA 364

lvan Sanz Gorrachategui

Hybrid and Intelligent
Energy Storage Systems
iIn Standalone Photovoltaic
Applications.

OYARBIDE USABIAGA, ESTANISLAO
BERNAL RUIZ, CARLOS

155N 2254-T606




© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606



«2s Universidad
Zaragoza

Tesis Doctoral

HYBRID AND INTELLIGENT ENERGY STORAGE
SYSTEMS IN STANDALONE PHOTOVOLTAIC
APPLICATIONS.

Autor

lvan Sanz Gorrachategui

Director/es

OYARBIDE USABIAGA, ESTANISLAO
BERNAL RUIZ, CARLOS

UNIVERSIDAD DE ZARAGOZA
Escuela de Doctorado

2021




Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es



«2s  Universidad
18 Zaragoza

1542

PhD Dissertation

Hybrid and Intelligent Energy Storage Systems in
Standalone Photovoltaic Applications

Author
lvan Sanz Gorrachategui

Advisors
Dr. Carlos Bernal Ruiz
Dr. Estanislao Oyarbide Usabiaga

Departamento de Ingenieria Electronica y Comunicaciones
Escuela de Ingenieria y Arquitectura
University of Zaragoza, Spain

September 2021







Abstract

Remote systems such as communication relays or irrigation control
installations cannot usually be powered by the electrical grid. One of the
alternatives is to power these systems through solar panels, in what is known

as standalone photovoltaic applications.

Most of these systems need a continuous operation, but a standalone
photovoltaic installation cannot be powered during the night. For this reason,
they use batteries to store excess energy during the day. These storage systems
have been traditionally based on Valve Regulated Lead Acid (VRLA) batteries,
but some effects can alter their performance in terms of reliability, operation
cost and maintenance. One of the key issues that alter the energy behavior of
the photovoltaic off-grid systems is the Partial State of Charge (PSoC) effect:
Batteries cannot be completely charged as manufacturers indicate due to the
day-night cycle. This gets the battery into an intermediate state of charge that

effectively reduces its capacity, even halving it in some cases.

To mitigate the impact of these effects on the installation, batteries tend to
be oversized with some security margins. These oversizing factors can be
incredibly high and have a huge impact on the deployment and maintenance

cost of the facility.

The first part of this thesis highlights some of these key concepts, analyzing
which of them are critical in specific design cases, modeling them into a
simulation tool, and as an outcome, establishing optimal sizing regions for the

installations.

After the analysis, different ways of improving the performance of the
installations are proposed. One idea to mitigate PSoC is to combine different
storage technologies in a Hybrid Energy Storage Systems (HESS). HESSs have
traditionally combined high energy density elements as batteries with high
power density elements as ultracapacitors. An iteration of this idea is carried
out throughout this thesis, where different types of batteries are combined.
Each of them is best fitted to different power patterns in the application, such

as daily cycles or emergency periods.
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It is possible to further increase the performance by using intelligent
algorithms to improve the functionalities of the Battery Management Systems
embedded in these applications. To this end, failure prediction and health
estimation algorithms are proposed as contributions of this work. These new
algorithms endow the HESS with tools to predict possible energy disruption

events and to anticipate aging, and thus, act accordingly.
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Resumen

Debido a su localizacién, sistemas remotos como los repetidores de
comunicaciones o los sistemas de control de riego no pueden ser alimentados
desde la red eléctrica en muchas ocasiones. Una de las alternativas mas comunes

para alimentar este tipo de sistemas es el uso de paneles solares.

La mayoria de estos sistemas tienen un uso y un consumo constante, pero
como es logico, inicamente mediante el uso de paneles solares, no pueden ser
alimentados durante la noche. Por este motivo, utilizan baterias para almacenar
el exceso de energia durante el dia. Tradicionalmente, estas baterias han estado
basadas en quimicas como el plomo regulado por vélvula (VRLA). Existen
distintos efectos como la temperatura, el envejecimiento, o el estado de carga
parcial (PSoC) que afectan a estos sistemas de almacenamiento, reduciendo su
fiabilidad y afectando a su coste de operacion y a su mantenimiento. Para
mitigar el impacto de estos efectos, las baterias suelen estar sobredimensionadas
con ciertos factores de seguridad, que en ocasiones puede ser exageradamente
grandes, y tienen un gran impacto en el coste de instalacién, mantenimiento y

reemplazo de las instalaciones.

La primera parte de esta tesis incide en la problematica de estas instalaciones,
describiendo los distintos efectos que afectan a sus prestaciones, modelando los
sistemas de almacenamiento y estableciendo como resultado las regiones de

dimensionamiento 6ptimo de estos sistemas.

Después del andlisis, se abordan distintas maneras de mejorar las
prestaciones de dichas instalaciones. Para mitigar el estado de carga parcial, se
propone la combinacion de distintas tecnologias de almacenamiento, en lo que
es conocido como sistemas de almacenamiento hibridos (HESS).
Tradicionalmente, estos sistemas se han planteado como combinacion de
elementos de almacenamiento orientados a aplicaciones de energia (baterias) y
elementos de almacenamiento orientados a aplicaciones de potencia

(supercondensadores).

En esta tesis se propone una vuelta de tuerca sobre este concepto. Aqui, se

propone la combinacién de distintas quimicas de baterias, cada una de ellas
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enfocada a un tipo de uso en la aplicacion, como los ciclados diarios, o el rol de

emergencia.

Para ampliar las prestaciones de los sistemas de almacenamiento, también se
propone el uso de algoritmia inteligente. En este trabajo se han desarrollado
algoritmos de prediccion de fallos y de estimacion del envejecimiento de las
baterias en estas instalaciones, de tal manera que se dota a los sistemas de
almacenamiento hibridos con herramientas para anticipar distintos eventos

potencialmente probleméaticos y actuar en consecuencia.
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Chapter 1.-Introduction

Chapter 1.- Introduction

This chapter serves as an introduction to this dissertation. In it, the framework
where it has been developed is presented. Going into further detail, standalone
photovoltaic installations and their energy storage systems are described. The tools
explored in the rest of the dissertation, Hybrid Energy Storage Systems, and Machine-
Learning technigues, are introduced. Finally, the chapter presents the objectives of the
thesis.
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1.1 Background

1.1.1 Standalone photovoltaic applications

In recent years, communication technologies and infrastructures have
advanced notably. Today, we have the possibility of accessing any kind of
information regardless where we are. To make this possible, a large
communication network is needed, with multiple nodes and intermediate
systems. Mobile communications for example require numerous base stations
and relays to provide services to a large wireless area. Other applications are
also of vital value, such as the management of irrigation systems, which also

need infrastructure for data collecting, communications, actuators...

These networks and systems fall under the umbrella of ambient intelligence.
In the EU, the Horizon 2020 program during the past decade included the
development of these systems as a strategic goal. This sector supposed an
estimated yearly turnover of 1.780 M€ in the EU. Other international programs,
such as NSF in the US or MOHURD in China also focused on these goals.

The deployment of these networks has an impact on multiple different
services, such as Smart Cities, the management of natural resources as water
and renewable energies, homeland security systems, transport services
management, communication networks, or street lighting. Ultimately, these
systems are needed in any scenario that requires sensing information and acting

on a certain number of distributed stations.

However, and due to the remote location of some of these stations, it is not
always possible to connect them to the distribution grid. Therefore, in these off-
grid applications, it is necessary to use autonomous generation systems to power
these facilities. Traditionally, fossil fuels have been used for this task, but in
recent years, the use of renewable energy is becoming the go-to option. Among
the renewable energy options, photovoltaic energy is probably the most common
option, at least in small and medium-size installations, such as the one in Fig.
1.1. Other sources such as wind energy (micro-turbines) also have some presence

in this niche.
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Fig. 1.1. Standalone Photovoltaic Installation in Sigena, region of Aragén, Spain

However, renewable energies have a disadvantage regardless of their type,
which is their availability. Usually, the application cannot depend on whether
the renewable resource is available or not. For example, applications such as
base stations have a mostly DC consumption throughout the day and night and

cannot depend on the availability of solar or wind resources.

To make the energy generation problem independent from the application,
these power systems usually include Energy Storage Systems (ESSs) that allow
the system to be flexible. These systems serve a double purpose. On the one
hand, they act as an energy buffer to power the system during the night, since
there is no solar irradiation at that moment. On the other hand, they also serve
as an emergency backup, powering the system during cloudy or foggy periods

of several days.

1.1.2 Storage elements

Energy Storage Systems are also key elements in the development of modern
societies since during the last decades the concern for sustainable development
has increased on a worldwide scale. Currently, the Sustainable Development
Observatory has established the Sustainable Development Goals (SDGs) as a
means to achieve the objectives towards the 2030 Agenda. Among the 17 SDGs
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that have been established, three of them are directly related to the ecologic
transition and the energetic paradigm (SDG7, SDG12, and SDG13). Some of
the strategic points common to these goals are the need for increasing the
deployment of renewable energies and the concern on energy productivity, and

this cannot be done without research and development on ESSs.

Research in the field of ESSs has risen in recent years. Multiple energy
storage technologies have been developed for many different applications, such
as those based on electrochemical reactions (batteries), electric field
(capacitors), mechanical elements (flywheels)... The recent development in these
technologies has been mainly driven by some applications such as electric
vehicles (EV), DC micro-grids, and other industrial applications such as
battery-powered elevators or peak-shaving systems. These applications use new
storage technologies with high-power capabilities and deep charge and discharge
cycles, such as lithium-based chemistries, as well as other high power-oriented
technologies such as ultracapacitors (Lu et al. 2013; Thounthong, Raél, and
Davat 2009; Carignano et al. 2017). Other conventional applications, such as
energy storage in solar-powered micro-grids, use other bulk storage technologies,

such as lead or nickel-related chemistries.

Regardless of their nature, the different storage technologies can be arranged
according to their specific energy density and their specific power density.
Ragone plots (Ragone 1968; Christen and Carlen 2000) are a well-known kind
of diagram which represents these two magnitudes. As an example, Fig. 1.2

shows a Ragone plot with different storage technologies (Budde-Meiwes et al.

2013).

This diagram shows the tradeoff between power and energy for multiple
storage technologies. On the one hand, elements such as capacitors or
ultracapacitors are capable of handling high power rates but they are not
capable of storing a large amount of energy. On the other hand, storage
elements such as batteries, fuel cells, or diesel generators are capable of storing

a large amount of energy, but deal worse with high power rates.
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Fig. 1.2. Example of Ragone plot with different battery chemistries (Budde-Meiwes et
al. 2013).

Even within batteries, some chemistries are best suited for energy density
requirements whereas other chemistries are more oriented to power density
applications, as can be seen in the plot. Ultimately, the selection of storage
technology depends on the generation and consumption patterns of the specific

application.

Different combinations of storage elements have been proposed in the
literature to provide a flexible storage system, capable of providing energy at
high power rates and of acting as a bulk energy reservoir. This has been
typically done by combining ultracapacitors and batteries. These systems are

referred to as Hybrid Energy Storage Systems (HESSSs).

In standalone photovoltaic applications, batteries are used as energy storage
elements in their ESS. Despite the increasing knowledge of the battery field and
the development of new battery technologies (lithium-ion chemistries), the
batteries used in large off-grid photovoltaic installations are mainly based on
well-known chemistries such as Valve-Regulated Lead Acid (VRLA) or Nickel-
Cadmium (NiCd). An example of one of these ESSs is depicted in Fig. 1.3.
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Fig. 1.3. VRLA-based ESS in a photovoltaic standalone installation

However, these systems suffer from some issues in their daily operation, such
as Partial-State-of-Charge (PSoC) or temperature-related issues, which worsen
the performance of the batteries. To solve these problems, battery packs in
these installations need to be oversized, and even then, they start having
problems years before their expected End of Life (EoL). In future chapters,

these issues will be expanded.

The BATT-Ex project [(“BATT-Ex- Desarrollo de Extensores de Vida Util
de Baterias Para Sistemas Auténomos Alimentados Por Placas Fotovoltaicas |
SICE” n.d.)], where this thesis started, aimed to solve, or at least mitigate these
last issues. In the framework of said project, this thesis has counted with the
support of the Government of Spain and the Confederacion Hidrografica del
Ebro (CHE) state entity. This institution manages different elements regarding
the river Ebro basin, which includes most of the northeastern region of Spain
(see Fig. 1.4). They are in charge of tasks such as the control of irrigation
channels, the control of water reservoirs and dams, rain and snow
measurements... To do so, they count on a metering and communication

network, with several installations distributed across the basin.
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Fig. 1.4. Ebro basin map.

Among the installations in the basin, 333 of them are standalone and rely on
solar panels and batteries to operate. Some of these installations have been used
in the thesis as data-collecting stations. Others, to deploy hardware and

software solutions, as will be developed in future chapters.

The ultimate goal of the project was to improve the performance of the ESSs
in this kind of remote installations. To achieve this goal, two different and
complementary approaches are explored within this thesis: the use of HESSs

and intelligent algorithms.

1.1.3 Hybrid Energy Storage Systems

Conventional ESS rely only on one storage element. As explained above,
depending on their generation and consumption patterns, certain applications
may need different storage technologies. As a solution, HESSs, which combine

different storage elements, have been developed in recent years.

The division of the storage element in multiple sub-systems allows flexibility
in the charge and discharge processes, which can be controlled to a certain
degree of freedom. HESSs have been typically addressed as the combination of

power-oriented storage elements with energy-oriented storage elements, which

7
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act as bulk energy storage. By using these different storage technologies, the
system can optimize the energy flow so each storage subsystem is used with its
best charge/discharge regime, improving the overall energy absorption processes
and minimizing aging on the elements. Such storage technologies include
batteries of different chemistries, ultracapacitors, fuel cells.. For example, the

combination of batteries and ultracapacitors has been studied previously in

(Jian Cao and Emadi 2012; Khaligh and Zhihao Li 2010; Kroics 2015).

However, this case is not suitable in these standalone photovoltaic
applications, since the consumption is mainly DC, and they are energy-oriented
applications with a day-scale sparsity in power generation. Therefore, there is
no need for a power-oriented element. For this reason, a different kind of HESS
is going to be explored, by combining two energy-oriented elements to provide

a solution for the problems in these installations.

1.1.4 Machine-learning techniques

The use of machine-learning techniques in battery research has a wide range
of applications. Several studies use these tools as a means to model, diagnose
or predict the behavior of batteries. Specifically, health-related problems have
proven to be a challenging task for conventional estimation approaches, and are

a promising field for data-driven algorithms.

Additionally, these techniques have also been applied to the field of
standalone photovoltaic installations on multiple occasions with different
approaches, such as predicting irradiation, predicting cloudy periods with or
without weather forecast.. Batteries in these installations have also been the
subject of study with these tools. In this regard, State of Charge (SoC), State
of Health (SoH), or Remaining Useful Life (RUL) are some of the most common

battery-related parameters to be estimated that are studied in the literature.

In the last part of this thesis, different machine-learning techniques are going
to be explored. Specifically, the goal is to develop algorithms to aid Battery
Management Systems (BMS) to make better decisions in battery charging and

management strategies, thus increasing their performance and reliability.
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1.2 Objectives

The main hypothesis in this thesis is that Energy Storage Systems in

standalone photovoltaic applications suffer from different effects that burden

their performance, and that they can operate better by using different

techniques. Among them, Hybrid Energy Storage Systems and machine-

learning tools. Under this hypothesis, the following objectives are proposed:

To study standalone photovoltaic installations and their Energy
Storage Systems. This includes understanding their architecture, their
generation and consumption patterns, how to size their storage
systems, the storage technologies, and the key effects that burden
their performance.

To propose a flexible model capable of performing time-domain
simulations of these systems and capturing these undesired effects.
To study the viability of using Hybrid Energy Storage Systems as a
means to mitigate the issues in the installations and to improve the
performance. To this end, different storage technologies, architecture
configurations, sizing, and control options must be studied. Finally, a
simple but novel solution is going to be developed and implemented
in a real system, and its performance through some months in
operation is to be evaluated.

To explore smart control techniques to endow Battery Management
Systems with tools to diagnose the installations and address different
battery-related problems. These tools are going to be machine learning
based. Specifically, the problem of energy shortage prediction is going
to be addressed. The goal is to predict a future blackout in a short
period to act accordingly. Additionally, the aging estimation problem
is going to be addressed as well, so battery replacement can be

planned.
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1.3 Outline

The general outline of this dissertation is shown in Fig. 1.5. It has been

divided into three main parts and the conclusions chapter.

The first section, including Chapters 1 and 2, establishes the state of the art
of standalone photovoltaic applications. A review of their storage elements,
battery models, sizing methods, and most impactful issues is presented. As
conclusions, two complementary ways to solve or mitigate these issues are
proposed, namely a hardware approach that can be complemented by a smart
management strategy. The hardware solution is based on Hybrid Energy
Storage Systems with DC/DC converters, whereas the smart management
strategy exploits data-driven algorithms to optimize the SoC and SoH of these

installations.

The second part, which includes Chapter 3, studies the solution based on
HESSs. The most suitable chemistries, architectures, and control strategies are
explained. The sizing of these systems is also explored, and conclusions on their
performance are obtained. The concept is validated through a hardware
implementation on a real installation and the analysis of its performance over

several months.

The third part, Chapters 4 and 5, explores machine-learning techniques that
can be used to improve the performance of these HESSs. Specifically, Chapter
4 explores sequence-processing tools that process the voltage and current
waveforms of the batteries and try to predict future failures. On the other hand,
Chapter 5 addresses the aging estimation of lithium-ion batteries, developing
some new techniques to diagnose cell degradation and to predict battery

replacement.

Finally, Chapter 6 collects the main conclusions obtained throughout the

thesis and establishes future research lines.

10
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Chapter 2.- Energy Storage in Standalone

Photovoltaic Installations

This chapter delves into the problems of standalone photovoltaic installations,
which rely on a solar-based energy generation system and a battery-based energy
storage system. The focus is modeling and sizing these energy systems, the issues they
face, and proposals on how to improve their performance and operation.
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2.1 Conventional storage systems

Energy Storage Systems in photovoltaic standalone installations are designed
to power the system when there is not enough sun irradiation. In these
applications, different power generation patterns appear. Such patterns include
deterministic variations as daily charge-discharge cycles and seasonal variation
in weather and irradiation, but also other phenomena with a chaotic nature,
such as sudden cloudy intervals and long periods with low solar irradiation due
to fog or snow. The storage systems must store energy to power the installation
during these events, and have to be designed taking into account the seasonal
variation of irradiation. On the other side, consumption patterns may vary
depending on the specific application. In the case being considered throughout
this thesis, the consumption has been observed as mainly DC. An example of
these current generation and consumption patterns in the installations is shown

in Fig. 2.1.
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Fig. 2.1. Different generation / consumption patterns in the photovoltaic installation.

A general diagram of this type of installation is shown in Fig. 2.2. Here, the
solar charger has been depicted as the Maximum Power Point Tracking
(MPPT) block, since this is the most common type of charger nowadays (De
Brito et al. 2013; Subudhi and Pradhan 2013; Esram and Chapman 2007). The
output of the MPPT bus is connected to a DC bus, where the main battery

pack and the load are connected as well.

Regarding the storage technology, this application does not require elements
specialized in high energy densities, nor high power capabilities. As result, Lead-

Acid batteries (gel or valve) or Nickel-Cadmium (NiCd) batteries have been

16
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traditionally used for this purpose, since they are cheap and well-known

technologies. In recent decades, Nickel-metal hydride (NiMH) has also been

considered due to its better cyclic behavior (Zelinsky, Koch, and Young 2017).
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Fig. 2.2. Generic ESS architecture in a standalone photovoltaic installation.

Other new chemistries even better suited for cycling applications, such as

Lithium-Ion batteries and their multiple variations, may be considered for this

task too. They are designed to charge and discharge in a short period and will

be able to fully charge during daily cycles. Nevertheless, these are still expensive

technologies, and therefore, other solutions such as the combination of different

elements may be considered.

Table 2.1 shows a brief review of the most common chemistries in the

industry nowadays (Carrilero et al. 2018; EPEC 2021).

. . Max.
Specific Energy Life cycles . Cell
. . discharge
Chemistry Energy Density (100% voltage
(Wh kg')  (Wh I) DoD) current (V)
8 (C-rate)
Valve Regulated 30-50 40-80 200-300 0.2C P
Lead-Acid (VRLA) '
NiCd 45-80 60-150 1000 1C 1.2
NiMH 60-120 120-280 300-500 0.5C 1.2
LiCoO, (LCO) 170-185 450-490 500-100 1C 3.6
5C DC
LiFePO, (LFP) 90-125 130-300 1000-2000 3.2
10C pulsed
LiNiMnCoO2 155-190 330-365 500-1000 1€ De 3.7
(NMC) i i i 5C pulsed '
10C DC
Li,Ti;04, (LTO) 65-100 118-200 12000 2.5
20C pulsed

Table 2.1. Features of different chemistries.
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Lead-acid batteries are the most widely used batteries for different
applications. They are the cheapest chemistry, but they do not age well under
deep discharge cycles or high temperatures, whereas low temperatures reduce
their effective capacity. In the niche of photovoltaic applications, their valve-

regulated version (VRLA) is usually preferred due to lower maintenance costs.

Nickel-Cadmium (NiCd) batteries suppose an improvement on the
performance of lead-acid batteries, with a better temperature behavior and
increased service life. They also operate better under deep-cycle regimes.
However, their use is deprecated due to Cadmium, which is a very toxic element
with an expensive recycling process. Their cost is substantially higher than lead-

acid batteries.

Nickel-Metal Hydride (NiMH) is an evolution over the NiCd technology,
which does not include Cadmium and is much safer and easier to manage.

However, this technology counts with a high self-discharge and a shorter service

life.

Lithium Cobalt Oxide (LCO) is a technology with high energy density but
low power density. It does not work well in high demanding applications in
terms of C rate. Thus, it is the preferred technology in low power, portable
applications. Its service life under high Depth of Discharge (DoD) cycles is low,
and it is more expensive than other alternatives, thus it will not be considered

for this application.

Lithium Nickel Manganese Cobalt's (NMC) main advantage is its great
energy density, which allows for a more compact battery pack. Its high cell
voltage also decreases the number of cells needed for a certain application.
However, its service life is lower than other technologies such as LFP or LLTO.
On a side note, it contains cobalt, which makes it more expensive than LFP. It

also contains hazardous materials, which can be a problem in some sectors as

EV.

Lithium Titanate Oxide (LTO) technology promises a much larger number
of life cycles and good thermal stability, but it is not competitive nowadays due

to its cost. Besides, its low specific energy and low cell voltage make necessary
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a larger number of cells, which increases additional manufacturing and
installation costs (such as BMS or connectors) and undermines its development

in a broad range of applications.

The Lithium Iron Phosphate (LFP) technology has some advantages over
other Lithium-ion alternatives, such as a high number of life cycles and its
competitive cost. On the other hand, the main disadvantages of this chemistry
to others are a low energy density and a medium voltage level, which increases
the size and weight of the storage pack. However, in the photovoltaic
application, this is usually not a critical design parameter. The power
capabilities of this technology are also not optimal, but more than enough in

the application, since low current rates are expected.
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2.2 Installation sizing

The sizing of standalone photovoltaic installations has been studied in the
literature. Different sizing methods have been analyzed (Shrestha and Goel
1998; Shen 2009; Kazem, Khatib, and Sopian 2013; Kebaili and Benalla 2015;
Khatib, Ibrahim, and Mohamed 2016), and can be classified into averaged,

analytical or numerical methods.

The sizing of the ESS in standalone photovoltaic installations is conditioned
by the DC power consumption of the application. It can range from milliwatts
in small harvesting sensors, to several kW in larger facilities such as a
communication relay. It conditions the rest of the ESS since the sizing of the

system must guarantee the energy supply needed by the installation.

Conventional ESSs in standalone photovoltaic installations usually rely on
two main sizing parameters: the nominal energy of the storage elements and
the nominal power of the solar panels. The sizing of these elements must fulfill
the power consumption requirements, taking into account the nominal voltage

of the load.

In the case of systems with a high peak-to-average power consumption ratio,
the peak value would condition the selected storage technology and the sizing
of the DC-DC converters. As introduced before, this is not going to be the case
of study in this dissertation since the consumption is going to be considered

mainly DC, although the study of these cases could be a future research line.

2.2.1 Battery sizing

Batteries count with two main sizing parameters: the Nominal Voltage,
measured in Volts [V]; and the Nominal Capacity, measured in Coulombs [C]

or Ampere-hours [Ah].

The voltage of battery cells is usually in the range of a few volts. For
example, lead-acid cells have a nominal voltage of 2V. In a conventional ESS
architecture, such as the one in Fig. 2.2, the battery pack is connected in parallel

to the load (or loads) of the installation. Said loads usually count with their
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voltage regulator (a DC-DC converter), with a specific input voltage, typically
in the range of 12, 24, or 48 Volts. Therefore, multiple cells must be stacked in

series to reach the desired load voltage.

The other parameter when sizing batteries for ESSs is capacity [Ah]. Only
some fixed capacities are manufactured, so flexibility in the design of
installations is limited. If needed, cells can also be stacked in parallel to increase
the capacity of the battery pack. It is sometimes useful to express the battery
size in terms of its Nominal Energy [Wh], which would be the product of its

Nominal Voltage and Nominal Capacity.

Generally, the selection of the battery capacity will depend on the
environment of the installation (geographical location, climate...), the load
requirements, the target autonomy, and the security margins. Battery
manufacturers and others such as IEEE provide guidelines to aid the designer
in this task, with different correction factors due to aging, maximum cycling,
or temperature. These factors oversize the batteries as a means to provide a
safer operation. As an example, reference (IEEE 2019) includes
recommendations on how to size these installations based on manufacturers'

data and high oversizing factors.

2.2.2 Photovoltaic power sizing

The other sizing parameter is the nominal power of the solar panels. This
value is generally given as the peak power generation. For a given panel
technology, this parameter can also be specified as the effective area of the

panels.

The focus of this thesis is on the storage system rather than the generation
system, so the solar panels will only be addressed from a nominal power point

of view, without looking further into panel technologies.

2.2.3 Sizing maps

The sizing problem can be studied graphically. The size of the panels and

batteries are two degrees of freedom that define a space with infinite sizing
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scenarios. This space can be represented as a surface (or map). Thus, each point
on the map corresponds to a specific sizing scenario, with the third axis being

the figure of merit considered (e.g. the availability of the system).

Different figures of merit have been defined in the literature for this purpose.
Among them, the most common is probably the Loss of Load Probability, LLP
(2.1) (Kazem, Khatib, and Sopian 2013; Khatib, Ibrahim, and Mohamed 2016).
This figure represents the probability of a system running out of energy. It can
be obtained as the portion of time that an ESS remains without energy (T;)
compared to the total operation time (T,perarion). Conversely, the system
availability (2.2), which expresses the portion of time that the system is
available, can be defined as the complementary figure of merit. An example of
a map is shown in Fig. 2.3, taken from (Kebaili and Benalla 2015). In this
reference, these maps are used to size photovoltaic installations in different

cities in Algeria.

. Ty
LLP = —— (2.1)
operation
availability = 1 — LLP (2.2)
01 |:| Oran a
| |Tiemcen b
0.08 |:| Ain sefra C
|:| Tindouf d
2 0.06
—
0.04 -
0.02

10T d 8000

PV field area (m°) s 6000
0~ 4000 Useful battery storage (Wh)

15

Fig. 2.3. Example of sizing maps (Kebaili and Benalla 2015).
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Other figures of merit can be included in these maps, such as installation
cost, or performance compared to cost. Thus, by using these maps, the optimal
design regions for each specific installation can be visually determined, as well

as the cost and performance contour maps.

Sizing normalization

In Fig. 2.3, the magnitudes in the X and Y-axes are the PV field area [m’|
and the useful battery storage [Wh]. The specific values of these axes are closely
related to the specific application under study, specifically to its consumption
patterns. However, it is possible to normalize these parameters by the DC
consumption of the application. By doing so, the sizing maps no longer depend
on the specific values of the application, and general conclusions can be drawn

from them.

The energy capacity of the battery can be normalized to the DC consumption

of the installation, thus defining the autonomy a of the installation (2.3).

E
a[h] 2 —2&tnom (2.3)
Pload

Where Epqt,,,. is the nominal energy of the battery, and Pyqq is the DC

consumption of the application.

The photovoltaic power can also be normalized to DC consumption.

Therefore, the generation ratio g of the installation is defined (2.4).

P solarypg

L — 24
g Pload ( )

Where Psorar,,, is the peak value of the power of the solar panels, and Pjyqq

is again the DC consumption of the application.

The normalization of the design parameters allows comparing optimal design
regions for different installations and obtaining conclusions on the sizing
decisions being made. After the normalization, the sizing map is independent of
the specific features of the application and only depends on the battery

technology and the power generation / consumption patterns. From now on,
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the design maps of the installations will be represented with these two

normalized variables.

An example of a normalized sizing map is shown in Fig. 2.4. The total
autonomy of the system is represented in the abscissa axis, and the generation
ratio in the ordinate axis. The map shows the contour plots of the Loss of Load
Probability in a color scale. It and has been obtained by simulating different
installations, with different generation ratios and autonomies. The same
irradiation and consumption patterns have been used as inputs. The simulation

methods and models are described in forthcoming sections.

LLP (%) Conventional ESS

13

12.5

-
N

-
N
[6)]

-
-

10.5

Generation ratio g [p.u.]
© N
© o o

®
3

8 1
50 100 150 200 250 300 350 400 450 500
Autonomy a [h]

Fig. 2.4. Example of a normalized Loss of Load Probability sizing map.
Looking at the normalized sizing map, four main design regions can be
appreciated. Maps with other battery technologies or generation patterns also

share these same regions (although they may be located at different absolute

values). These regions are described below.

e Region A: This design region is not desirable due to the low storage

capacity (autonomy of the installation).
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e Region B: Design region with a good tradeoff in performance (good
LLP) without an oversized system.

e Region C: Undesirable design region due to low solar generation
capabilities.

e Region D: Design region with good performance, but with an oversized

system.

Other interesting conclusions can also be drawn from the maps to improve
existing installations. In this case, it can be noted that below g = 10, it is more
convenient to increase the number of solar panels rather than increasing the
battery pack since LLP has an asymptotic behavior in the direction of
autonomy. Reciprocally, with autonomies below 100 hours, it also makes more

sense to increase the size of the battery pack rather than the solar panel power.
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2.3 Degraded performance

Battery-based ESSs in standalone photovoltaic installations suffer from
different effects that worsen their performance, either in the short term or in

the long term (aging). Some of the most important effects are described below.

2.3.1 Ambient temperature

Temperature influences battery operation in different ways. The impact is
greater depending on the specific chemistry of the cells, both in short-term
operation and long-term degradation. These two effects are characterized
independently by the manufacturers (Exide Technologies 2012; Saft Batteries
2007).

Short-term performance

The impact of temperature on battery capacity is shown in Fig. 2.5. The
reference temperature is considered 20°C (or 25°C in some cases) in the tests.
At this temperature, the battery shows 100% of its nominal capacity.
Conventional lead-acid batteries increase their instantaneous capacity when
used at temperatures above the nominal. On the other hand, below this
temperature, their capacity decreases. This trend can also be observed in other

chemistries such as NiCd and LFP batteries (Omar et al. 2013).
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Fig. 2.5. Short-term temperature effect on capacity.
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Generally, when capacity reduction is measured by manufacturers, the
temperature is constant during the cycles. However, manufacturers do not
provide data on capacity reduction when the temperature changes within the
same cycle. In a standalone photovoltaic application, batteries are always
charged during the day and discharged at night, and therefore they can operate

at different ambient temperatures within the same cycle.

Cross-temperature tests have been carried out in the literature to determine
the impact of this effect on the VRLA and the NiCd chemistries (Garayalde et
al. 2017), and the results on the obtained charge are shown in Table 2.2. Tt can
be appreciated that the results follow the trend described by the manufacturer.
However, charging at the nominal temperature diminishes the impact of
temperature on capacity by approximately 66% (from -34.7% to -12% when
cold, from 16.4% to 5% when hot). The results obtained in said reference for
the NiCd chemistry seem to contradict manufacturer’s data, as they seem to

work better in cold environments than in hot.

From these tests, a possible strategy for improving VRLA operation could
be heating the cells. It would not be necessary to do so during the whole
operation cycle, since heating during the charging process has a significant
impact. In the case of NiCd, operation at temperatures above the nominal has
proven to be detrimental, so in this case, cooling the cells would be a more
appropriate strategy. These temperature-related strategies are not going to be

explored in the thesis, but represent a plausible future research line.

. Charge temperature Discharge Extracted charge
Chemistry
[°C] temperature [2C] (compared to 252C)
25 5 -12 %
9 .
PbA 5 35 +5%
5 5 -34,7 %
35 35 + 164 %
25 5 +89%
NiCd 25 35 -1%
1‘ 5 5 1102 %
35 35 -10 %

Table 2.2. Experimental results from the cross-temperature experiments (Garayalde

et al. 2017).
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Temperature effect on aging

Battery aging is usually represented by the State of Health (SoH) of the
battery, defined as in (2.5). Here Cpq,, represents the nominal capacity of the
battery and Cggeq, its aged capacity. SoH = 100% means a new battery, while
SoH = 0% means that the battery has reached its End-of-Life (EoL). A common
criteria for this is considering an aged battery when the aged capacity reaches
80% of its nominal capacity (EoL = 0.8 in the equation).

(M —E oL)

CTLOTIl

1—-EoL

(2.5)

SoH (%) 2 x100

Temperature also influences battery aging. At the reference temperature, the
battery shows its nominal service life. Generally, cells last longer if used at a
colder temperature, and age faster if used at warmer temperatures. Arrhenius'
Law is used as a rule of thumb for lead-acid batteries, which estimates that the
service life of the battery is halved for every 10°C increase above the nominal

temperature.

The impact of temperature on VRLA and NiCd aging is shown in Fig. 2.6.
By comparing both temperature-related effects, it can be established that a
battery above the nominal temperature improves its instantaneous
performance, but ages faster. On the other hand, a battery below the nominal
temperature ages slower, but has a lower storage capacity.

100
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Battery Life [%]

20

— Pba
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Fig. 2.6. Long-term temperature effect on battery life.
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2.3.2 Continuous cycling

The short and medium-term performance

When included in ESS in standalone PV installations, batteries suffer from
an additional effect that limits their operating capacity. This effect is related
to the charging process of the batteries under daily cycles, and has been
reported and defined in (Moseley and Rand 2012; Garayalde et al. 2017; Sanz-
Gorrachategui et al. 2018; Swingler and Colgate 2018). This is known as Partial
State of Charge (PSoC).

To understand the PSoC effect, the charging process of a battery needs to
be explained. This process can be divided into two main stages, the current
regulation phase (CC stage) and the voltage regulation phase (CV stage). Fig.

2.7 shows an example of a charging process with constant current.
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Charge rate (C)

Fig. 2.7. Two-staged charge process with constant current.

As the battery charges during the CC stage, its internal, open-circuit voltage
(vocs) begins to rise, as does its terminal voltage (). The difference between
them depends on the series impedance of the battery. During this stage, the

battery absorbs all the available generation power. Eventually, the battery
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reaches the float voltage, and then the voltage regulation phase starts, where
the battery charger controls wiu. The current starts decreasing, and thus, the
charging power decreases. Batteries must remain in this stage for a certain
amount of hours (depending on the chemistry) before being completely charged.
For example, the VRLA technology must remain in this stage for up to 72 hours
(Exide Technologies 2012). The higher the series impedance, the sooner the
battery reaches this stage. Additionally, chemistries with linear voltage curves
reach this stage faster than chemistries with flat curves. These two elements

are explained in the modeling section.

The charging process in a standalone photovoltaic system follows the same
stages. Here, batteries are charged during the day and discharged at night. A
typical daily charge waveform in one of these installations is shown in Fig. 2.8.
At noon, the input power is maximum, thus generating a high current. This
current rises battery voltage, which eventually reaches the float value and the
battery enters the CV stage. Paradoxically, when irradiation is maximum, the
absorbed power starts decreasing. Furthermore, sun irradiation hours are
limited so batteries re-enter the CC stage as they start discharging when
irradiation decreases. Thus, batteries cannot remain in float state for the
number of hours required to reach the full-charge state, and they become

partially charged.

60 ‘ ‘ 60
R CCstage (I CVstage | CCstage
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Fig. 2.8. Two-staged charge process in a standalone photovoltaic installation
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This partial charge process is repeated daily in the standalone photovoltaic
installations. In the medium term (months), it takes the battery into the Partial
State of Charge (see Fig. 2.9). Even though batteries reach the float voltage
every day, they are never fully charged, so they have less energy than expected

and will be less ready if of a low-irradiation period happens.
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Fig. 2.9. SoC evolution under incomplete charges (PSoC).

Cycling impact on _aqging

Batteries in this application are under a continuous cycling regime, which
accelerates aging. This effect is particularly significant in technologies such as
VRLA when operating under deep cycles. This phenomenon is characterized by
the Depth of Discharge (DoD), defined as in (2.6), where Cpop, is the nominal
capacity of the battery, and Qg ;s is que discharged charge during the cycle.

DoD (%) £ fﬂ x100 (2.6)

nom

The impact of this effect depends on the specific battery technology since
there are chemistries (lithium-ion variants) with better cycling performance and
are not affected that much by it while other chemistries, better suited for

stationary use, are greatly impacted.

Different standard tests are carried out by manufacturers to characterize this

impact (such as ITEC60896). During these tests, a continuous charge and
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discharge cycle of the same depth (60%) is performed on the batteries along
with a certain number of cycles, until the battery is considered to have aged.
Afterward, aging is extrapolated in an inversely proportional curve for the

remaining DoD values. An example of these tests is shown in Fig. 2.10.
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Fig. 2.10. DoD impact on aging for one example chemistry (OPzS solar by Exide).

2.3.3 High float voltage

As a means to mitigate the capacity reduction effect caused by temperature
or PSoC, solar chargers use different charging strategies, usually based on

increasing the float voltage of the battery.

Regarding the temperature, a common technique is to increase the float
voltage when charging under low temperatures, and vice-versa. An example of

this for VRLA batteries is shown in Fig. 2.11a.

However, this increased float voltage has a detrimental impact on battery
aging, as shown in Fig. 2.11b. In general, using higher float voltages regularly,
greatly increases aging for chemistries such as VRLA or NiCd. Other
chemistries, such as some lithium-ion-based technologies, do not allow

overcharging their cells due to permanent damage to the batteries.
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Fig. 2.11. Temperature-dependent float voltage compensation (FEzxide Technologies
2012) (a). Relationship between float voltage and aging for lead-acid technology
(Yuasa Battery Corporation 1999) (b).

Regarding the Partial State of Charge, a common strategy is using additional
absorption stages in the charging process (Fig. 2.12). These stages increase the
voltage of the battery for a certain number of hours after the CV stage is
reached. This allows some extra charge to flow in, overcharging the battery and

reaching a higher SoC.

L Battery voltage

Battery current

Constant voltage, I Constant voltage,
decreasing current full charge

Constant current,
voltage increasing

Stage 1: Bulk (CC) : Stagezz(é\?)smp“on : Stage 3: Float (CV)

Fig. 2.12. Multiple-staged charge process
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However, absorption stages do not completely solve the problem and
accelerates aging. To avoid excessive degradation and other effects (e.g. gassing
on VRLA batteries), some charger models include variations to this process,
such as doing it monthly instead of daily. A possible improvement on these
systems would be adding intelligent algorithms with predictive capabilities, only

overcharging the battery if predicting low irradiation in forthcoming days.

2.3.4 Battery inefficiency

Batteries are not perfect energy accumulators i.e. not all the energy that is
stored can be extracted. Different parameters, such as the energetic or the
coulombimetric efficiency are defined in the literature to take into account this
effect. Different battery chemistries have different efficiencies. For example,
lead-acid batteries are generally considered to have an energetic efficiency of

around 80%, while lithium-ion batteries are around 95%.

This effect is stressed by the C-rate of the application. Under high C-rates,
batteries tend to provide less charge (Yuasa Battery Corporation 2006).
However, in the standalone photovoltaic applications being considered, C-rates
are not high (typically below C/10) so this additional effect is going to be
disregarded.
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2.4 Battery modeling

Battery models are needed for system simulation, sizing, and aging
estimation. Additionally, they are the core of more complex online estimation
algorithms implemented on in-situ applications, aimed to diagnose certain
operation-related parameters. Such parameters include State of Charge (SoC),
State of Health (SoH), State of Power (SoP), capacity or internal impedance
(Tang, Liu, and Gao 2017; Tong, Klein, and Park 2015; Shahriari and Farrokhi
2013; Piller, Perrin, and Jossen 2001; Plett 2004). To this end, several
techniques intending to model the battery behavior have been proposed in the
literature. Considering the modeling techniques, they can be classified into

different sub-classes such as electrical, physical, chemical or data-driven models.

Besides, simulation models are also interesting for developing future
generations of ESS. These systems will include more than one storage element,
becoming Hybrid Energy Storage Systems (HESS). In future years, research on
developing Energy Management Strategies (EMS) will become relevant, and
battery simulation models are key to develop, simulate and test these

algorithms.

Future chapters in this dissertation will use simulation models of batteries.
In this section, the modeling approaches for building these models are explained.
An electrical model is going to be considered as a basic structure and is

described in the following sub-sections.

2.4.1 Basic battery model

The main goal of this battery model is to mimic the electrical behavior of a
real battery. This behavior is characterized by the voltage on battery terminals
when a current circulates through it, or conversely, the current through the
battery when a voltage is applied to its terminals. The basic electrical model
structure is shown in Fig. 2.13. This model is also called the Equivalent Circuit

Model of the battery, or ECM.
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Fig. 2.13. Basic Equivalent Circuit Model of the battery.

The parameters in the figure are defined below:

® i, represents the current through the battery terminals.

o U represents the battery voltage at its terminals, measured with or
without current.

e 7is the output impedance of the battery. Different impedance models
have been proposed in the literature, and are described in the
following sections.

® . is the internal, open-circuit voltage of the battery. That is the
voltage at terminals minus the voltage difference in the output

impedance Z.

2.4.2 Energy storage model

The ability to store energy is contained in the controlled voltage source voc.
The value of this voltage source depends on the energy of the battery, which is

commonly expressed in terms of the State of Charge (SoC), as defined in (2.7).

SoC(%) £ T x100 (2.7)

nom

Here, q represents the charge stored inside the battery, which is obtained by
integrating iw... The parameter Ci., is its nominal capacity, as specified by the
manufacturer. It is generally measured with a complete charge and discharge
cycle at a nominal temperature (commonly, 20°C or 25°C). SoC can also be
defined as a function of time, as in equation (2.8). This definition is used in the
SoC estimation method known as Coulomb Counting, which can be used to
determine the SoC of a battery in operation, by integrating the current (Ng et

al. 2009).
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t

SoC(t) = . fibatt(r) dt x100
nom o
. . (2.8)
= SoC(ty) +C -fibatt(‘r) dt x100
nom to

The relationship between SoC and .., can be measured from a battery by
charging and discharging it with a low current, obtaining an approximate curve.

An example of these curves for an LFP cell is shown in Fig. 2.14.

3.8 A

3.6

3.4 -

Open Circuit Voltage [V]
[F]
%)
1

2.6 1

T
0 20 40 60 80 100
SoC (%)

Fig. 2.14. FExample of the SoC - v,., curve.

Equation (2.8) and the SoC — w.. curve build together the electrochemical
model (M. Chen and Rincon-Mora 2006). This model estimates SoC by

integrating the current and obtains v.., from the non-linear relationship. It is

represented in Fig. 2.15.

Fig. 2.15. Electrochemical model.
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2.4.3 Impedance model

The battery model is completed with a circuit model of the output
impedance. The impedance models are diverse and are selected mainly
according to the battery chemistry and the most relevant dynamics in the
application. Sometimes, a simple impedance model with an equivalent series

resistance (ESR) may be enough.

However, diffusion effects or different dynamic characteristics are often taken
into account. These effects are modeled by RC pairs added in series to the ESR.
One Time Constant (OTC) or Two Time Constants (TTC) models (Fig. 2.16),
including one or two RC pairs respectively, are commonly used for this purpose

(Dubarry and Liaw 2007; Rahmoun, Biechl, and Rosin 2013; Plett 2004).

Rp; Re;

Fig. 2.16. OTC impedance model (left). TTC impedance model (right).

More complex impedance models are also proposed in the literature. The
authors in (Coleman et al. 2007) use asymmetric impedance models (Fig. 2.17),
to capture different behaviors when charging (ch) and discharging (dis) the

batteries. These models are also known as hysteresis models.
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Fig. 2.17. Asymmetric impedance model.
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Additionally, the circuit elements may also vary with external variables, such
as temperature or aging. These considerations further complicate the modeling
process. It has been decided that an OTC impedance model can replicate the
dynamics of the application being studied, so it will be the option used for

battery modeling purposes.

Regarding the different techniques developed in the state of the art for
impedance modeling purposes, two main trends can be observed: large signal

and small signal characterization.

Large signal characterization

Large signal methods analyze the transient and the steady behavior of cells
when excited with pulse-shaped currents, of relatively high C-rates. The pulse
response is analyzed, and the impedance model can be fitted from the voltage-

current behavior.

These pulses are carried out at different SoC values, since the impedance
model may vary depending on it. The SoC initial value ranges from a fully
charged to a fully discharged cell, thus the impedance model is valid for the
whole operation range of the battery. Examples of these large-signal methods
are carried out in (Schweiger et al. 2010; Nital David 2016; Rodriguez et al.
2013).

Small signal characterization

Small signal methods are based on analyzing the frequency response of the
cell. In this case, the cell is taken to a resting SoC and is then excited with a
sinusoidal current, of small amplitude in terms of C-rate. The output voltage is
analyzed, in amplitude and phase. By changing the frequency of the input, the
whole transfer function of the system can be analyzed, thus obtaining the
impedance. This technique is also known as Electrochemical Impedance
Spectroscopy (Andre et al. 2011; Montaru and Pelissier 2010). It can be carried
out at different rest SoC values, thus obtaining the impedance model for a wide

range of operation points of the battery.
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2.4.4 Defective performance modeling

As explained in 2.3.2, the Partial State of Charge is caused by the incomplete
charging processes in the installations. To replicate this effect, the model of the
battery must be able to work with the different charging phases of the battery:
current regulation phase and voltage regulation phase. Since the transitions
between these phases are conditioned by the voltage at the terminals of the

battery, the impedance model is also important.

Other effects that worsen battery performance, such as temperature and
aging are usually modeled as a reduction of the capacity of the batteries
(Anbuky and Pascoe 2000; Pascoe and Anbuky 2004; Garayalde et al. 2017).
However, as will be introduced further on, the scope of this work will be focused
on mitigating the mid-term impact of PSoC in the installations, so these effects
are not going to be considered in the battery model. Analyzing the temperature
and the long-term impact on the solutions explored in the thesis will be a future

research line, which has been initiated in (Sanz-Gorrachategui et al. 2018).

2.4.5 State-Space model

State-space modeling is a useful method for describing the equations of a
time-domain model and is commonly used with other circuital models such as
power converters. This approach defines memory variables, known as states,
and combinational variables, which are a sub-product of the states and the
inputs. The derivatives of the states are gathered in the “state equations”, while

the description of the outputs is gathered in the “measurement equations”.

The Equivalent Circuit Model (with One Time Constant impedance model)
and the electrochemical model of the battery, described in section 2.4.1 and

shown in Fig. 2.15, can be written in the state-space description.

Current mode model

As a first approach, the input of the system is going to be 4., and the output,
v This replicates the behavior of a battery working in current mode (a
controlled current is applied through its terminals, and its voltage evolves

freely). This is the case in the bulk stage in a solar charger. State of Charge,
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which represents the energetic state of the battery, can be defined as an state
variable under the state-space description. To model the voltage at the C,

capacitor in the impedance model, an additional state variable must be included

(Vep)-

The state-space equations for this simple approach are contained in equations

(2.9) and (2.10).

State equations:

|(
{l (2.9)
\

Measurement equation:
{vbatt = vocv(SOC) + ibatt Rs + vcp (2.10)

Here, the non-linear relationship between the SoC and the internal voltage

is contained in the v,.,(SoC) term.

Voltage mode model

Conversely, v can be used as an input, and 7., as an output. This reflects
the behavior of the battery when a constant voltage is applied to its terminals,
and the current evolves freely. For example, on the float stage in a solar charger.

The state-space equations for this case are (2.11) and (2.12).

State equations:

dSoC 1 1% — Vpp — Vpepy(SOC
_ ( batt cp ocv( )> x100

dt Crom R
(2.11)
| dvcp _ i Vpatt — Vep — vocv(SOC) _ Uﬂ
dt Cp R, R,
Measurement equation:
v — Ve — Vpep (SOC
{ibatt — batt ch ocv( ) (2‘12)
N
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Full model

To simulate the complete behavior of a battery in the PV application and
replicate the PSoC effect, both modes are complementarily needed. A Boolean
parameter o can be defined for this purpose. This parameter takes the value
“1” when in current mode, and the value “0” when in voltage mode. Thus, this
model will use 4. and v as inputs and outputs. The complete state-space

model is shown in (2.13) and (2.14).

State equations:

( dSoC ] Vpart — Ve — Ve (SOC
_ <a lpatt + (1 _ CZ)( batt cp ocv( ))) x100

dt Cnom Cnom Rs
4 (2.13)
. vcp 1 Vpatt — vcp — Vocw (SOC) vcp
dv,, “\lar g ) (1-a) R "R,
cp — p + S p
\ dt Cy Cp

Measurement equation:

Ubatt — Vep — Vocv (SoC)
R

| ibaet = X lipgee + (1 —a)

(2.14)

Ubatt = a(vow(SoC) + ipare Rs + vcp) + (1 - a) Vpatt
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2.5 Potential improvements in these installations

After studying the behavior of conventional ESSs in standalone photovoltaic
installations (operation, sizing, modeling, and issues), different alternatives may
be proposed to enhance the operation of these systems. Specifically, this
dissertation is going to delve in two different directions, which may be
implemented complementarily to improve these ESSs. These alternatives are
the use of different storage technologies (HESSs); and the use of smart
algorithms to aid the Battery Management Systems (BMS).

2.5.1 Hybrid Energy Storage Systems

As introduced earlier, ESS in standalone photovoltaic systems have been
based traditionally on chemistries such as VRLA. These technologies have
higher series impedance and a more linear v,., curve than newer lithium-ion
technologies, such as LFP. The latter can work better in these systems,
mitigating the Partial State of Charge and the aging. However, lithium-ion
technologies have a much higher cost than lead-acid chemistries, and therefore,
HESSs can be considered as a solution with a good tradeoff between cost and
performance. As introduced in Chapter 1, HESSs are based on dividing the
storage system into multiple sub-systems (which can be of different storage

technologies) and controlling them by using power conversion elements (such

as DC/DC converters).

In this thesis, the hypothesis is that HESSs with two battery banks, based
on different chemistries, can optimize the battery charging, discharging, and
aging processes in both technologies. This effect can be achieved by adding a
new auxiliary storage element to an existing ESS, complementing its operation.
This new sub-system should be of different storage technology and specialized
in different patterns of use. A DC/DC power electronics converter will control
both systems, allowing for the assignation of complementary roles to each

battery technology.

Including additional storage elements increases the complexity of the system,

and adds new design and control challenges. Besides the different storage
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technologies, the architecture of the system and the energy management
strategies are also subjects of study. Chapter 3 looks into this approach,
proposing different chemistries, control strategies, and implementing this

concept in these installations.

2.5.2 Smart algorithms

Advanced charging strategies, such as multiple-stage charging with
absorption phases (Fig. 2.12), have been previously introduced as a means to
improve the partial charge effect on standalone PV installations. This particular
strategy includes an additional absorption phase to improve the charge of the
battery so it stores more energy. However, these overcharges come at expense
of decreasing the useful life of the battery. For this reason, they are done

periodically so the battery does not suffer that much.

This kind of overcharging strategy can be enhanced with predictive
capabilities. The system can be overcharged only before a low irradiation period
if it relies on a forecast of the future generation patterns. This way, the impact
on battery aging is minimal, while preserving the improved operation. Different
algorithms may be proposed for this predictive task. Chapter 4 establishes
initial work on this research line, with some initial results and conclusions that

show the promising features of these algorithms.

Additionally, when considering HESSs with more than one storage system,
multiple strategies may be adopted to manage the energy and the batteries. To
take better decisions, knowledge of the state and aging of the storage systems
is required. Sometimes, aging estimation is problematic, thus developing new
tools and aging estimation algorithms is desirable. Algorithms in this research
line are also introduced in future chapters as a basis for these advanced control
strategies. Chapter 5 explores some of these predictive tools to improve the

performance and features of BMS in this specific application.
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Chapter 3.- Hybrid Energy Storage Systems in

Standalone Photovoltaic Applications

This chapter introduces Hybrid Energy Storage Systems as a solution for the
problems of standalone photovoltaic installations. The storage technologies, sizing,
and management of these systems are studied, and a specific solution is proposed for a
case study. The system is implemented in a real installation, and its behavior is
analyzed over some months of operation.
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3.1 Introduction

The concept of HESSs has been already introduced in Chapters 1 and 2.
These systems combine different energy storage technologies, resulting in a
better overall performance. Typically, the HESSs that have been explored in
the literature combine power-oriented storage elements with energy-oriented
storage elements. This way, they can provide both high-power demands over a

short period and low, and steady power demands over a long period.

However, not all HESSs combine power-oriented and energy-oriented
elements. For example, they could combine different energy-oriented elements
such as batteries of different chemistries. The specific storage technologies, their
sizing, and operation modes depend on the application. Additionally, the

architecture of the system becomes more complex as storage elements are added.

This chapter aims to overview these four key parameters (storage
technologies, sizing, control strategies, and architectures) and apply them to
the case of standalone photovoltaic installations. Finally, a simple HESS has
been implemented in a real installation. Results of several months of operation
are compared with the behavior of a conventional ESS of the same features in

a nearby installation.

3.1.1 Hybrid Energy Storage Systems sizing

The process for sizing conventional standalone photovoltaic installations has
been described in the previous chapter. Two sizing parameters have been
defined as the main degrees of freedom: the photovoltaic nominal power and
the total energy. They can be normalized to the power consumption, obtaining
the expressions for generation ratio (¢) and autonomy (a). Both definitions have

been rewritten in (3.1) and (3.2).

P,
A panelyy
load
E
a2 —ESSnom (3.2)
Pload
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Since ¢ is not related to the storage element, its definition remains the same
when considering HESSs. However, the autonomy problem changes slightly. As
more storage elements are included, more degrees of freedom appear. Now, the
nominal installed energy Epgss,, ., is given by equation (3.3), where N is the
number of storage sub-elements, and E; is the nominal energy of the i-th storage

element.

N
EHESSnom = z E; (3-3)
i=1

Since the power of the load remains constant, the overall autonomy of the
HESS (aygss,,,,) can be expressed as the sum of the contribution to the

autonomy of each storage subsystem 14, a; (3.4).

A El

Pload

a;;, a; (34)

AHESSpom

NgE

i=1
With a fixed value of the total autonomy ayggs, ., a new parameter can be
defined for each storage sub-element. This parameter is related to the installed
energy of the new element compared to the total. Thus, the Hybrid Factor f;

for each storage element can be defined as the ratio between the autonomy of

the #-th element and the total autonomy of the HESS.

a.
fi 2 — L. E fi = (3.5)
HESSnom :

Since the sum of all f; values must be equal to one, N-1 f; values are needed
to fully define the sizing (besides g and a). Thus, for the case of two storage

elements, only one f; value is needed. In this case, it will simply be addressed

as f.

When sizing a specific installation, the figures of merit introduced in chapter
two (such as the Loss of Load Probability, LLP) must be analyzed. In a previous
chapter, the contour plots of these figures of merit were presented and
explained. However, when introducing the new degrees of freedom, these

surfaces become hypercubes, whose coordinates are the variables ¢, a, and fi.
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Thus, the dimensionality of the space increases with each storage element, so it

becomes difficult to generate visual representations of the problem.

Additionally, the figures of merit depicting the quality of the system depend
largely on the specific chemistries and the roles assigned to each one of them,
so the complexity of the problem grows enormously. The next section discusses

different options for these energy management strategies in HESS.

3.1.2 HESS management strategies

In a conventional energy storage system with a single storage element, the
strategies for controlling the power flows are limited. In these cases, the main
battery is the only storage element operating as an energy buffer between the
generation and the consumption nodes. The system must always absorb the
most from the power source. At most, depending on the application and the
storage technologies, different charging strategies such as the ones in Fig. 2.11a

or Fig. 2.12 may be applied, but the controllability is very limited.

However, when considering multiple storage elements (and a flexible power
conversion structure), the input and output power flow can be managed from
or to different storage elements, or even between them. Multiple and new
control options appear, with more degrees of freedom. In this thesis, the set of

management techniques are referred to as Energy Management Strategies

(EMSs).

EMSs depend on the technology of the storage elements and may have
different goals, such as maximizing the energy absorption of the system,
minimizing the aging of the storage elements, or trying to guarantee a minimum
state of energy in the system. They establish how to use each storage element
and therefore, have a critical impact on the performance and aging of the

system.

Examples of such strategies have been proposed in the literature. One of the
probably simplest strategies can be found in (Kim et al. 2014), where a priority-
based strategy is proposed in a HESS with four storage elements: CTI

capacitors, ultracapacitors, Li-ion batteries, and Lead-acid batteries. It always
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gives priority to charging and discharging power-oriented elements (which store
less energy), such as capacitors and ultracapacitors. This way, the last elements
to be charged and discharged are the energy-oriented elements (batteries). This
simple EMS has proven to be useful in the application. A flow chart that

implements this EMS can be found in Fig. 3.1.

Measure input power from sources
and output power to loads

N

Sort storage elements based on
power density
Label every element as available

N

Choose the highest power density
element that is available

Label element
as unavailable

Label element
as unavailable

SoC 100% in
selected element

SoC 0% in
selected element

Charge / discharge selected element

Fig. 3.1. Priority-based strategy flowchart.

In the flowchart, the storage elements are sorted depending on their power
density, and then the highest power density element is chosen. If the element
is fully charged and there is a positive net power input coming into the storage
system, the following element is selected. This happens reciprocally when

discharging.

However, multiple other criteria can be selected, depending on the specific
elements and the goal of the system. As (Schiffer et al. 2007) point out,
strategies could be based on determining a maximum depth of discharge on the
elements, trying to minimize aging using health-monitoring parameters... To
this end, multiple elements could be charged and discharged at the same time
so they do not suffer deep cycles. It can be deduced that the control options are

endless.
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To implement these variated strategies, good estimation algorithms of
different parameters related to the storage elements, such as SoC, SoH, or its

equivalent impedance are necessary.

In the long term, deciding what to do when the storage elements have aged
and the system starts failing is also important. Thus, replacement strategies
may also be defined in addition to EMSs, with techno-economic criteria.
However, over this chapter, the goal of the HESS is to improve the mid-term
performance of the installations rather than optimize its long-term cost and

amortization, so these strategies are not going to be explored.

3.1.3 HESS Architecture

Conventional Energy Storage Systems usually have a straightforward
architecture, where the storage element is connected to the DC bus directly, or
via a DC/DC converter. For example, in the case of the standalone photovoltaic
installations under study, batteries are directly connected to de DC bus, in an
architecture like the one shown in Fig. 3.2. Here, batteries act as an energy

buffer between the solar converter (MPPT block in the figure) and the load.

I:)gen
E— Pioad '
* P
PV Cell L MPPT —_ ss | Load

Fig. 8.2. Conventional ESS architecture in a standalone photovoltaic installation.

When incorporating multiple storage elements in a HESS, DC/DC converters
become necessary to adapt the different voltage ranges of each storage
technology and to control the power flow in the system. Different kinds of
converter may be considered for this task. Generally, bidirectional converters
are used since the storage elements need to be charged and discharged. However,

unidirectional converters could also be considered. An example of these
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architectures in the previous standalone photovoltaic installation is shown in
Fig. 3.3. However, these are not the only architecture configurations, and some
studies delve into this topic (Garayalde Perez 2020). Using bidirectional
converters is usually more efficient, less complex, and better cost and size wise.

For this reason, only bidirectional converters will be considered from now on.

In (Rahe 2016), the case of not using a converter is explored. In it, cells with
different chemistries (lead-acid and LFP) are connected in parallel, directly to
the DC bus of the installation. However, this is a passive hybrid system where
the energy is balanced through non-controllable neither predictable parasitic
impedances that, additionally, evolve in different ways as the batteries age.

Because of that, this case is not going to be considered.

Pgen
— Pioad
@ =
PV Cell L MPPT — Load

DC +_ | DC
pcj— T DC

Unidirectional converters
(@)
Pgen

_ Pioad |
+

PV CeII’ | MPPT T —

+ | DC | Bidirectional
converter
-L— 1/ DbcC

(b)

Fig. 3.3. HESS with unidirectional converters (a). HESS with a bidirectional

Load

converter (b).
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It is necessary to differentiate the concept of HESS architecture from the
topology of the converter. The topology of the converter is referred to as the
physical electronic components (transistors, coils, capacitors, diodes ...) and
their physical arrangement, connection, and mode of operation. Examples of
topologies are conventional power electronics converters such as buck, boost,

buck-boost, flyback, dual active bridge, forward, sepic, cuk...

From a power electronics point of view, several bidirectional conversion
topologies may be used in these applications, both with and without isolation.
Among the topologies without isolation, the most common option is the
bidirectional synchronous buck-boost converter, see Fig. 3.4a. On the other side,
if isolated topologies are considered, the most relevant bidirectional DC/DC
converters for this application are the Dual Active Bridge (DAB) and the Series

Resonant Dual Active Bridge (DAB-SRC), see Fig. 3.4b.

: JE} JE} o 5} .
v, ? v,
T

(b)

Fig. 8.4. Synchronous Buck-Boost converter (a). Dual Active Bridge-Series Resonant
Converter (b).

On the other hand, HESS architecture is referred to as the electrical
connections between the generation/consumption elements, the storage
elements, and the converters. Multiple architecture configurations can be
obtained from the combination of these elements. Fig. 3.5 shows the two most
common architectures of a HESS comprising two storage elements: the cascaded

architecture and the common DC bus architecture.
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Fig. 3.5. Cascaded architecture (a). Common DC bus architecture (b).

New power electronics fields of research, such as Partial Power Processing,
are developing new architectures of ESS by considering the storage element as
an integral part of the converter (Artal-Sevil et al. 2020; Anzola et al. 2020).
These new architectures are still in the research stage, but their application to

HESS will be of interest in the forthcoming years.
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3.2 Proposed HESS for PV installations

3.2.1 Overview

As introduced in section 2.5.1, HESS are proposed in this work to mitigate
problems such as the Partial State of Charge in standalone photovoltaic
installations. As a reminder, this problem is caused by daily cycles on a single,
high-capacity battery. These partial cycles, when repeated in time, plunge the
main battery into an intermediate SoC, never reaching a full charge state (Fig.
2.9). Due to this effect, when a period of several cloudy days starts, the battery

is not fully charged and the system shuts down before its intended autonomy.

As a hypothesis, it is going to be assumed that a HESS with different storage
technologies will be able to hold a higher SoC under this regime of repetitive
charge and discharge patterns. As an initial approach to the problem, a very
simple HESS, formed by two different storage sub-systems and controlled with
a priority strategy (as described in section 3.1.2) is going to be selected. To help
overcome the PSoC problem, the highest priority element should at least
guarantee the energy of a daily cycle, so the other is not cycled with this daily
rate. The control, technologies, and architecture of this initial system are

described in the following sections.

3.2.2 Priority-based Energy Management Strategy

Compared to (Kim et al. 2014) and the priority-based strategy described in
Fig. 3.1, the consumption in the application under study is steady and thus,
the storage system does not need high power elements. There, the power density
was the key factor when determining priority. On the contrary, this application
does need high storage capacities so the HESS can last for days without

irradiation.

In this case, the HESS will comprise two energy-oriented storage elements
rather than power and energy-oriented elements. For the sake of simplicity, it
has been decided that one of the storage sub-systems will always have a higher

priority role whereas the other will always be secondary. The element with the
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higher priority has been named the Cyclic Storage System (CSS) and the sub-
system with the lowest priority, the Support Storage System (SSS). The CSS
will fulfill a cycling role, whereas the SSS will act as bulk energy storage,
providing the required energy if the CSS becomes completely discharged (see

Fig. 3.6 where an example is depicted).

Solar
regulator _
P
PV Cell gen Power Pess
conversion

I:)Ioad PSSS
—— () [ Sypport
Load Storage
System

»Pnet
I:)gen

Plosa} Pre

load ne CSS fully
#charged

t t N J! t

Css fully discharged =7

Fig. 3.6. HESS system in a standalone photovoltaic installation.

The net power input to the HESS in the figure is given by (3.6). Here Pyep

is the power generated by the solar panels, and Pj,,4 is the power consumed by

the load.

Pret = Pgen — Pioaa (3.6)

The power conversion system implements the priority-based EMS by
diverting the power flow to the sub-systems. As convention, the power flow
towards the storage elements in the figure is considered positive when charging
them. It can be appreciated how, when the CSS is fully charged, the SSS is
charged with the extra energy. On the contrary, whenever the CSS becomes

fully discharged, the SSS provides the power toward the load.

The multiple control modes and transitions of this specific strategy can be
summarized in a state machine, see Fig. 3.7. Here, transitions are based on the
net power input and the voltage of the batteries. The color code for the states

in the figure is followed throughout the subsequent figures to indicate the states.
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(Pnet > 0) & (CSS @ max voltage)

SSS @ max
voltage

START

(Pnet < 0) & (CSS @ min voltage)

Pnet<O0 Pnet>0

SSS
discharge

Pnet>0

SSS @ min
voltage

Full-
discharge

Fig. 8.7. Priority-based EMS state machine.

The different states are described below:

56

CSS priority: This state is the regular operation mode. During the
day, the CSS absorbs the input power, and during the night, it
provides the power to the load. The SSS remains in a support role
and is neither charged nor discharged. If the CSS is charged or
discharged for a long period, it will eventually reach its maximum or
minimum voltages. This will trigger a change in the state machine,
leading to one of the following states.

SSS charge: If the CSS reaches its maximum voltage and the net
power input is positive, the HESS will start regulating the voltage of
the CSS so it does not rise further. Thus, the current through it will
start decreasing. There will be an excess of input power, which can be
absorbed by the SSS. If this situation is held in time, the voltage of
the SSS will eventually reach its maximum value, and the system will
move into a Full-charge state. On the contrary, if the net power input
becomes negative (for example, if sun irradiation decreases), the
system will transit to the CSS priority state, so the CSS will start
discharging.
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Full-charge: Both the CSS and the SSS are in a full-charge state,
and there is a positive net-power generation. Voltages of both storage
systems are regulated to their maximum value. Automatically, the
solar regulator starts decreasing the generated power, generating only
the power consumed by the load and the decreasing power absorbed
by the batteries in the voltage-regulation phase. If the net power
becomes negative, the system will transit to the CSS priority state, so
and start a discharging phase.

SSS discharge: If the CSS reaches its minimum voltage while
discharging, the EMS will start regulating its voltage so it does not
fall below that threshold. At this point, the CSS will provide less
current than the one demanded by the load, and therefore, the SSS
will inject the difference. Eventually, the CSS will be completely
discharged and the SSS will be the only element powering the load,
fulfilling its role as a support system. If during this state the net power
input becomes positive, the system will transit to the CSS priority
state, thus the SSS will stop discharging and the CSS will start
charging. On the contrary, if the discharging mode is held in time, the
SSS will eventually reach its minimum voltage and the system will
transit to a Full-discharge state.

Full-discharge: In this state, both the CSS and the SSS are at their
minimum voltage levels, and the system can no longer provide energy
to the application. The loads must be disconnected and the system
will remain shut down until sun irradiation increases and the net
power becomes positive. In this case, the system will transit to the

CSS priority state, charging the cyclic system.

Simulations with these states and transitions are collected in the following

figures:

Fig. 3.8 shows the transition from the CSS priority state to the SSS
charge state. In the beginning, the CSS is constantly cycling and
increasing its state of charge. Eventually, the CSS becomes fully

charged, and the SSS starts charging.
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Power [W]

Fig. 3.9 shows the transition from the CSS priority state to the SSS
charge state and then to the Full-charge state. The CSS is
constantly cycling. When it becomes completely charged, the system
transits to the SSS charge state. But this time the SSS system is fully
charged, so the HESS transits to the Full-charge state and stops
absorbing energy,

Fig. 3.10 shows the transition from the CSS priority state to the
SSS discharge state. The CSS discharges completely along two days,
and the SSS starts providing energy to the load (first red section).
Afterwards, the system absorbs energy and transitions to the CSS
priority state, but the CSS is then discharged again and the system
enters again in the SSS discharge state (second red section).

Fig. 3.11 shows a very low irradiation period, where the CSS is
discharged completely and the system enters the SSS discharge
state. The SSS system is also deeply discharged, and after some back
and forth, the HESS finally reaches the Full-discharge state since
the SSS becomes completely depleted.
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Fig. 3.8. The transition from CSS priority (blue) to SSS charge (light green).
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Fig. 3.9. The transition from CSS priority (blue) to SSS charge (light green) and
Full-charge (green).
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Fig. 8.11. The transition from SSS discharge (light red) to Full-discharge (red).

3.2.3 Storage technology

Based on these functional roles and requirements, the chosen technologies for

the storage sub-systems are:

e LFP batteries for the CSS, due to their optimized characteristics for
continuous cycling (Kim et al. 2014; Sepasi, Ghorbani, and Liaw 2015;
Wang et al. 2016).

e VRLA batteries for the SSS. These batteries have good stationary
characteristics (Kim et al. 2014; Burgess 2009; Exide Technologies 2012)
but are much cheaper than lithium-ion packs, making a good technology

for a large, bulk storage pack.

Thus, the selected EMS will give full priority to the charging and discharging
processes in the LFP battery. Only when the LFP battery is discharged, the
VRLA will start powering the load, and vice-versa. This role division fits with
the features of each chemistry type (Kim et al. 2014), resulting in a higher

overall SoC in the HESS and ensuring a higher resilience.
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3.2.4 Architecture selection

As an architecture option for the HESS, the cascade architecture will be
chosen (Fig. 3.5a). It is the simplest architecture from those introduced in the
previous section, as it only features one power converter. This selection of
architecture and chemistries allows installing a converter and an LFP battery
pack in parallel to an existing VRLA battery in an installation, thus extending
the useful life of already aged batteries. Furthermore, keeping the main lead-
acid battery in parallel with the load makes the system more robust in case of

failure of the DC/DC converter. This results in the architecture of Fig. 3.12.

& Pioad
1+
PV Cell | MPPT ~ VRLA Load
+ | DC Bidirectional
LFP converter
_—I____ DC

Fig. 3.12. Proposed HESS architecture.

As a first approximation, it is going to be considered that the solar charger
(MPPT block) and the DC/DC converter are synchronized, so they act as a
single control element. This is relevant in the case they both try to control the
voltage in the VRLA battery with different voltage references, which may cause

controllability issues.

3.2.5 Sizing

The sizing of a HESS is going to be compared with the sizing of a
conventional ESS aimed for the same application. Sizing maps are going to be
used for this purpose. To obtain these maps, both systems are going to be

simulated for different values of their sizing parameters.

As introduced before, in an installation with a conventional ESS, the two

coordinates of the sizing maps are the generation ratio g and the autonomy a
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of the storage pack. As explained in section 3.1.1, when including one more
storage system, an additional degree of freedom appears, the hybrid factor f. In
this particular case, the definition in (3.7) is used, where f represents the

fraction of the energy installed in LEP technology (Erip).

(3.7)

Where Ei, is given by (3.8). Here, Evria represents the nominal energy of the
VRLA battery.

Etot = Evria + ELrp (3.8)

Therefore, the sizing maps depend now on three coordinates (g, a, f). As
before, multiple HESS will be simulated by varying these three parameters,
obtaining the best design regions. These HESS are compared with a
conventional ESS based on a single VRLA battery with the same E,, as nominal

energy.

The simulated hybrid system is shown in Fig. 3.13a, and the conventional

system, in Fig. 3.13b.

Pgen Pload
DC
bus

Pgen Pload
DC
bus

Ry —Wv— ibatt
|-,

Fig. 3.13. Simulation scheme of the HESS (a). Simulation scheme of the
conventional ESS (b).
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Here, the load has been modeled as a DC power sink, and the PV source has
been modeled by using solar irradiation data from an actual installation located
in Aragon, Spain. The irradiation values have been sampled every 15 minutes
during the years 2013, 2014, 2015, and 2016. The results of these simulations

are considered valid for similar climates and latitudes.

The batteries are modeled as explained in Chapter 2. Each battery counts
with many serialized cells (n.a), and the SoC — wv,., curves for one cell of each

chemistry are shown in Fig. 3.14. The parameters of the Equivalent Circuit

Model (Rs, R,, and C,) are shown in Table 3.1.

2.2
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|

25

VOCV
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(b) SoC (%)

Fig. 3.14. SoC— v, curve for one cell of VRLA technology (a). SoC— v, curve for
one cell of LF'P technology (b).

Battery Parameter Value Unit
R, 65 me
R, 50 me
VRLA !
C, 9.6e4 F
Neells 24 -
R, 20 m
Q
LFP R, 50 m
C, 1.8e4 F
Neells 8 -

Table 3.1. Equivalent Circuit Model parameters for each chemistry.
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Fig. 3.15 shows an example of the evolution of SoC in the batteries, during
several months of simulation for one of the design points. It can be seen how
the VRLA battery in the HESS (orange) only starts discharging when the LFP
battery (blue) has a minimum SoC, hence fulfilling its role as the emergency
battery. On the other side, the VRLA battery in the conventional ESS (yellow)
is constantly charging and discharging due to the daily cycle, never achieving a

full-charge state.

100 [ T, — i [ 11111 g
T I T “ [ H\lw i W i
80 ||| » ‘ ‘
Mol I/
|

20 [ SoC LFP (hyb)
SoC VRLA (hyb)
SoC VRLA (conv) l |
Nov-14 Dec-14 Jan-15 Feb-15 Mar-15 Apr-15 May-15 Jun-15

Fig. 3.15. Simulation example for several months in one design point.

The simulation results for the conventional ESS sizing are shown in Fig. 3.16.
Since this system is only formed by VRLA batteries (f = 0), only one contour
plot is obtained. The map represents in the abscissa axis the autonomy, and in
the ordinate axis, the generation ratio. The Loss of Load Probability (LLP), as
defined in Chapter 2, is shown through a color scale. This magnitude expresses
the percentage of time that the system has been shut down along four

simulation years.

The map presents the same asymptotic behavior as the one seen in Chapter
2. A label at a = 150h and ¢ = 9.5 exhibits a design case that leads to an LLP
of 1.827%, which would be quite high in a real application.

The simulation results for the HESS system contain one contour plot for
each value of the hybrid factor f. Individual maps for different f values are
shown in Fig. 3.17, representing in the abscissa axis the total autonomy of the
system (autonomy of LFP + autonomy of VRLA) and the generation ratio g in

the ordinate axis. As before, the contour plot for LLP is shown in color.
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Fig. 3.16. Conventional ESS sizing map (f=0%).
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Fig. 8.17. Loss of Load Probability for HESS with different values of the hybrid

factor f.
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It can be seen how the different maps have similar behaviors, regardless of
the value of the hybrid factor (the differences between 0.2, 0.4, and 0.6 are
small). This will be analyzed further on. They also share the same asymptotical

behavior as the contour plots for the conventional ESS, but with lower LLP

values in general. As it can be observed at the map with f = 0.2, the design
case ¢ = 150h and ¢ = 9.5 leads to an LLP value of 0.526%, three times better
than the value obtained in a conventional ESS (LLP = 1.827%).

Due to the small differences in performance that appear in systems with
different f, it is interesting to analyze their economic cost, so that the tradeoff
between increasing the cost and the performance is visualized. The cost

coefficients required for the comparative are shown in Table 3.2.

Element Cost Unit
Solar panel 2 €/W
VRLA Battery 0.2 €/Wh
LFP Battery 0.5 €/Wh

Table 3.2. Cost values used in the performance analysis.

The tradeoff (Tr) of the installation has been defined with the expression in
(3.9). This variable compares the improvement in LLP versus the increase in
cost. Here LLPpuss and LLPygs are the LLP values obtained for the HESS and
the conventional ESS respectively, and Costurss and Costgss are the cost values

obtained for the HESS and the conventional ESS respectively.

1

_ _LLPypss/LLPpss (3.9)
Costygss/Costgss

For simplicity, to analyze the impact of the hybrid factor, a specific scenario
has been selected. The performance of a conventional ESS in this scenario is
going to be compared to the performance of a HESS with different hybrid factor.
Specifically, the values of ¢ = 9.5 and a = 150h have been selected as the

simulation scenario. By varying f, the results in Fig. 3.18 are obtained.
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Sizing: g =9.5; a=150h
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Fig. 3.18. Multiple f values for a specific g and a scenario. LLP (%) and the cost of
the system (top). Tradeoff (bottom).

It can be seen how the benefits (understood as low Loss of Load Probability)
are similar beyond f = 0.1, becoming stable past this value. With this fraction
of LFP technology and the priority-based EMS, the LFP battery absorbs the
full daily cycle, while the VRLA battery fills its role as an emergency battery,
being ready for cloudy periods and thus, minimizing energy shortage. Further
increasing f (thus, the LFP battery size) also increases the cost of the system,
which deprecates its tradeoff, since the performance is already optimal. In this
case, the best performance and tradeoff are found in a hybrid factor of f = 0.15,

but this optimal value may be different in other scenarios.

This criterion for selecting the optimal hybrid factor can be applied to the
whole design space, see Fig. 3.19. These results are interesting since they allow
us to obtain conclusions about the optimal HESS configuration in different
sizing regions. The results of the LLP with the optimal hybrid factor in each
design case can be represented in the same contour plot, see Fig. 3.20, where

four different regions are highlighted.
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Fig. 3.20. Optimal LLP map.
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The optimal f values shown in Fig. 3.19 can be overlayed with the A, B, C,

and D sizing regions, presented in Chapter 2.

Region A (below 100h of Autonomy), is a region with bad performance.
Here, the optimal ftends to be higher (0.3 ~ 0.4), since, in this region, a
better battery is required to increase the performance. This can be
achieved in terms of quantity (adding more autonomy as seen in Chapter
2) or in terms of quality (better chemistry, more LFP), thus a higher
hybrid factor is relevant.

Region B (intermediate a and g¢) represents an interesting design region,
where the system can operate properly without being oversized. Here,
the optimal f value is between 0.15 ~ 0.3. The example of the previous
pages (a = 150h, g = 9.5) belongs to this region.

Region C (low g) is also a region of bad performance. Here, the optimal
fis more or less constant, around 0.1. In this region, the quality of the
battery is not as relevant as the solar panels, so fis not as relevant and
it remains low.

Region D is a region of good performance, but a bad tradeoff, since the
system is oversized. In this region, good battery quality is not needed,
since the system already operates properly due to oversizing. For this
reason, increasing f only increases the cost and worsens the tradeoff,

thus, the optimal fis minimum.

In conclusion, it has been determined that the best performance-cost tradeoff

in the sizing of these systems is found between 100 to 200 hours of autonomy,

and with a ¢ in the range of 9 to 10.5. In this cost-effective design region, the

optimal hybrid factor f (the fraction of the battery pack that should be in LFP

technology) is in the range of 0.15 to 0.3.

3.2.6 HESS impact on energy absorption and SoC

Until now, the proposed Hybrid Energy Storage System has been analyzed

in terms of its sizing parameters and sizing figures of merit such as Loss of Load

Probability. However, its performance in terms of energy can also be analyzed.
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In this regard, two figures of merit are going to be obtained: the increment in

the steady State of Charge of the HESS and its resilience.

The process is similar to the Loss of Load Probability simulations in previous
sections: a basic HESS (Fig. 3.13a) is going to be compared to a conventional
ESS, see Fig. 3.13b. Both systems will have the same overall storage capacity
and will be connected to the same power generation and consumption patterns.
In this case, the analysis will be focused on the impact of the HESS of the
storage elements. Therefore, the generation power ratio g is fixed (specifically,
g = 9.5 throughout the simulations). The hybrid factor fwill vary in the range
[0.05, 0.95] and the autonomy a, in the range [50, 500] hours.

State of Charge in a HESS

The State of Charge of a Hybrid Energy Storage System can be defined as
the sum of the individual SoC of each storage element i, weighted by their

hybrid factor f;, as in equation (3.10).

S0Cupss(t) = ) S0C(t) - f (3.10)

To evaluate the benefits of the hybrid system, the Steady SoC Improvement
(SST) can be defined as the additional average SoC that the HESS achieves
compared to the conventional ESS. The steady SoC improvement can be
obtained as in equation (3.11), where SoCggs is the average SoC of the battery
in the conventional installation and SoCyggs is the average SoC of the HESS

over the studied period.

SSI (%) = SoCygss — SoCss (3.11)

This metric has been studied for multiple sizing scenarios, with different
autonomies and hybrid factors in the HESS. These different cases have been
simulated and the resulting contour plots of SSI are shown in Fig. 3.21. Please
note that in the figure the y-axis represents the hybrid factor frather than the

generation ratio g.
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Fig. 3.21. Steady SoC Improvement map for different autonomies and hybrid factors.

For each autonomy value, the best hybrid factor f that ensures maximum
energy absorption from the PV source is located from 0.15 to 0.30. Beyond this
value, the SoC does no improve (even though the HESS has a larger LFP
battery thus, becomes more expensive). This is a very interesting result, as it
establishes that a hybrid VRLA + LFP system performs better than a full,
single-pack LFP system (which has a much higher cost).

This can be explained as follows: in a single battery system, any of the
studied chemistries (VRLA or LFP), suffers from the Partial State of Charge
effect (PSoC), although it has less impact on the LFP battery due to its better
cycling behavior. In a hybrid system with a priority-based strategy like the one
implemented, only the LFP battery suffers the PSoC. With a medium-low
hybrid factor, the LFP battery is small, so the impact of this effect on the

overall State of Charge is small.

On the contrary, if the system is designed with a higher hybrid factor, the
LFP battery has a larger capacity, and thus the overall impact of the PSoC
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effect is higher. While there is still an important benefit over the conventional
Energy Storage System, the benefits of the Hybrid Energy Storage System

become less evident.

Resilience

In the framework of this work, resilience is defined as the speed at which the
system recovers from a low-energy state. This parameter is relevant to
characterize de behavior of the ESS (hybrid or not) when several periods of low
irradiation are concatenated; after a first low irradiation period, the ESS must
recover quickly a high SoC to be prepared for an eventual second low irradiation

period.

To characterize this feature, the irradiation profile shown in Fig. 3.22
(recorded during the fall of 2015), is going to be used as irradiation input to
test different HESS cases. This pattern shows a long period of cloudy days
followed by a long period of sunny days. Thus, it is very convenient for
analyzing to what degree the HESS is capable of recovering more energy after
the low irradiation period. Note that the available input power is the same for

both installations, but they will not absorb the same amount of energy.
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Fig. 3.22. Awailable input power (pattern used for obtaining Resilience).

The resilience of each installation has been obtained as the energy absorbed
after the stressful event, during the following 15 days. The Resilience
Improvement (RI) has been defined as in (3.12), where Eugssisas and Egssisaays

are the aforementioned energy quantities integrated during the 15-day window.

EHESS sdays

RI (%) = ( - 1> x100 (3.12)

ESS15days
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The map of the Resilience Improvement for different sizing parameters is
shown in Fig. 3.23. In the low autonomy region, below 200h, the HESS can
recover up to 45% more energy after the low irradiation period, increasing the
reliability of the whole system (in the event of a second cloudy period, the HESS
would have a higher SoC).

However, above the 200h threshold, the HESS improvement is not so evident,
although is still better. For higher autonomy values, the improvement stabilizes
around 5-10% with hybrid factor values above 0.25. For lower hybrid factor

regions, the improvement decreases to the 0-5% range.

The general conclusion is that higher hybrid factors tend to higher resilience,
although the impact is much noticeable in smaller HESS (with low autonomy)

rather than in large systems.
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Fig. 3.23. Resilience improvement in the design region.
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3.2.7 Hybridization power

The simulations in the previous sections have considered an ideal DC/DC
converter for the HESS, with unit efficiency and no power limit. However, the
power rating of this converter, if restrictive, may be relevant in the application
since it will limit the power input towards the LFP battery. In general, the
power rating will be very application-dependent, and will depend on the power

rating of the panels, the power of the load, the Energy Management Strategy...

As an original contribution, this thesis is going to study a first approximation
to the rated power of the DC/DC converter in this application. To obtain a
first estimation of this design value, a hybrid system in the recommended design
region (a = 150h, g = 9.5, f = 0.2) has been simulated, but with different values
in power limit (Ppi) of the DC/DC converter. These values have been
normalized to the power consumption of the site (Ppqq). The average SoC of
the hybrid system (SoCygss) throughout the simulations has been used as a

figure of merit to determine the optimal power rating.

The results are shown in Fig. 3.24, where it may be appreciated how the
average SoC reaches a plateau when the power limit of the converter rises above

three times the load power.

Even though these results are scenario-dependent (since they also depend on
the sizing of the rest of the elements), this ratio is going to be considered as a

starting guideline for converter design in future sections.
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Fig. 8.24. Average SoC in the HESS vs Power limit of the DC/DC converter.
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3.3 Experimental tests

3.3.1 Location of test sites

As introduced in Chapter 1, this work has been supported by the
Confederacién Hidrografica del Ebro (CHE, Ebro river basin management
entity), who has provided data from several remote ESSs facilities fed by

photovoltaic sources. Some of these installations are going to be used to test

the HESS concept.

Out of their 333 different sites, two facilities were selected in the so-called
“Canal de Aragén and Cataluna”, near the town of Binéfar, shown in Fig. 3.25a.
Specifically, the sites have the numerals C092 (41°52'57.1"N 0°20'37.0'E) and
C095 (41°52'02.0"N 0°22'15.1"E). Both installations count with the same
equipment and functionalities, and were built at the same time. Besides, they
are separated by only 2.85km, so their temperature and solar irradiation

conditions are similar. Thus, a similar SoH can be expected in their batteries.

The HESS was installed on site C092. The DC/DC converter and the LEP
battery pack were new, and it was decided to keep the existing VRLA battery
as the emergency storage element. The installation also counted with
communications and logging equipment to collect the data. The details of the
converter are described in forthcoming sections. On the other hand, installation
C095 was monitored as a reference ESS. Data for both installations was
reported to a database system at the CHE facilities in Zaragoza. Fig. 3.25b

shows an aerial view of the location of both installations.
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Fig. 3.25. Location of the town of Binéfar and the city of Zaragoza (top). Aerial view
of the location of HESS and ESS installations to be compared (bottom).
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3.3.2 DC/DC converter design

A bidirectional DC/DC power converter was designed to test the HESS. The
specific details of the design of the converter are not a goal of this dissertation,
since it has been developed as a means to implement the Energy Management
Strategies and to test the HESS concept. However, to clarify the concept, some

of the remarks of the design are gathered here.

The power consumption of the installation had been rated in 84W DC.
Following the estimation in section 3.2.7, the DC/DC converter should have a
nominal power of roughly 3 times this value (252W). To operate with some
margin, it was decided to design the converter with a rated power of 300W.
The converter did not require being isolated, so the bidirectional synchronous
buck-boost topology was selected. To reduce the output ripple, an interleaved
topology was implemented (Fig. 3.26). This is an evolution over the scheme in
Fig. 3.4a with three parallel half-bridges, whose PWM carriers are phased 120°
to reduce ripple at the output (Mohan, Undeland, and Robbins 2003).

" R} R} _R3

Viigy == Y

TR TR

Fig. 3.26. Synchronous Interleaved Buck-boost converter.

The converter was initially designed using the EPC9033 GaN modules from
EPC. Each of the modules consists of a GaN half-bridge and its drivers. The
control algorithm for the converter and the EMS was programmed in a Cortex-
M7 processor, using the digital platform Discovery STM32{746G by ST.
Pictures of the converter and its measured efficiency are shown in Fig. 3.27.
The connection scheme is shown in Fig. 3.28. The converter measures voltages
(viep, vvria) and currents (ivee, dvira) through both batteries as well as the
overall current (i,.) exchanged with the installation. This data is required to

implement the EMS.
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Fig. 3.27. Buck-boost converter front (left), Buck-boost converter rear (center),

measured efficiency of the converter (right).

Inet

T Power Converter
. Current
IvrLA ¢ sensor J%} |!£} |!£}

/WY\_| — 4>PLFP

— | = YY)

PVRLA£ + _WJ sensor ‘inp
+

_ VWRiA

e _ ":} ":} 1 M Tier

DC
bus

Fig. 3.28. HESS architecture and measured variables.

3.3.3 EMS implementation

The EMS of Fig. 3.7 has been implemented to control the energy flow in the
system. Since the Cyclic Storage System and the Support Storage System now
have an assigned storage technology, the names “CSS” and “SSS” in the state

definition have been substituted by “LFP” and “VRLA” respectively.

However, the selected architecture has some small implications for the EMS.
Considering the way the batteries are connected, the LFP priority state can
theoretically be implemented by regulating the voltage of the VRLA battery to
a fixed value. Since this voltage cannot change, all the charge and discharge
current will automatically be provided to/by the LFP battery, and the VRLA
battery will be “invisible” to the installation. However, by implementing this
control in this architecture, both existing converters (the solar regulator and

the DC/DC converter, which are not synchronized in this case) try to control
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the voltage of the VRLA battery at the same time, leading to potential
controllability issues. For this reason, the LFP priority state has been
implemented by regulating the current through the VRLA battery to zero,

rather than maintaining its voltage constant.

Additionally, a limit to the variable Prrr (power to the LFP battery) was
implemented in the DC/DC converter. While operating in the LFP priority
state, if the charging power rises above the limit, the converter limits it at its
maximum value and the VRLA battery is automatically charged with the
excess. The power limit does not apply during discharging processes since the
power consumed by the load is low and DC. If eventually P,. decreases and the
VRLA battery starts providing energy to the LFP battery (Pyrr1<0), the state
goes back to LFP priority. The implemented state machine is shown in Fig.

3.29.

LFP Power

limit Pire > Pumir

Pier = Pumi,

START
(Pra>0)&  ~FPyra<O
(LFP @ max (Pret< 0) &
voltage) LFP Priority (LFP @ min
_— voltage)
lvrLa = OA
(Poec> 0) & Phet <0 Pret>0
(LFP @ max
voltage)
VRLA Charge VRLA discharge
Vire = V = Vi
LFP ﬂoat Pnet< O Pnet> 0 VLFP Vm|n
VRLA @ max VRLA @ min
voltage voltage

Full Charge Full discharge

Viep = Viat

System off

Fig. 3.29. The state machine of the implemented EMS.
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3.3.4 Test bench

To test and debug the energy management strategy, a test bench was built
at the laboratory. This bench emulates a real installation with all its
components, such as solar generation, solar charger, DC load, storage systems,
and the DC/DC converter, as well as the corresponding protections. A picture
of this test bench is shown in Fig. 3.30, and Table 3.3 contains a description of

the components.

o e 0
:J J ]

T W

MPPT Charger |
DC-DC Converter

Eowe

4 e—— Active load &

Protection fuse

12V battery

Fig. 3.30. Test-bench.

Element Model
12V Battery Yuasa NPC-12V-100Ah
24V Battery 2xYuasa NPC-12V-100Ah
DC/DC Converter Ad-hoc
MPPT Charger Victron BlueSolar MPPT 150/35
Multimeter BK Precision 5491B
Protection Fuse 50A
Active load Ad-hoc

Table 3.3. Test-bench elements.
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3.3.5 Deployment

Huybrid installation

After the design and test of the DC/DC converter, the first installation of
the hybrid system in C092 was carried out on July 3, 2018. As has already been
mentioned, the existing VRLA batteries were kept as batteries for the support
role. The converter and new LFP batteries were installed following the scheme

of Fig. 3.28.

The C092 facility, where the installation took place, is shown in Fig. 3.31a.
The final installation and its different components are shown in Fig. 3.31b. It
includes the MPPT-Morning Star 60 solar charger, the DC/DC converter, the
GSM module (used for data acquisition), and both battery packs. The VRLA
battery consists of 12 Exide OPzS460Ah 2V cells, and the LEP battery consists
of four ThunderSky 160AH-Wide type 3.2V cells.

The features of the setup are gathered in Table 3.4. The hybrid installation
has a total nominal energy of 12.13kWh, an autonomy of 144h, a generation to

consumption ratio g of 8.33, and a hybrid factor fof 0.17.

GSM module

DC-DC converter

Solar charger

VRLA batteries

LFP batteries |

(b)

Fig. 3.31. C092 facility at the Canal de Aragén y Cataluna (a). Different elements in
the HESS installation (b).
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Element Parameter Value Units
Crour 420 Ah
VRLA Battery Vivonr 24 v
Exowr 10.08 EWh
Model Exide 6 OPzS 420 -
Crour 160 Ah
LFP Battery Vivonr 128 v
Evon 2.05 EWh
Model ThunderSky LYP160AHA (B) -
Solar Charger Model MorningStar Tristar MPPT TS-45 -
DC Load 84 w
Solar Ppk 700 w
Viou 24 14
Installation g 8.33 i
a 144 h
f 0.17 -

Table 3.4. HESS Installation features.

The converter samples and reports data on a 15-minute basis from the

following variables:

e VRLA battery voltage (vvgra) e VRLA battery current (ivri1)
e LFP battery voltage (v.rr) e LFP battery current (ivr)
e Installation net current (%) e Converter temperature

The power converter sends the measured data to the Programmable Logic
Controller (PLC) in the facility by using an ad-hoc protocol. The PLC sends
the data to the database at CHE facilities, where it is stored. In parallel, the
GSM modem sends the same data from the converter to a data storage device

in the laboratory, where it is collected for redundancy and accessibility reasons.

At the time of the installation, a high ambient temperature (around 40°C)
was reported at the facility. Since the power modules used in the converter did
not have good cooling capabilities, it was decided to limit of the converter to
120W (40W per module), to try to avoid problems caused by overheating. This
limitation ultimately had consequences on the performance of the equipment,

as described further on.
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Reference ESS installation

The C095 facility was selected to be the reference site. This conventional,
non-hybrid installation has been monitored and used as a reference to which
compare the performance of the hybrid installation. For this purpose, a data
logging device was installed on January 9, 2018. Some pictures of the reference
site are shown in Fig. 3.32. The variables measured in the installation were the
voltage and current of the VRLA battery, and the ambient temperature. The
figures of absorbed energy, peak power, SoC, and others are post-processed from
the collected data and compared against those obtained in the hybrid

installation.

It is important to note that the battery pack of this conventional installation
was not been expanded to match the total energy of both battery packs in the
HESS. Thus, this reference installation counts with just the VRLA battery pack
in Table 3.4, with a nominal energy of 10.08kWh, making a total autonomy of

120h under the same power consumption conditions.

Solar charger

—

Data logger

Current and
voltage sensor

- by,

Fig. 3.32. Sensor and data logger in the control installation.
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Stmulation of this scenario

The specific scenario involving both installations has been simulated using
the same procedure as in previous sections of this chapter. As explained above,
the installations do not have the same installed energy, since the original VRLA
batteries are equal size wise in both facilities, and the LFP pack has been added
only to the HESS system. This means that the nominal energy of the HESS is
12.13kWh, whereas the nominal energy of the ESS is 10.08kWh. Thus, only the
state of charge of the VRLA batteries in the systems (both of them with a
nominal energy of 10.08kWh) is going to be compared.

Two different simulations have been carried out, with two different power
limits in the DC/DC converter (the 300W limit originally conceived, and the
120W limit implemented on the first tests). The performance of the two
different HESS has been compared to the performance of the conventional ESS.

The results of these simulations are contained in Table 3.5.

According to the results, in both cases, the HESS operates with higher
average energy than the conventional ESS. In the case of the 120W limit, the
HESS stores on average 3.86kWh more than the conventional ESS. In the case
of the 300W, this benefit rises to 4.25 kWh. Regardless of the power limit, the
HESS holds more energy on average than the ESS even though the nominal
energy of the additional LFP pack is roughly 2kWh. Fig. 3.33 and Fig. 3.34

show the evolution of the energy in the systems for both simulations.

In the comparison between power limits, the HESS with the 300W limit
holds an average SoC of 61.4%, compared to 58.4% of the HESS with the 120W.

In general, an operation with a higher power limit is preferred.

P jimic 120W 300W
Average SoC HESS [%] 58.4 61.4
SoC LFP HESS [%] 17.7 51.7
SoC VRLA HESS [%)] 66.7 63.4

SoC Conventional ESS [%] 35.9

Overall Energy Increase [kWh] 3.86 4.25
VRLA Energy Increase [kWh] 3.50 3.15
VRLA SoC Increase [%] 30.8 27.5

Table 3.5. Simulation results.
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Fig. 3.33. Three-year simulation of the deployed systems (120W limit).
14 —— Energy HESS
Energy Conventional ESS
12 - " - Energy VRLA battery in the HESS
10 1 I Les !I"‘p i FlH* ]
2 8 ‘
=
=
2 67
L
4 |
|
Il
2 i i
0 T

T T T - T T
0 20000 40000 60000 80000 100000
Samples (15-min)

Fig. 3.34. Three-year simulation of the deployed systems (300W limit).

An interesting result may be appreciated if the VRLA energy metrics are
compared. It may be appreciated how the system with a more restrictive power
limit reaches a higher average SoC in the VRLA battery (at expense of the SoC
in the LFP battery). In this case, the power limit constrains the power flow to

the LFP battery, and the VRLA is charged more often with the excess. As a
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future research line on EMS, it would be interesting to explore this constrained
operation mode. An example of the operation with the 120W and the 300W
where this simultaneous charge can be appreciated is shown in Fig. 3.35 and

Fig. 3.36 respectively.

600
—— Power HESS
500 - —— Power VRLA HESS
—— Power LFP HESS
400 -
= 300 -
=
2
5 200
100 ~
IREl Ll
_100 T T T T T T T T
28550 28600 28650 28700 28750 28800 28850 28900 28950 29000
Samples (15-min)
Fig. 3.35. Operation with the 120W limit.
600
—— Power HESS
500 4 —— Power VRLA HESS
—— Power LFP HESS
400 -
= 300 -
=
2
S 200
100 ~
" \

_100 T T T T T T T T
28550 28600 28650 28700 28750 28800 28850 28900 28950 29000

Samples (15-min)

Fig. 8.36. Operation with the 300W limit.
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3.3.6 Field tests results

Preliminary results

The first months after the deploy, during which the patterns of solar
irradiation were favorable (without clouds), served as preliminary tests for the

system. The power waveforms of the first 12 days are shown in Fig. 3.37a.

It can be seen how the converter limits the power to the LFP battery at
120W (blue plot) due to the safety limit. When the power generated by the PV
system exceeds the limit, the excess goes into the VRLA battery (orange). The
total absorbed power (yellow) is the sum of the power to the LEP battery and
the VRLA battery. The energy stored by each battery during said period is
shown in Fig. 3.37b. Here, it can be appreciated how the LFP battery is
constantly charging and discharging, while the VRLA battery is charged with

excess energy.
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Fig. 3.37. Power waveforms in the HESS (a). Energy waveforms in the HESS (b).
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During the first weeks of July, solar irradiation patterns were favorable, with
high power generation. However, the power limit implemented did not allow
the LFP battery to get to a full-charge state. The absorbed energy during the
day (positive fraction of the blue waveform) and the discharged energy during
the nights (negative fraction) by this battery are practically the same. At the
end of the observed window, the energy in the LFP battery has barely risen.

Fig. 3.38 compares the net power waveforms in both installations (the HESS
and the conventional ESS) during the same weeks of July 2018. It can be
appreciated how the daily absolute energy of both facilities seems similar. To
analyze this for a longer period, Fig. 3.39 shows the overall stored energy during
the first two months. The HESS harvested 2kWh more than the conventional
system, which is not a large margin, mainly due to the conservative power limit

of the LFP charging process. This 2kWh amount will be referenced later.
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Fig. 3.38. Net power waveforms in the HESS vs the Conventional ESS.
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Fig. 3.39. Harvested energy in the first months in both systems.
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The effect of the low power limit of the converter can also be seen in the
voltage waveforms. As weeks pass and nights become longer, by the middle of
August the LFP pack becomes completely discharged every night. When this
happens, the VRLA battery in the HESS starts powering the load, and its
voltage drops until sunrise. This can be appreciated in the voltage waveform of

the VRLA batteries in the HESS, see Fig. 3.40.

29 T T T T T
HESS Voltage (VRLA)
Conventional ESS Voltage (VRLA) |
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Fig. 3.40. VRLA wvoltage in both installations in mid-August.

A more detailed example of the same effect, in early September, is shown in
Fig. 3.41. The figure shows the voltage of the VRLA batteries of both
installations during one day. In blue, the hybrid installation, and in orange, the

conventional.

In the A zone, it can be seen how the VRLA battery of the HESS reaches
the float stage much faster than the VRLA battery of the conventional
installation. This is due to its higher SoC.

HESS Voltage (VRLA)
Conventional ESS Voltage (VRLA)

B |

Voltage [V]

09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00

Fig. 3.41. VRLA voltage in both installations on September 2.
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On the other hand, in the B zone, it can be appreciated the moment in which
the LFP battery of the HESS (not shown) has been completely discharged and
the VRLA battery starts providing power to the load (and thus, its voltage
drops). Nevertheless, it remains above the voltage of the conventional system

due to its higher SoC.

As a conclusion of these preliminary tests, it can be noted that the system is
harvesting more than a conventional system, but it could work better. This has

to be achieved by expanding the power limit of the converter.

Design iteration

To increase the power limit of the DC/DC converter, a cooling fan was
incorporated. This way, the power modules were cooled and the power limit
rose to 300W (100W per module). Further increasing the power limit was
possible, but required a redesign of the DC/DC converter. The new converter
was deployed on October 4, 2018. However, on the night of October 4 to
October 5 a software problem disabled one of the three power modules.

Therefore, the overall power was limited to 200W.

Fig. 3.42 shows the power flow in the HESS during the first week after the
deployment. These waveforms are similar to the ones shown in Fig. 3.37a, but
now the power limit of the LFP battery is reached at 200W. Fig. 3.43 shows
the net power waveforms for both systems in the same period. As before, on a
regular day without clouds, the HESS keeps generating energy after noon,

whereas the production with the conventional ESS decreases.
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Fig. 8.42. Power waveforms in the HESS (October 2018).
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Fig. 3.43. Net power waveforms in the HESS vs the ESS (October 2018).

The benefit of the HESS becomes clearer when comparing the energy absorbed
by both the HESS and the conventional ESS over a longer period. Fig. 3.44
shows the overall energy during 19 days of operation, where the HESS harvested
substantially more energy than the conventional ESS. This means a
considerable improvement in the operation of the installation. Specifically, an
improvement AE=2kWh was achieved (from 1.6kWh to 3.6kWh) in the
observed interval. This is the same amount of energy stored during the
preliminary tests in the previous months, but it has been harvested in a much
shorter period. Thus, the DC/DC converter is working substantially better,

even with one of the three modules out of service.
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Fig. 3.44. Energy in both systems, with three low-irradiation periods highlighted.

The energy harvested right after a low irradiation event is going to be
considered as an estimation of resilience. In the observed 19-day interval of Fig.

3.44, there are multiple low irradiation periods: two main low irradiation periods
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between October 14-15 and October 18-19, highlighted in red; and a minor low
irradiation period on October 9-11, highlighted in yellow. The energy harvested
the day after these periods in both systems and the resulting Resilience

Improvement is gathered in Table 3.6.

Energy harvested Energy harvested

. Resilience
Period by the HESS by the ESS Improvement
afterwards [kWh] afterwards [kWh]
9-11" October 2.08 1.7 22%
14-15™ October 2.88 2.55 13%
18-19% October 2.9/ 2.48 19%

Table 3.6. Energy harvested after the low irradiation periods.

At this point, the HESS has been operating for some months, and the VRLA
battery in it should have reached a higher steady SoC than its counterpart in
the conventional system. This can be appreciated in the VRLA battery voltage,
see Fig. 3.45. In this case, as in Fig. 3.41b, the voltage of the VRLA battery
drops during the night when the LFP battery (not plotted) becomes fully
discharged, and the VRLA battery starts powering the load. If the voltages of
both VRLA batteries are compared at this moment (when there is current
flowing through them), a difference of 400mV (33.3mV/cell) may be noticed.
According to the manufacturer, this would mean an approximate SoC increase
of 16% (Exide Technologies 2012). It is expected that with more time, the
system will evolve towards a higher improvement, closer to the theoretical
benefit of 27.5% obtained in simulation with 300W as power limit (in

simulation, it was during the summer months when the average SoC rose).
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Fig. 3.45. The voltage of the VRLA battery (HESS and ESS).
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Fogbank and system failure

The HESS was operating in this regime for two more months, until December
26, 2018. On December 22, a fog bank set in the area for 10 days. During these
days, both systems ran out of energy. The current and voltage waveforms of

both installations before the failure are shown in Fig. 3.46.
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Fig. 3.46. Current and voltage waveforms during the fog bank.
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Two main conclusions can be drawn from the waveforms:

e The hybrid system was subject to a higher power demand than the
conventional system (Fig. 3.46a). This is caused by some loads that were
disconnected only in the conventional installation and not in the hybrid
installation. In the last weeks, the power demand at the HESS was 84W,
almost twice compared to the 48W of consumption in the reference
installation.

e The hybrid system had a higher SoC when the fog bank was set. This
can be appreciated in the high voltage on Dec 22 (Fig. 3.46b). Therefore,
the hybrid system had fulfilled its task. However, as of day 24, the higher
consumption causes the voltage at the hybrid site to fall below the non-
hybrid site. Two days later, on December 26, the HESS installation falls

12 hours earlier than the conventional one.

After the system was shut down on the 26th, the system remained off. On
January 9, during the manual restart, its status was checked. Then it was
verified that the batteries were completely discharged, and it was decided to
disassemble the equipment and make a complete diagnose in the laboratory.
During the analysis, it was observed that the power module that generated
problems in October had very likely burdened the operation of the equipment,

adding additional leak consumption to the system.

The energy balance during the last operation days of the system is shown in
Fig. 3.47. It can be observed how the negative slope of energy (i.e. the power)
is more pronounced in the HESS (blue) than in the conventional ESS (orange),
which is explained by the extra consumption at the HESS. The yellow graph
represents the predicted energy balance in the HESS under the same power
demand as that of the conventional ESS. In this last case, two effects can be
observed. First, the HESS exhibits better resilience, as has been explained in
previous sections. Second, it can be seen that, considering the same power
demand as the conventional ESS system, the SoC of the hybrid system at the
end of the period (December 27) would have been much higher than the

conventional system, guaranteeing three to four more days of autonomy.
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Fig. 3.47. Energy absorption and consumption during the fog bank.

3.3.7 Conclusions from the field tests

The following conclusions can be extracted from the field tests:

The concept of the hybrid system works as expected. The hybrid system
has an increased energy absorption capacity and takes the VRLA battery
to a higher state of charge.

After different low irradiation events during the month of October, the
HESS has harvested around 13-22% more energy than the conventional
ESS. Thus, it shows a higher resilience and is better prepared for
consecutive low irradiation events.

After four months in operation under the conditions described, the
VRLA battery in the HESS has an estimated SoC 16% higher than the
VRLA battery in the conventional ESS. It is expected that this value
would evolve to a higher value after more time in operation and with a
higher power limit in the converter.

Both systems ran out of energy during the long fog bank. The State of
Charge of the HESS at the beginning of the said event was higher, but

it lasted shorter due to an increased power consumption.

In general, the HESS benefits have been validated and the system works

better both in achieving a higher steady SoC and in increasing the resilience of

the storage system.
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3.4 Conclusions

PV Off-grid systems suffer from specific generation and consumption
patterns that worsen their storage performance when using only one battery
pack due to the Partial State of Charge phenomena. The study presented in
this chapter proposes a simple HESS composed of two storage elements (VRLA
and LFP batteries) as a strategy to overcome or at least minimize this issue,

establishing the key parameters when sizing the storage elements.

An Energy Management Strategy has been implemented to coordinate the
charge and discharge patterns of both batteries. This EMS is required to get
simulation and experimental results, in such a way that the proposed HESS
concept is validated. A simple strategy has been deduced and implemented in
this work. However, there is a huge research field related to new EMSs, leading

to strategies that are better suited to other applications.

The sizing of this HESS has been studied, and the simulation results show
that the minimum autonomy of the systems should be around 150 hours, an
optimal LFP size in the range of 15 to 30% of the overall installed energy (and
the rest in the VRLA technology), obtaining the best performance tradeoff. The
peak power of the solar panels should be an order of magnitude higher than the
DC power of the load in the climate and latitude studied. The simulation results
of different HESS sizing designs show an increment of the average SoC in the
range from 5 to 25% and an improvement of the resilience of up to 45%, which
is especially noticeable when considering small-size battery packs, with low

overall autonomy.

The system has been experimentally tested on a real installation with a
simple 200W DC/DC converter. The results show that the implemented HESS
was able to harvest around 13-22% more energy than the conventional ESS
after low irradiation periods, and obtained an increased SoC of around a 16%
higher in the VRLA battery after some months in use, which could be improved

if a longer period was analyzed.
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In general, it can be stated that the hybrid system is noticeably better than

the current system. The new system has different benefits:

e DBetter resilience capabilities. Due to the improvement in the energy
absorption capabilities provided by the LFP battery, the system can
harvest more energy after a long period of low irradiation.

e Better storage capabilities. The hybrid system reduces the PSoC issue,
leading the emergency battery into a higher steady SoC than in the case
of conventional ESS.

o Useful life extension. Since the VRLA battery is less cycled than in the
ESS case, it ages slower. The specific impact of the HESS on this aspect

still needs time to be checked.

The results of this study are subjected to several interpretations. In this
application, new HESS do not need to be oversized to guarantee a minimum
charge reserve when low irradiation days come. Even more, old ESS based on
one monolithic VRLA battery can be retrofitted, by adding in parallel the
DC/DC converter and a smaller LFP battery pack. The old battery can now

operate in a support role and thus extend its lifetime.

As a future line, it is interesting to develop smart charge algorithms and
battery maintenance strategies. Algorithms that predict system failures or
energy shortages would be implemented, so batteries can be overcharged before
these events, minimizing the probabilities of failure. Additionally, the EMS can
be improved with the estimation of the state of health of the storage sub-
systems, so better suited decisions can be taken when selecting roles for the

batteries.

An introduction to the above-mentioned predictive algorithms is carried out

in the following chapters, as the first steps in this line of research.
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Chapter 4.- Fault Prediction with Machine
Learning Methods

This chapter addresses failure prediction in standalone photovoltaic installations,
as a means to provide more information to energy management strategies and
operators. This way, batteries can be intelligently charged or preemptive maintenance
tasks can be scheduled.
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4.1 Introduction

4.1.1 Motivation

In previous chapters, HESS have been proposed as a solution to mitigate
most of the problems of conventional ESS in standalone PV installations.
However, upgrading an existing ESS into a HESS requires a major modification
in the energy system, since an additional battery pack and an additional power
converter need to be installed. There are installations where this is not possible

due to budget or room limitations.

Advanced battery charging strategies, such as 3-stage charging (Fig. 2.11),
have been developed as a simple solution to improve the performance of existing
ESS, without the need for additional hardware elements. These strategies do
not provide a complete solution to the problems of the energy systems but are
sometimes enough for the application. However, this speeds up the aging of the
batteries due to higher float voltages or increased charging currents (Garayalde
et al. 2017). Additionally, these overcharges are done periodically, without
taking into account the state of the batteries. As an example, batteries are

overcharged with the same periodicity on summer and on winter.

These overcharge strategies can be enhanced with predictive algorithms. If
such algorithms foresee a period of low irradiation, with the risk of reaching low
voltages, then the batteries can be overcharged. On the contrary, if a favorable
scenario is predicted, the battery can be charged without the additional

absorption phase, reducing the impact on aging.

Furthermore, even on systems without the capability of overcharging the
batteries, it could be interesting to develop such techniques. An example is
given: if future problems are predicted, maintenance tasks may be scheduled,
so operators may be able to recharge the batteries using other sources such as
diesel-powered generators. Currently, these tasks are carried out a-posteriori,
after the system has failed, with the consequent service interruption and

increased maintenance cost.
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4.1.2 Background

The use of machine learning techniques in photovoltaic installations has been
explored before. These techniques have been mainly applied to the estimation
or prediction of the power generation patterns under uncertain scenarios like
cloudy periods. (Anderson and Yakimenko 2018; Ospina, Newaz, and Omar
Faruque 2019). Estimation of power consumption patterns is also a goal in
applications such as micro-grids, where there is uncertainty in this regard (in
the case being studied here, power consumption is mainly DC) (Brenna et al.
2018). The use of historic data from installations is critical to train and validate
the prediction algorithms, even by using data from several years (Abdel-Nasser

and Mahmoud 2019).

When addressing power generation prediction, these machine-learning
techniques have been previously combined with weather forecasting services or
tools to provide an estimate on future generation patterns, as in (Leva et al.
2017; Zhong et al. 2014). Cloud analysis has previously been used to make a
short-term prediction on generation and irradiation (Anagnostos et al. 2019).
Additionally, studies such as (Huang et al. 2015) propose a classification of
different types of days, according to their daily irradiation patterns. These
typologies are used as different future scenarios, to make different predictions

that are then combined through fuzzy logic techniques.

Regarding the battery packs, most works are focused on estimating or
predicting variables such as SoC or RUL, in a short-term window (Lipu et al.
2018; Caliwag and Lim 2019; Hong et al. 2020; Wu et al. 2020; Homan et al.
2019). Fewer studies are focused on predicting the voltage of the installation,
even though it is the most critical variable when trying to predict a possible
failure of the system (Yu et al. 2018). Since this is the approach taken

throughout this chapter, voltage is going to be considered the prediction goal.

As for different data-driven techniques, most studies are centered in
sequence-processing networks, such as Non-linear AutoRegressive eXogenous
models (NARX), Long-Short Term Memory models (LSTM), or Convolutional
Neural Networks (CNN) (Anderson and Yakimenko 2018; Lipu et al. 2018;
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Anagnostos et al. 2019; Hong et al. 2020; Wu et al. 2020; NaitMalek et al. 2019).
Specifically, LSTM seems to be the best-suited technique in terms of overall
performance, according to the error metrics and the number of publications
(Abbas, Nawaz, and Kamran 2019). Gaussian Process Regression (GPR) has
also been considered in other studies, but its increased complexity makes it

worse positioned when trying to implement these techniques in simple BMS

(Pajovic et al. 2017; Sahinoglu et al. 2018; Sanz-Alcaine et al. 2021).

4.1.3 Objectives

This chapter aims to provide simple but effective algorithms to predict
whether an installation is going to suffer from energy disruption in a certain
time horizon. The hypothesis is that the future state of the energy system can
be predicted by using a window of past observations of voltage, temperature,
and current, and an input of the weather forecast for the future days. Two
different algorithms, specifically designed for sequence processing, are going to

be evaluated as options.

The outline of the chapter is as follows. Section 4.2 describes the methodology
and database. Section 4.3 describes the algorithms and provides initial results
for the algorithms and the prediction approach by using future data as an input,
without addressing the weather forecast problem. Section 4.4 describes the
algorithms used for modeling the future input data so the algorithm can be
included in a real application with the weather forecast. Section 4.5 collects the
results when incorporating this future estimation, and section 4.6 gathers the

conclusions of the chapter.

As an observation, the work presented in the chapter has been developed by
using real data from some installations in the Ebro basin, which belong to CHE.
Each of them has different parameters such as power consumption, battery
chemistry, photovoltaic power... The performance metrics presented throughout
this chapter have been obtained with one of the installations (Morrén). Further,

performance metrics for the rest of the installations are collected.

100



Chapter 4.-Fault Prediction with Machine Learning Methods

4.2 Methodology

4.2.1 Dataset description

The dataset used for training the algorithms is a proprietary dataset, which
has been described in (Guillén Asensio et al. 2020; Sanz-Gorrachategui et al.
2020) and is an expanded version of the dataset used in previous chapters for
simulation purposes. It comprises data from several standalone PV installations
that belong to CHE. These installations are scattered along the Ebro Basin,
and serve different purposes such as metering stations, irrigation channel
control, and communication relays. Each installation has measured, stored, and
reported different parameters and variables measured every 15 minutes, over
the course of more than ten years. In this case, however, the database has been

subsampled to a one-hour sampling time to reduce computational cost.

The stored variables related to the ESS are the voltage, current, and
temperature of the batteries. As an example, Fig. 4.1 shows a couple of weeks

of data belonging to the installation of Morrén (40°42'41.7"N, 0°20'50.0"W).
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Fig. 4.1. Voltage, current, and temperature waveforms (Morrdn).
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The installation at the Morrén site, one of the installations contained in the
dataset, has been selected for this work. The algorithms for performance
prediction have been trained and validated on this installation, so they can
predict the evolution and future behavior of the ESS at this location. The
features of said installation are collected in Table 4.1, whereas Fig. 4.2 shows a

photograph of the installation and the included battery pack.

Element Parameter Value Units

Chemistry NiCd -

Vyom 48 174

Battery Capacity 920 Ah

N© Cells 40

Model Sunica Plus Sun 920-1 SAFT -

Installation DC Load 250 v

Solar Ppx 3120 w

Table 4.1. Morrén installation features.

=

Fig. 4.2. Morroén facility (left) and battery pack (right).

4.2.2 Estimation approach

FEstimation goal

The main goal of this machine-learning algorithm is to determine whether
the standalone PV installation may run out of energy in a short-term window.
Thus, the output of the algorithms is going to be the voltage of the battery
pack. When the voltage falls below a certain value (depending on the specific

chemistry, conditions...), the installation shuts down, so it is critical to estimate
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the voltage evolution and determine whether or not it falls below some

emergency thresholds.

After consulting with the experts that run the installations in CHE, it has
been decided that 48 hours is a reasonable estimation horizon for them to
prevent failure if needed. To predict voltage at far time horizons, some studies
(Sahinoglu et al. 2018) use a recursive approach, where the voltage output is
predicted in a closer time-span and is then fed back as a new voltage
measurement, to keep on predicting further in time. However, in this case, a
direct estimation of the voltage measurement 48 hours in the future is going to

be applied.

Inputs

To provide information on the past state of the battery, windows of 48 hours
containing past waveforms of voltage, current, and temperature are going to be
used as inputs for the algorithm since they are available at most installations
(Sanz-Alcaine et al. 2021). Additionally, an estimation of the future current
waveform during the following 48h is used to provide information on the
evolution of the system. The future temperature was also initially considered
but finally discarded after checking its low relevance in the voltage prediction.

A summary of the input variables used in the prediction is shown in Fig. 4.3.

Temperature waveform

___ Current Waveform eStimation -

n-48 n-24 n n+24 n+48 [hours]

Fig. 4.3. Time windows of voltage, current, and temperature are used as inputs.

The general structure of the prediction algorithms will follow equation (4.1).
Here, W is the size of the past observation window, ¥, ,4g is the prediction of
the voltage in 48 hours, v, to v,_y 41 represent the past voltage samples, t,, to
th—w+1 represent the past temperature samples, i, to i,_y 41 represent the past

current samples and, i,4q t0 i44g, the future current estimations.

Onias = [ (Wn - Vnewat b o tnewr 1 bnass bng o b v lnmwen) (4.1)
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System overview

A scheme of the complete system is shown in Fig. 4.4. The core network,
“Voltage prediction algorithm”, receives the preprocessed inputs and obtains an
estimate on the future voltage, 48 hours ahead. The past inputs are provided
by the “Real-time inputs” block. The future current estimate is provided by the
“Future current estimation” block. The “Preprocessing” block accommodates
the different inputs so they can be processed by the prediction algorithm. Both
the “Voltage prediction algorithm” and the “Future current estimation” blocks

are trained with the dataset.

Dataset Training

I
Future current
pattern Preprocessed Voltage
Real-time \(/Z?Jlrtfegnet inputs Voltage | predicion
: Preprocessin icti
inputs Temperature P g

Fig. 4.4. Diagram of the voltage prediction process.

Both the “Voltage prediction algorithm” block and the “Future current
estimation” block are developed in sections 4.3 and 4.4 respectively. The

preprocessing block is described below.

Preprocessing

The ranges of voltage, temperature, and current are different and therefore,
these variables need to be normalized before being processed by the networks.
The normalization improves the convergence of the algorithm and ensures that
some variables are not outweighed by others simply due to their absolute value.
The voltage and current waveforms of each dataset have been normalized to
the range [0, 1] by using the expression in (4.2), where each variable x is
normalized by using its maximum and its minimum value in the whole set.

x — min(x)

- max(x) — min(x) (4.2)

anTm
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4.3 Future voltage prediction

4.3.1 Neural network models

Different machine learning models have been considered for the prediction
task. Specifically, these models need to be able to process time-domain data
series, since the inputs to the algorithms are going to be data frames of different
variables, measured during a given amount of hours. Additionally, the goal is
to end up implementing these algorithms in a microcontroller embedded in an

ESS/HESS, so networks with a lower complexity are preferred.

The algorithms NARX and LSTM have been chosen for this purpose. LSTM
has shown good results in similar applications in the state of the art (NaitMalek
et al. 2019; Ospina, Newaz, and Omar Faruque 2019; M. S. Hossain and
Mahmood 2020), but is an algorithm with a certain degree of complexity, more
suitable for cloud-like implementations. On the other side, NARX represents a

simpler option with acceptable outcome, preferred for in-situ implementations.

Initially, to decouple the voltage prediction algorithm from the future current
estimation, these algorithms are going to be designed using actual future current
waveforms as inputs. How to estimate future current will be explored in further
sections and the performance of the voltage prediction networks when using an

estimate for the future current will be analyzed then.

Nonlinear AutoRegressive eXogenous models

NARX networks are recurrent algorithms, where part of the output is
feedback into the input (Haykin 1998; Leontaritis and Billings 1985). They are
best suited for modeling time-series, non-linear systems. Any NARX network
follows one of the two architectures in Fig. 4.5, an open-loop architecture or a

closed-loop architecture.

In the open-loop structure, true past measurements of the output variable
are available at the time of the prediction and thus can be used as input. On
the other hand, in the closed-loop architecture, these measurements are not

available, and past estimates of the output are used as inputs instead.
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Fig. 4.5. Different NARX architectures.

In this application, as time progresses, new voltage measurements are
available and therefore, there is no need for using past voltage estimates. For
this reason, the open-loop architecture has been selected. The general definition
of a NARX function with this architecture is described in (4.3), where f is a
non-linear function, x; is the input variable at the i-th sample, y; is the output
at the i-th sample and W is the size of the buffer or time window. Note that

past samples of y are used to compute the next output.

In = f(xn' Xpn—1 - Xn-w+1Yn-1 ---yn—W+1) (4.3)

Different options can be used to implement the nonlinear function f. In this
case, a Multilayer Perceptron (MLP), also known as Feed-Forward Neural
Network (Haykin 1998), has been selected. The structure of a generic Multi-
Layer Perceptron is shown in Fig. 4.6. This network is usually made of three

layers:

e An input layer, with as many input neurons as the dimensionality of
the input array (m).

e Hidden layer(s). Here, the inputs are linearly combined (multiplied by
certain weights wyii, and summed with a bias term) and then pass
through a non-linear function (f;) known as the activation function.
Different functions can be used as activation functions, but the most
common is the sigmoid. The main parameter to fix when designing an
MLP is the number of neurons in this layer (p). A single or multiple

hidden layers can be used.
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e An output layer, with as many output neurons as desired outputs (n).
On it, the outputs of each neuron in the hidden layer are linearly
combined. An additional activation function (f.) can be added after
this layer, although this is usually done in classification problems

rather than regression problems, which is the case here.

These structures may be used for classification or regression problems,
depending on the activation function of the output layer. This is a regression

problem since the output is a voltage estimate, so the output layer is linear.

Input Layer Hidden Layer Output Layer

Fig. 4.6. MLP architecture.

Note that the inputs x; of the MLP do not necessarily have a temporal
relationship; they can be magnitudes of different nature. The NARX structure

establishes the temporal relationship between them.

Long-Short Term Memory models

LSTM networks were initially proposed in 1997 as a means to deal with the
vanishing gradient problem in training recurrent neural networks (RNN)
(Hochreiter and Schmidhuber 1997). The structure of an LSTM layer is shown
in Fig. 4.7. Each layer has an input X", an output h™, and a memory term c",
which are vectors that change over time, being n the time variable. The vector

x" has dimensionality m, and both h™ and ¢™ have the same dimensionality p.
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Fig. 4.7. LSTM layer architecture.

The LSTM layer controls information through three sub-networks, or

“gates”: The forget gate f, the input gate i, and the output gate o, which are

also vectors of dimensionality p. The forget gate controls how much old

information is removed from the memory term. The input gate controls how

much new information in € passes to the memory term. Finally, the output gate

controls the impact the memory term has on the output h. In the figure, the o

layer and tanh layer blocks represent complete neural layers with sigmoid or

hyperbolic tangent function as activation function respectively.

In each time instant n, the equations for each element k of the p elements in

f i, o, and C are:
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Where w,{ is the array of m+p weights associated with the k-th element in

the f gate, and b,]: is the bias term associated with the k-th element in the f

gate. The same is applicable for the rest of the gates.

After the gates have been calculated, the updated memory term c¢" and the
output at the instant n, h™, can be obtained as in (4.8) and (4.9). Here, ®

represents the Hadamard product.
=" QRF+ERI (4.8)

h™ =tanh(c") ® o (4.9)

Structures with a higher complexity may be built by stacking multiple LSTM
layers, so the h™ term of the previous layer acts as the input X" to the following
one. Additionally, post-processing functions can be added to obtain a scalar

output from the term h™ of the final LSTM cell.

4.3.2 Network sizing

Both NARX and LSTM structures count with multiple parameters that need
to be properly tuned while training the algorithm. These parameters include
the number of hidden layers, the number of neurons in the layers, the activation
functions of each layer, and others. To tune these parameters, structures with
different sizes and functions have been trained and compared. The Root Mean
Square Error (RMSE), defined as in (4.10), has been used to benchmark these
different structures and parameters. The training process for these networks is

described below.

m
1
RMSE = |~ Z(yl- —9)? (4.10)
i=1

Training process

A machine-learning algorithm should perform well with the training data
and with new data. However, when training neural networks, overfitting may

happen. Overfitting takes place if the network over-learns the training data,
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achieving very low training errors but losing its generalization capabilities, and
performing worse with new data. There are multiple techniques to avoid this
effect. Generally, the dataset is divided into different subsets, which are used
in different ways during the training process to minimize overfitting. In this
case, the training process carried out has been early-stopping (Haykin 1998).
To this purpose, the dataset has been divided into three subsets: the training,
validation, and test subsets. The training set comprises 70% of the examples in
the dataset. On the other side, the validation and the test subsets each made

up 15% of the total examples in the set.

In early stopping, the training subset is used to fit the model on each
iteration, and the validation subset is used to obtain an error metric after each
iteration. When the validation error increases steadily, overfitting is starting to
take place, so the training process stops and the iteration with the best
validation performance (early-stopping point) is selected as the trained network,
see Fig. 4.8. The test subset is used afterward to compare different algorithms
with different structures or parameters. This way, none of the algorithms has

interacted with the test data while training, thus obtaining a fair comparison.

Validation error

Early-stopping point

Mean Square Error

Training error

Number of epochs

Fig. 4.8. Evolution of the error in the training process.

The ADAM (ADAptive Moment estimation) optimizer has been used for the
training process. This algorithm is a stochastic optimizer with a variable
learning rate, an evolution over the conventional Stochastic Gradient Descend
algorithm (Kingma and Ba 2015), and it is probably one of the most common

algorithms used for neural network training nowadays. As a cost function, the

Mean Squared Error (MSE) has been used.
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Network sizing

The NARX and the LSTM algorithms count with numerous parameters to
be tuned while in training. This may be a difficult task, and usually, a

parametric search is used to obtain the best-performing parameters.

In the NARX structure, the main parameters to be configured are the
number of hidden layers, the number of neurons of the hidden layers, and the
activation function of the layers. Since this is a regression problem, the
activation function of the last layer will be linear. The number of neurons in
the input layer equals the number of inputs (samples of the past voltage
window, past temperature window, past current window, and future current

window), and there is only one output, the future voltage estimation.

In the LSTM structure, the parameters to be configured are the number of
LSTM cells and the size of memory variables ¢, and h, of each of them. As
with the NARX structure, the last LSTM cell has a linear activation function

since this is a regression problem.

For the NARX architecture, two hidden layers have led to better results than
only one hidden layer. To find out the optimal number of neurons in these

hidden layers, a parametric sweep has been carried out.

Similarly, in the LSTM network, two LSTM layers have been concatenated
as they have led to better results than just one layer. The dimensionality of the

memory variables for each layer has been swept to find the optimal size.

The results for the initial error metrics with both algorithms and different
parameters have been benchmarked by using the RMSE, and are collected in

Table 4.2.

Neurons 1st Neurons 2nd

. . NARX Error LSTM Error
hidden layer hidden layer
25 12 0.667 0.310
50 25 0.595 0.269
100 50 0.430 0.222
200 100 0.568 0.246
300 150 0.632 0.240

Table 4.2. Error comparison for both networks and different hidden layer sizes.

111



Hybrid and Intelligent Energy Storage Systems in Standalone Photovoltaic Applications

As it can be observed, increasing the number of neurons of the structure
above 100 and 50 in the first and second layers respectively does not have a
meaningful impact on the error rates. In fact, it has proven to be detrimental.
This has been reported for both algorithms. Thus, this has been the selected

size for both algorithms.

To further reduce overfitting, dropout layers have been added after each
hidden layer. Dropout layers are additional layers that modify the structure of
the neural network. They randomly disconnect some neurons in these layers
with a certain rate p when training. This makes the structure less dependent
on specific neurons and reduces overfitting (Srivastava et al. 2014). In this case,

a dropout rate p of 10% has been chosen.

Different activation functions for each structure have also been trained. The
best results for the activation functions in the hidden layers have been obtained
with the ReLU (Rectified Linear Unit) functions for the NARX structure and
the hyperbolic tangent for the LSTM network (Hara, Saito, and Shouno 2015).
As explained before, the output layer in both structures counts with a linear
activation function since this is a regression problem and the output must be a

real number.

The definitive parameters for both structures are collected in Table 4.3.

. Layer and Activation L.
Algorithm . Optimizer Drop-out
neurons function
NARX 100 — 50 — 1 ReLU ADAM 10%
LSTM 100 — 50 — 1 Tanh ADAM 10%

Table 4.3. Parameters of both networks.

4.3.3 Preliminary results

Different error metrics have been defined to evaluate the results of the
different algorithms. Besides the RMSE, the Mean Absolute Error (MAE), and
the Mean Relative Error (MRE) have also been used. The MAE and the MRE
are defined by equations (4.11) and (4.12).
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m
1
MAE =E'Z|)’i - ¥l (4.11)
i=1
1 < lyi— 3l
MRE (%) =E-ZM %100 (4.12)
4 i
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=
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Fig. 4.9 shows a sample time window with the results of the NARX and the
LSTM predictions. In it, different cases have been included, such as multiple
sunny (blue) and cloudy days (red). It can be appreciated how both algorithms
follow the voltage waveform, both in sunny periods and on cloudy days. The

LSTM seems to have higher accuracy, especially when predicting high voltage

values.
Comparison between prediction and real value
Real
4
58 1 . ?: AR :W ———- NARX
| [ \ h g ——== LSTM
J
56 !
= ]
2 54
Q
4 \
% \!
>
52 -
\
'\
50 1 \
48

0 24 48 72 96 120 144 168 192 216
time (h)

Fig. 4.9. Waveform prediction with both models and using future current as input.

To obtain comparable metrics, Table 4.4 includes the error figures obtained
for both predictions. In general, results for both algorithms show that the LSTM
prediction is better than the NARX prediction in all the error metrics. This can

be especially appreciated in the high voltage part of the waveforms, which
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belong to the float stage in the charging process. The LSTM algorithm is much
more capable of following these values. However, these are not especially
relevant intervals, since in these voltage ranges there is no failure probability.
It can also be seen that the LSTM is a much slower algorithm, both in terms
of training and inference time, which can be relevant since the ultimate goal of

these algorithms is to be implemented in the Battery Management System of

an ESS.

Traini Inf
Algorithm  RMSE (V) MAE (V) MRE (%) raims nerence
time time
NARX 0.670 0.464 0.863 1min 12s 432ms
LSTM 0.555 0.332 0.626 2h 23 min 11s Imin 38s

Table 4.4. Comparison of both network results.

A more exhaustive evaluation has been done in multiple PV standalone
installations, to check if the algorithms are valid and expandable. The voltage
ranges of the batteries in each installation are different, so the MRE (%) is the
most adequate figure to compare the results (Table 4.5). It can be appreciated
how the error metrics are in the table are in the range of 0.5-1%, which is

comparable to the case of the Morrén installation previously considered.

Installation NARX LSTM
Acequia Ontinena 0.811 1.048
Cartuja Monegros 0.549 0.481

Almenara Arba Luesia 0.879 0.956
Pluviémetro Candanchu 0.624 0.607
Repetidor Camero Nuevo 0.814 0.853

Repetidor Majalino 0.706 0.687

Table 4.5. MRE (%) results for other installations in the dataset.

As mentioned earlier, these predictions have been obtained by using future
current measurements as inputs. To implement these algorithms in a real
system, the future current pattern needs to be guessed. The following section

goes deeper into this concept.
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4.4 Prediction of the future current

So far, the algorithms have been using real future current waveforms as
inputs to predict future voltage. This is possible in this stage of the study since
future data is available in the dataset. However, when implementing these
algorithms in a real system, future data will not be available as input. To solve
this issue, a weather forecast could be used to predict the future current

patterns, and these can then be used as inputs to the algorithm.

There are different approaches in the literature to daily photovoltaic
generation clustering (M. S. Hossain and Mahmood 2020) by using irradiation
patterns as input variables. An example of irradiation waveforms from one of
the installations in the dataset, averaged by month, is shown in Fig. 4.10.
However, in this case, the current is going to be used as an input variable

instead of irradiation, due to its availability in the dataset.
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Fig. 4.10. Daily irradiation averaged by month.

The main idea is to obtain a classification of the different types of days that
can appear in the installation under study (Sanz-Gorrachategui et al. 2020).
Each of these types will have a representative current pattern. A weather
forecast algorithm selects the type of day more likely to happen in the following
days, and the voltage prediction algorithm uses the representative current

pattern as the expected future current for voltage estimation purposes.
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To obtain the classification of the types of current patterns, different features
have been extracted from the waveforms. These features are going to be
processed by non-supervised clustering techniques. The selected features are

depicted in Fig. 4.11, and are the following variables:

e The voltage at the start of discharge (SoD): Voltage of the battery at
the beginning of the night, when the solar panels stop producing
energy.

e The voltage at the end of discharge (FEoD): Voltage of the battery at
the end of the night, when the panels start producing energy.

e Charge duration (hours): Time-lapse between the end of the discharge
and the start of the following discharge.

e Discharge duration (hours): Time-lapse between the start of the
discharge and the end of the discharge.

e Stored charge: Integral of the current during the charging process.

e The average temperature during the charge.

e The average temperature during the discharge.
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Fig. 4.11. Features for day classification.
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4.4.1 Clustering algorithm

Self-Organizing Maps (SOM) and K-means have been used as clustering
techniques to determine the day classification (Teuvo Kohonen 2001; T.
Kohonen et al. 1996). SOM is an unsupervised neural network that is commonly
used for pattern recognition, database visualization, and preliminary analysis
of datasets. A SOM structure counts with a single input layer and a single

output layer, the map itself (Fig. 4.12).

Given an input layer with K variables x; (1< k < K) and an output map
with N x M neurons, each neuron (%,j) stores a vector of synaptic weights wyj,
with K components (1<iSN, 1<jSM). The map has two operation modes:
training and inference. In training, the synaptic weights are initialized to a
random value and are then adjusted. For each example in the dataset, the Best
Matching Unit (BMU) is obtained as the neuron with the least distance d to

that specific example, where d is defined as the Euclidean distance (4.13).

K
dij(Wij;X) = Z(Wijk — xk)z (4,13)
k=1

Then, the synaptic weights w;;, of the BMU and the neurons on its
neighborhood are adjusted to become closer to the input example, according to
the expression in (4.14). Here, a(t) is the learning rate, which decreases as the

training process progresses (4.15).
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Fig. 4.12. Generic SOM.
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wiji(t + 1) = wyjp () + Awyj (6)
= wije(8) + a(®) - (xe(6) = wije () (4.14)

t
a(t) = ay + E(“f - “0) (4.15)

Where @, is the initial learning rate, ay is the final learning rate and t; is

the number of iterations to get to the final learning rate.

After training the algorithm, the SOM has generated a non-linear, two-
dimensional projection of the multi-dimensional dataset. Then, in the inference
phase, the data is passed again through the algorithm, and the BMU is obtained
for each example. By doing so, the map groups similar data patterns into closer

regions.

4.4.2 SOM Results

The seven features described earlier have been extracted for each day in the
database, then normalized in the range [0, 1], and finally used for training the

SOM. A map of 10x6 neurons has been selected as a standard size.

The map can be visualized by using the U-matrix, which shows the distance
between the weights of adjacent neurons. The component planes can be
visualized as well, which are the map for each of the different weights associated

with each of the variables, see Fig. 4.13.

In this case, the U-matrix does not show clear clusters. Looking at the
component planes, the temperature maps are similar, thus these variables are
redundant. They are correlated to the charge and discharge duration, since they
mainly evolve in the vertical axis. As temperature and discharge duration are
related to the seasons, it makes sense that some degree of correlation exists

between them.
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Fig. 4.13. SOM results with temperature input (U-matriz and component planes).

To avoid redundancy, it has been decided to remove the temperature-related

variables, thus obtaining the map in Fig. 4.14.

central area of average days, while clear different

On it, the U-matrix shows a

days are grouped in the upper-

left and the bottom-right corners. This distribution is correlated with the

variable Stored Charge, as it can be observed on its component plane (Stored

Q). However, this behavior is not directly correlated with the component planes

of other variables such as the SoD and EoD Voltages, and the charge and

discharge durations, indicating that multiple sub-

groups may appear. To obtain

a clear division of the classes in the dataset, a clustering technique is going to

be applied.
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Fig. 4.14. SOM results without temperature input (U-matriz and component planes).
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4.4.3 Clustering

To identify the different clusters (each of them representing a day type), the
K-means algorithm has been applied to the outputs of the SOM. The K-means
algorithm is a process that establishes k£ random centroids in the space of the
data and assigns each example in the set to the closest centroid. Then, it
updates the centroid to the mean value of each of its examples. This process is
repeated iteratively until all the centroids are stable, meaning that the
algorithm has converged. However, the K-means algorithm needs the number
of clusters k as an input. To obtain the optimal number of clusters, different
methods may be applied (Kodinariya and Makwana 2013). Among others,
probably the simplest method is the “elbow” method, which is based on finding
the elbow point in the Sum of Squared Errors (SSE) curve (4.16), where k is
the number of clusters, S; is the i-th cluster, y; is the centroid of the i-th cluster,

and x; represents each of the examples assigned to the §; cluster.

k
SSEG) = ) > |l — il (4.16)

i=1 ijSi

The SSE value has been obtained for different numbers of k clusters, resulting
in the curve in Fig. 4.15. Increasing the number of clusters decreases the value
of the SSE, but worsens the clustering capabilities of the K-means algorithm.
In this case, the optimal point (elbow of the curve) can be found between three

and five clusters.
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Fig. 4.15. SSE curve.
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Fig. 4.16 collects the results of the SOM with three, four, and five clusters.
After classifying each of the days into one of the clusters, the current pattern
of each type of day has been obtained by averaging the current waveform of

the days in each cluster. These average current patterns are shown in Fig. 4.17.

3 Clusters 4 Clusters 5 Clusters

Fig. 4.16. SOMs with three, four, and five clusters.
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Fig. 4.17. Average current patterns with three (a), four (b), and five (c) clusters.
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The case of three clusters does not separate sufficiently some of the day
types, since there is not a clear low irradiation day, and there are two different
medium irradiation days (cyan and blue cases). In the case of five clusters, there
are multiple clusters for an average day (blue, cyan, and green). Here, a high

seasonal correlation can be observed in the yearly distribution of these days,

see Fig. 4.18.
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Fig. 4.18. Distribution of the 5 day types along o year.

the season and its irradiation in one of the following five categories:

¢ No Sun (orange): Days without much irradiation.

e Summer (blue): Average summer day.

e Spring / fall (cyan): Average spring or fall day.

e Winter with float stage (green): Average winter day.

e Winter without float stage (yellow): Sunny winter day after some
low irradiation days, when the battery does not reach the float stage

and absorbs all the generated energy.

As it can be observed, the Summer, Spring/fall and Winter with float
stage classes have a very similar current pattern. These patterns are not
distinct enough to deserve a separate class. For this reason, the case of five

clusters has been discarded.

Among these three cases of study, using four clusters provides the most
distinct types of day. Here, the seasonal component does not appear, and the
different current patterns are correctly separated in terms of generation. The
results of this map and the different average current patterns are shown in Fig.

4.19.
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Fig. 4.19. Final SOM and k-means results. SOM (a). Current pattern from each

cluster (b). Distribution of each pattern along a year (c).

The classes for the case of four clusters have been labeled as:

e Low irradiation day (yellow): These are rainy or foggy days when

solar irradiation is at its lowest.

e Medium day (blue): This is usually a cloudy day, with some sunny

periods. Absorption is not regular along with the whole day and rarely

reaches the maximum available power.

¢ Good irradiation day (cyan): This is a regular sunny day, with the

battery already in a high SoC. The battery absorbs the maximum

available power in the morning, and around 11am, it reaches the float

stage. From here, the current decreases until the evening, when the

battery starts discharging.
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e High absorption day (red): This is a high irradiation day, with the
battery in a low SoC at the beginning. On it, the absorption follows
the same trend as the good irradiation day, but it takes longer for the
battery to reach the float stage, since its starting SoC was lower, and

therefore it is capable of absorbing an increased amount of charge.
An additional class has been added to the taxonomy:

e Day without absorption (purple): This waveform emulates zero
energy absorption. This situation occurs on days with either snow

blocking the solar panels, a blizzard, or technical failures.

In the dataset, there are very few events like this, so the algorithm does not
create a separate cluster for them. However, it shows a clear different current

pattern, so it has been added manually.

When implementing the whole system, the weather forecasting algorithm will
select two hypotheses for the future current of the forthcoming two days (48
hours). Then, the voltage prediction algorithm will use these hypotheses as the
future current input. This automatic weather forecast algorithm is not a goal
of this thesis, but could be developed as a future research line. Current versions

of the system use an operator to select the future current patterns.
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4.5 Results

4.5.1 Prediction results

The same time window of Fig. 4.9 is included in Fig. 4.20, but here the
prediction has been estimated by using the current pattern from the day types
determined with the SOM. The predictions are obviously not as good as when
using real future data, but they still provide an approximate idea of the

behavior of the storage system in the forthcoming days.

The numerical error metrics have been obtained for the whole test subset,
and are collected in Table 4.6. The new metrics are larger than those obtained

previously, with real future current, but are still acceptable for the application.

Algorithm RMSE [V] MAE [V] MRE [%)]
NARX 0.986 (0.670) 0.656 (0.464) 1.214 (0.863)
LSTM 0.883 (0.555) 0.550 (0.332) 1.029 (0.626)

Table 4.6. Final prediclion error metrics.
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Fig. 4.20. Waveform predictions using artificial current as input.
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A longer waveform has been selected and depicted in Fig. 4.21. This specific
window has been selected since it includes multiple different irradiation cases
and an eventual failure of the system. In the figure, it can be appreciated how

the prediction during regular days is accurate, specifically during the discharges.

The prediction in medium or low irradiation days is also accurate, up until
the 432h mark in the graph, when voltage drops below 48V. Here, four
consecutive low irradiation days take place, and the battery suffers from a deep
discharge. In this case, the algorithms do not predict accurately the whole
voltage evolution. This effect is reasonable. In the database, there are few events
with four or more consecutive low irradiation days, so the neural networks are
not trained with this type of situation. Thus, are not capable of replicate
properly these extreme cases. However, the decreasing trend of the voltage is
indeed captured. This trend can be used as an alert indicator, so the operators
can anticipate a low energy state within this 48h interval. To obtain an estimate
of the error in these low-energy events, the error figures for voltages below 50V

have been obtained in Table 4.7.
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Fig. 4.21. Prediction in a system failure situation.
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Voltage range Algorithm RMSE [V] MAE [V] MRE [%]
range LSTM 0.883 0.550 1.029
NARX 1.128 0.898 1.898
< 50V
LSTM 1.298 1.060 2.231

Table 4.7. Prediction error metrics for voltage ranges below 50V.

It is interesting to note that the LSTM algorithm makes more pessimistic
estimations than the NARX, around the 528h mark. It could be considered as

a more adequate algorithm if a more conservative approach is needed.

4.5.2 Preliminary implementation

A preliminary version of the whole system has been implemented in CHE
servers. In this implementation, both an estimate for the following 24 and 48
hours have been included. A capture of the software tool is shown in Fig. 4.22.
In it, the red plot is the actual measured voltage value in the installation. The
green plot is the estimate for the voltage 24 hours ahead, and the orange plot,
48 hours ahead. In this version, the future current patterns are selected
automatically by a weather forecast service that runs in the same server. The
results are promising but the final error evaluation needs a larger amount of

data, of some years, to be evaluated.
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Fig. 4.22. Capture of the implemented system in CHE servers.
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4.6 Conclusions

The prediction of future voltage in standalone photovoltaic installations has
been addressed in this chapter. By processing temperature, voltage, and current
waveforms, already measured in most installations, the proposed algorithms are
capable of estimating future voltage, thus detecting possible system blackouts
with a wide enough margin to respond accordingly. These algorithms can be
used by BMSs as a means to improve existing charging methods, which
accelerate aging by overcharging batteries periodically. By only overcharging

them when a failure is predicted, the impact on aging is minimized.

To this end, two different sequence-processing algorithms have been proposed
for this task: NARX and LSTM. The initial error metrics obtained are accurate,
with an RMSE of 0.670V for the NARX algorithm and 0.555V for the LSTM
algorithm, on battery packs with a nominal voltage of 48V. However, these
error metrics have been obtained when using the real future current as an input

to the algorithms.

To address the problem of using future current waveforms, the current
generation patterns have been studied and classified by using a non-supervised
machine-learning technique, Self-Organized Maps. It has been observed that, in
terms of irradiation, four main different types of day appear. A fifth type
(without any irradiation) has been added to consider panel failure or very low
irradiation periods (snow). A weather forecast algorithm selects these
waveforms as hypotheses for future current scenarios, to be used as future

inputs to the voltage prediction networks.

After using the predicted current patterns as the obtained error metrics are
0.986V RMS in the case of the NARX algorithm, and 0.883V RMS in the case
of the LSTM algorithm. The error for low voltage ranges, below 50V in the
studied installation, are 1.128V RMS in the case of the NARX algorithm and
1.298V RMS in the LSTM. These results are still considered valid for the
application, since the decreasing voltage trend is still captured, as seen in Fig.

4.21.
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The conclusions of the comparison between both algorithms show that LSTM
provides better error metrics than NARX in general, but worse results when
analyzing voltages below 50V. LSTM is a more complex algorithm to train and
implement, obtaining higher training and inference times, which could be
detrimental when implementing the algorithm in a simple BMS in an

application, but adequate if a cloud-like implementation is considered.

On the other side, the NARX network obtains worse averaged error metrics,
but better results when observing voltages below 50V. These results are
accurate for the goal of the application. Its training and inference times are
much lower, and thus it would be preferable for its implementation in a simple

BMS or DC/DC converter.

After the results showed in this chapter, both algorithms have been applied
to multiple installations, obtaining comparable results. However, these networks
have been re-trained with data from each different installation. As a future
research line, it would be of interest to develop a universal algorithm, capable
of been deployed on any installation with similar features, without the need for
retraining it specifically. This algorithm should also be capable of learning from
the installation while in operation, adapting its predictions to the specific

behavior of that battery pack.
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Chapter 5.- Aging Estimation with Machine
Learning Methods

This chapter addresses aging estimation for lithium-ion batteries like the ones proposed
for HESS in previous chapters. This is necessary to develop models that are more robust
and control algorithms. The goal is to determine the remaining useful life of batteries
embedded in the application, by using simple test cycles, extracting key features from them,
and training machine learning algorithms.
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5.1 Introduction

5.1.1 Motivation

In the previous chapters of this dissertation, VRLA and LFP batteries have been
used in HESS for standalone photovoltaic installations. The aging of lead-acid
related technologies (such as VRLA), has been studied in depth in the past decades
(Pascoe and Anbuky 2004; Sun, Jou, and Wu 2011; Marchildon, Doumbia, and
Agbossou 2015) and is well known. On the other side, the aging of lithium-ion
batteries has been extensively studied and has proven to be a challenging problem
(Wright et al. 2003; Broussely et al. 2001; Bloom et al. 2001; Schuster et al. 2015;
Chaoui and Ibe-Ekeocha 2017; Sepasi, Ghorbani, and Liaw 2015), and has gained
attention in the recent years, probably motivated by the EV application.

For years, a lot of effort has been put into obtaining different aging models for
different battery chemistries, with different goals. Concepts such as State of Health
(SoH), End of Life (EoL), and Remaining Useful Life (RUL) have been explored as
measurements for battery aging. They have different meanings and purposes
depending on the specific application. On some applications, they report the health
of the battery, so it can be replaced accordingly. In other applications (such as
Energy Management Strategies in HESS), the aging estimation algorithm may play

a fundamental role in the decisions taken by the system.

Second life of batteries is another useful application of health estimators
(Martinez-Laserna et al. 2018). A common conclusion is that a suitable second life
application is a low-demanding application in terms of power requirements and
depth of discharge (DoD), such as energy storage in on-grid systems (Jiang et al.
2018; Martinez-Laserna et al. 2018; E. Hossain et al. 2019). Its role in off-grid
systems still needs to be evaluated, since it tends to be a more intensive application

in terms of DoD, but it is a promising application as well.

Remaining Useful Life estimation studies have traditionally been focused on in-
situ applications i.e. estimating the RUL of batteries that are already embedded in
an application and monitored. Here the main goal is to predict the failure threshold

(D. Liu et al. 2015; Lyu Li et al. 2019; Khelif et al. 2017; D. Liu et al. 2013; C.
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Chen and Pecht 2012; J. Liu and Chen 2019). These approaches usually require
knowledge of the past use of the battery (Martinez-Laserna et al. 2018).

In this dissertation, Chapter 3 has been focused on improving the performance
of ESS in terms of energy absorption and the State of Charge. Long-term
performance has not been addressed, since there is still uncertainty in the aging of
LFP batteries. The whole picture in lithium-ion aging is much wider, and the goal
of future work. This chapter aims to provide some novel steps in RUL estimation
for this kind of battery, as well as some additional tools to be used by BMS on in-
situ applications. Additionally, these algorithms should remain simple enough to
be used in low processing-power microprocessors, such as those used in these

applications.

Although these techniques have been developed with data from LFP batteries,
their portability to other chemistries is the subject of study, since in the HESS
application there is interest in developing enhanced life estimation algorithms for
the VRLA batteries as well. However, one of the singularities of this HESS
application is the fact that the battery packs may already be in place, with non-
monitored, used batteries. This is usually not desired when using health estimation
methods, since they usually require past knowledge of the use of the battery to
estimate its state of health and to predict its RUL. Thus, it is interesting to develop
tools able to obtain health-related parameters without knowing the past of the
batteries. Additionally, these algorithms would be needed in the case of using
second life batteries in PV applications, which is a promising niche (since in this

case, past information is not available).

5.1.2 Background

Many studies have been focused on determining the aging mechanisms of
lithium-ion batteries. Multiple aging factors have an impact on cells' life and

performance. These include:

e High and low temperatures (Jaguemont, Boulon, and Dubé 2016; Amine,
Liu, and Belharouak 2005).
e High current cycles (Chandrasekaran 2014).
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e Overcharges and overdischarges (Ohsaki et al. 2005).
e Mechanical stress (Christensen and Newman 2006 ).

e Time, or calendar life (Grolleau et al. 2014).

These different aging factors have a different impact on the degradation of the
cell. A widely accepted approach is that there are three main degradation types:
the increase of the batteries' equivalent series resistance, the Loss of Active Material

(LAM), and the Loss of Lithium Inventory (LLI) (Barré et al. 2013).

Regardless of the aging factors or mechanisms, many different techniques and
algorithms have been developed for SoH and other health-related parameters in the
literature such as State of Power (SoP). Traditionally, two main approaches have
been used: model-based and data-driven techniques. Model-based algorithms are
suitable for battery behavioral models (such as State of Charge estimators) but
have also been used for aging estimation. Model-based used for battery aging
estimation include Kalman or Extended Kalman Filters (Plett 2004; Zou et al.
2015), stochastic techniques (He et al. 2011; Saha et al. 2009), or Particle Filters
(C. Chen and Pecht 2012; Z. Liu et al. 2017; Miao et al. 2013; Wei, Dong, and
Chen 2018). These algorithms are adaptive and are usually meant for tracking cells'

life while it is operating.

Due to the large number of agents involved in battery aging, a data-driven
approach is also suitable for this task (Xiong, Li, and Tian 2018; Y. Li et al. 2019).
However, data-driven approaches need large and reliable datasets to be properly
trained, which can be difficult to obtain. Different techniques have been applied to
this field, such as Multi-Layer Perceptron, Support Vector Machines, Gaussian
Process Regression, Long-Short Term Memory networks, or Echo networks (Yang

et al. 2018; D. Liu et al. 2013; 2015; Pajovic, Orlik, and Wada 2018; Jia et al. 2020).

Until very recently, publicly available datasets were small (D. Liu et al. 2015;
Ren et al. 2018). Practically the entirety of the studies referenced above uses the
same dataset (Goebel and Saha 2010), which only counts with a handful of cells.
The dataset introduced in (Severson et al. 2019) was published recently (March
2019) and is the largest currently available for the LFP chemistry. It contains

information on 124 cells, which are cycled until their Eol.. In the original paper,
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the authors use this dataset for RUL prediction purposes, introducing some novel
health indicators (HI). Their focus is the early RUL estimation on a monitored cell

before it shows capacity-fade-related effects.

5.1.3 Objectives

In this chapter, the work in (Severson et al. 2019) will be taken as a starting
point. The same dataset is going to be used, but the goal of the algorithms will be
RUL and capacity estimation. Through few test cycles, features from the measured
voltage and current waveforms are extracted and processed by the data-driven
algorithms. As a simplification, this work is going to consider that the conclusions
reached for this database (which is based on individual cells) are valid for complete

ESS systems based on the same technology.

Different estimation approaches are going to be addressed, with both
classification and regression tools. Additionally, different HI are going to be used
as features. Some of them have already been widely used in the literature, while
others are less explored. The goal is to develop simple machine-learning techniques,
capable of providing estimations on different health-related variables of the battery

packs in the HESS application.

The chapter is organized as follows. Section 5.2 describes the methodology that
has been followed through the rest of the chapter, including the different estimation
algorithms, a description of the dataset, and the selected features. Sections 5.3, 5.4,
and 5.5 collect the development of the machine-learning algorithms and their

results. Section 5.6 gathers the conclusions of the chapter.
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5.2 Methodology

5.2.1 Estimation approach

When estimating battery aging, most studies in the state of the art track the
evolution of capacity and other health-related parameters from the beginning of
the life of the cell. They use past information to predict the evolution of the cell,
and determine its End-of-Life (EoL). On many occasions, HESS are built by
upgrading the existing ESS systems with an additional battery pack. Thus, there
is no information available on the past use of the existing batteries. For this reason,
there is interest in developing life-estimation tools that do not rely on knowledge

of the past of the storage packs.

On a different axis, two main approaches can be taken when studying RUL
estimation: “direct” or “indirect” estimation (D. Liu et al. 2015; Lianbing Li et al.
2019). The direct estimation approach uses cell capacity as a feature to predict
RUL, whereas indirect estimation does not. Direct estimation is usually possible if
the cell is in a controlled environment (e.g. a laboratory) and it is possible to cycle
the battery to extract features. On the other side, indirect estimation does not rely
on capacity as a feature to determine cell aging and remaining useful life. It is
aimed at industrial applications where the battery is not cycled completely, and

therefore it is not possible to disconnect cells to measure their features.

Conventional ESS with only one storage device would need the indirect approach
since it is not possible to freely discharge the battery to obtain its capacity (doing
so would imply the system to shut down). In the case of HESS, since the system
has multiple storage devices, they can be discharged in a controlled manner by
charging other elements, obtaining capacity, and other related features. This allows

for applying direct estimation approaches on applications with HESS.

Thus, this chapter is mainly going to focus on the direct estimation of life-related
variables of the battery, not knowing the past usage of the cells. Three main

different approaches are going to be followed:
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e Life stage classification. With this approach, cells are classified into
different categories, depending on whether they can be used in a long
term, or should be replaced soon.

¢ Remaining Useful Life estimation. This approach aims to give an
estimation of the number of remaining useful life of a certain cell. Here,
RUL [cycles] is defined as the remaining number of cycles until the
battery reaches its end of life.

e Straightforward capacity estimation and capacity curve
regression. These approaches use the features and algorithms explored
in previous sections to perform capacity estimation. On the one hand, a
straightforward approach is proposed to estimate capacity from other
related features, aimed for applications where it is not possible to measure
it directly. On the other hand, the capacity evolution for future cycles is

predicted from a past window of capacity measurements.

5.2.2 Dataset description

The dataset that is going to be used to train the algorithm in this chapter has
been introduced in (Severson et al. 2019). It is currently the largest publicly
available database, containing information from 124 commercial LFP /graphite
cells. The original study uses this dataset to estimate RUL after the 100" cycle of

a cell that has been monitored from the beginning of its life.

In the dataset, the cells are cycled until their EolL,, defined as the moment when
their capacity falls below 80%. Cell life ranges from 170 cycles to 2237 cycles in
extreme cases, averaging around 750 cycles. This provides more than 90000 full

discharge cycles in the whole dataset, with several measured features on each cycle.

The specific model of the cells is the APR18650M1A from A123 Systems, with
1.1Ah of nominal capacity. The cells have different high-current charge patterns,
but they have all been discharged with the same discharge current (4C) along with
all their life. During all the cycles, the ambient temperature was controlled to be
30°C. Waveforms for voltage, temperature, charge, and time were measured for
each cycle of each cell. The dataset also provides the observed capacity and an

estimate of the internal resistance of the cell at each test cycle.
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The dataset is provided by the original authors in three data batches. In the
paper, they use certain batches for training purposes and others for testing, but
there are clear differences in the behavior of the cells in each batch (Fermin-Cueto
et al. 2020). For example, batch #1 contains cells with long life, above 500 cycles,
while in batch #2 none of the cells lasts longer than this. For this reason, data

across all the batches will be used for training and testing here.

As a note, the case studied in this dissertation is the case of LFP batteries in
HESS for PV applications. The Energy Management Strategy described in the
experimental setup in Chapter 3 gives priority to the charge and discharge of LFP
batteries. Under this regime, they suffer from deep daily cycles. In this sense, the
dataset fits the singularity of the application. However, the author is aware that
the dataset contains cells cycled with high current profiles, and this is not the case
in the studied HESS application with a conventional sizing. Nevertheless, in the

absence of a better-suited dataset, this is going to be considered as a starting point.

5.2.3 Feature selection

The algorithms described below use several features obtained from the test
cycles. Some of these features, such as Capacity or Internal Resistance, are well
known and are usually used for SoH or RUL estimation purposes. On the other
side, other features such as Time Interval of Equal Discharging Voltage Difference
(TTEDVD) or Incremental Capacity have been less explored. Nevertheless, they
have proven to be good Health Indicators (HI) in other battery aging studies (D.
Liu et al. 2015; 2013; Ansean et al. 2019).

The original study in (Severson et al. 2019), where the dataset was introduced,
considered each cell as a separate example, since the algorithms were simple enough
to be trained on just 124 examples, and tracked the evolution of each cell. On the
contrary, this approach will consider each cycle in the dataset, rather than each
cell, as a separate example. The number of examples increases from 124 cells to
more than 90000 cycles and so, complex data-driven algorithms, which require more
data examples, can be trained. This approach will have relevant implications, as

discussed later.

138



Chapter 5.-Aging Estimation with Machine Learning Methods

With this approach, each example has its own set of features, and will have as
output the number of RUL cycles of the cell at that specific moment of its life.
Some of these features, such as the measured capacity and internal resistance, are
already provided by the dataset for each cycle of each cell. Other features are
computed from processing the waveforms of each cycle. Each feature has been
analyzed separately, and has proven to contain useful information towards health

estimation. The main features that are going to be considered are described below.

Capacity

Capacity, C [Ah] is defined as the amount of charge extracted in each full-
discharge cycle. Fig. 5.1 shows an example of the evolution of this feature for one
of the cells in the dataset. Degradation can be seen along with the lifespan of the
cell, with an accelerated decay near the EoL. As explained in section 5.2.1, when
considering direct RUL estimation, capacity is available as an input since the cells
can be cycled as needed, which will be the case throughout most of the chapter. By
contrast, section 5.5 will have capacity as the estimation goal, for applications

where it is not possible to measure it.
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Fig. 5.1. Evolution of Capacity for one cell in the database.

Internal Resistance

Internal Resistance, IR [(2] is defined as the equivalent series resistance of the
cell. One measurement per cycle is provided in the dataset, obtained by averaging
ten current pulses at 80% of State of Charge (SoC). An example of its evolution is
shown in Fig. 5.2, where it can be observed how the internal resistance increases

abruptly when the cell is near its EoL.
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Fig. 5.2. Evolution of Internal Resistance for one cell in the database.

Time Interval of Equal Discharging Voltage Difference

Time Interval of Equal Discharging Voltage Difference, TIEDVD [min] is the
time lapse between two voltage thresholds (Umaw, Umin) as defined in (5.1), while
discharging a constant current. An example of this is shown in Fig. 5.3. It has been
used in the literature for indirect estimation purposes in some industrial
applications (D. Liu et al. 2015; 2013) when it is not possible to completely

discharge the cell to measure its capacity (e.g. an Uninterruptible Power Supply).

TIEDVD [min] = ¢

Vmin tvmax (51)

Voltage

Vmax ------>>

discharge

Vmin f---——---

TIEDVD

thax thln t| me

Fig. 5.3. TIEDVD extraction from a discharge cycle.

This feature has been obtained from the discharge voltage waveforms of each
cycle in the dataset. Different threshold voltages have been tried for estimation
purposes, and it has been found that the tuple (v = 3.3V, Unn = 3.15V) shows
good estimation capabilities for this dataset. It can be appreciated in Fig. 5.4, where

it decreases linearly with the remaining useful life.
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Fig. 5.4. Evolution of TIEDVD for one cell in the database.

Incremental Capacity

The previously introduced features have been used in the literature as health
indicators for SoH estimation purposes. Additionally, this dissertation will include
the Incremental Capacity (IC) as a feature to be considered in the estimation

algorithms.

Incremental Capacity, IC [Ah V7| is the derivative curve of the charge vs the
voltage of the cell (5.2) and can be obtained from the time-domain discharge
waveforms (Fig. 5.5a). If the battery is seen as a nonlinear capacitor with a complex
output impedance (Giinther, Feldmann, and ter Maten 2005; Macdonald and
Brachman 1955; Wyatt 1978; Sanz-Gorrachategui et al. 2019), it is the equivalent
to the nonlinear capacitance curve of the cell, which indicates the energy storage
capabilities across the voltage range of the cell. It has been described before as a

relevant Health Indicator in different studies (Ansean et al. 2019).

_6q)

IC
ov

(5.2)

The Incremental Capacity curves show different capacitance peaks at different
voltage values, depending on each chemistry and aging process. These peaks show
the regions of voltage where the cell stores energy (Fig. 5.5b), and change slightly
as the cell ages. Similar capacitance peaks obtained with lower discharge currents
have been studied for LFP batteries, and have been used as health indicators
(Ansean et al. 2019; Severson et al. 2019). The peaks and their variation have been
proven useful for battery life estimation, and for determining different degradation

mechanisms (Ansean et al. 2019; Dubarry, Baure, and Ansean 2020).
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In those studies, IC waveforms are obtained with low current rates on the cells.
However, these approaches have not been extensively applied to high current
waveforms. In the database used here, the discharge cycles were done at 4C, so
these curves will be considered as an approximation of IC curves. When processing
genuine IC curves, better results would be expected. The results of this study will
be useful to determine whether these high current profiles are useful for this same
task. If this is the case, it will allow the application of these techniques to real in-

situ installations, where the cells are subject to real high-current discharges.
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Fig. 5.5. Capacitance peak advent. Voltage vs. Charge waveform and its variation as the
cell ages (a) IC curve, and its variation as the cell ages (b). Zoom in the lower voltage

part, where the secondary Capacitance peak appears (c).
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Each discharge cycle in the database can be minimally pre-processed to obtain
its IC waveform. Since a cycle-level processing approach is being considered, each
example in the dataset will have associated one IC waveform and the features that

can be extracted from it.

Two approaches are going to be considered to process the information of the IC
curves. The simpler algorithms that are going to be developed will use pre-processed
data from the IC curves. On the other side, the more complex algorithms will be

able to process whole IC curves to use as much information as possible.

In particular, the pre-processed features that are going to be used in the simpler

algorithms are the following:

e Capacitance peak, Cpx [AhV]: As the cell ages, a small disturbance
appears in the low voltage part of the discharge waveform. It grows until
a certain moment in its life and then becomes smoother when the cell is
near its Eol.. This generates a peak in the cell equivalent capacitance, as
seen in Fig. 5.5c. This capacitance peak can be used as another feature.
Fig. 5.6 shows how this peak evolves as the cell ages, increasing in the
first hundreds of cycles, and then decreasing in the last 150 cycles
approximately. However, it has a higher uncertainty when the peak is
near its maximum. Additionally, when the peak is near its minimum (the

first 80 cycles of life), the peak cannot be detected correctly.
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Fig. 5.6. Evolution of Capacitance Peak for one cell in the database.

e Voltage at Capacitance Peak, Vi [V]: Additionally, the voltage at

which the capacitance peak is observed (Fig. 5.5¢) is used as an additional
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feature, since it also varies with the cells life. The evolution of this feature
is shown in Fig. 5.7. Similarly, it can be seen how in the first 80 cycles of

life it cannot be captured correctly.
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Fig. 5.7. Evolution of Voltage at Capacitance peak for one cell in the database.

It has been determined empirically that these variables are related and, when
used independently as inputs for estimation algorithms, provide worse results than

when being combined in a single variable due to redundancy in the information.

Particularly, it has been observed that the feature Vy is highly correlated with
loglo(Cp k). For this reason, both variables have been combined into a single feature,

to be used as input in the algorithms. The feature Pk is thus defined as in (5.3).

Vp K

Pk =
10810( k)

(5.3)

5.2.4 Multiple measurements per variable

The cell under test can be cycled & times to obtain multiple measurements of
the previously introduced features. This way, each input example could have up to
0 measurements for capacity, internal resistance, TIEDVD... Therefore, the network
is provided with more information and better RUL estimation results can be
expected. A greater value for § increases the number of measurements and could
improve the prediction capabilities, at expense of cycling more (and thus, aging)
the cell for test purposes. It has been found that & = 10 provides the best tradeoff

in accuracy. Later on, this aspect will be further developed.
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The variation between consecutive cycles of some of these features can also be
considered as an additional feature. Specifically, after an extensive search, the
difference in capacity between cycles has proven to be useful. It has been renamed

Capacity Fade.

Capacity Fade

Capacity Fade (ACs [C]) has been defined as the variation in capacity between
two cycles separated 8 cycles apart. An example of its evolution is shown in Fig.
5.8. As happens with Capacity and Internal Resistance, in the last hundreds of

cycles, its behavior changes drastically.

By conducting & test cycles to a battery, 6-1 measurements for capacity fade can
be obtained, in addition to the § measurements from each of the features previously

introduced.
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Fig. 5.8. Evolution of Capacity Fade for one cell in the database.

Summing up, each example in the dataset will have its own set of features,

collected from the last 8 cycles of the battery. These features will include:

¢ § measurements for the features C, IR, TIEDVD, and Pk, belonging to
the last 8§ cycles.

e -1 measurements for the feature AC, obtained by comparing the current
Capacity with the 8-1 previous cycles.

e A single value for the RUL at that cycle, which will be the output to

estimate.
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5.3 Life stage estimation

The evolution of most of the features depicted in the previous section shares a
distinctive pattern among most of the features: all of them except for TTEDVD and
Vi show a change in their trend as the battery approaches the last few hundreds

of cycles of its life.

This effect can be appreciated in features such as Capacity, which decays faster
in the last 200 cycles approximately. The threshold has been described as the “aging
knee” of the capacity curve (Martinez-Laserna et al. 2018), and according to
(Martinez-Laserna et al. 2016), batteries in this life region should not be considered
for further use or a second life application. The effect does not only affect Capacity
since features such as Internal Resistance or Capacity Fade also have a change in

their behavior from this threshold on.

The effect has been reported across the whole dataset, in all the cells, to a certain
degree. This suggests the possibility of training a classification algorithm to
determine whether a cell is in this EoL region or not. This way, cells will fall into

two different life stages:

e Short RUL cells: The cell has passed the “aging knee” and is in its last
cycles of useful life. Cells in this stage should be replaced.
e Long RUL cells: The cell has not passed the “aging knee”, and thus it

is still suitable for use in an application.

5.3.1 Classification algorithm

The Regularized Logistic Regression (RLR) algorithm is proposed for the
classification task (Haggstrom 1983), which is based in the conventional logistic
regression algorithm. This network is probably the simplest data-driven
classification algorithm, and has been chosen for this reason. In contrast with the
conventional logistic regression algorithm, RLR includes a regularization term in

its cost function to minimize overfitting, as explained below.

The model that this algorithm tries to fit is given by equation (5.4), where the
predicted output ¥ is the probability for the cell to belong to Short RUL cell or
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Long RUL cell classes, X is an n-dimensional feature array, and w is an n-

dimensional weight array.

HxW) = ——— (5.4)

From here, the output class is obtained by thresholding y with 0.5, with § = 0
meaning Short RUL and y = 1 meaning Long RUL.

The key of the algorithm lies in the w vector, which needs to fit to provide an
accurate classification. To obtain the best values for w, a training algorithm such

as Gradient Descent fits w by minimizing the cost function in the expression (5.5).

1 m n
J(w) = E;(ﬂxi,w,ya) + A;wﬁ (5.5)

Here, the first summand represents the error in the prediction, with m being the
number of examples in the training dataset and the error function E (x;,w,y;) being
the traditional cost function used for conventional logistic regression for a single
example X;. Its full expression is given by (5.6), where y; is the actual output

associated with x;.

E(x;,w,y;) = —y; log(9(x;, W) — (1 — y) log(1 — §(x;, w)) (5.6)

When working with data-learning tools, high variance (i.e. complex) algorithms
may overfit the training data if trained for too long, over-learning the specific
training examples. This results on very low errors with the training data, but poor

generalization capabilities and thus, high errors with the test data.

Regularization techniques are a common tool used to avoid this issue. In the
expression (5.5), the second summand represents the Ridge regularization term
(Hoerl and Kennard 1970) that makes the algorithm less prone to overfitting by
penalizing large weights in the w vector (with n being the number of weights of

the RLR network).
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5.3.2 Threshold selection

To establish the threshold that divides the Short RUL cell and Long RUL
cell classes, an initial RLR algorithm has been tested. Different thresholds have
been selected, and the algorithms have been compared to obtain the best-
performing threshold. When comparing classifiers, different metrics have been

traditionally used in the literature. Among them, precision (5.7) and recall (5.8).

.. tp
recision = 5.7
P tp + fp (5.7)
tp
recall = o+ fn (5.8)

In the previous expressions, tp is the true-positive rate, fp is the false-positive

rate and fn is the false-negative rate.

To compare different classifiers, the F; score (5.9), which combines both metrics,
is conventionally used (Sokolova, Japkowicz, and Szpakowicz 2006). It has been

obtained for different threshold values as a means to establish the best.

precision - recall

F =2 (5.9)

precision + recall

Fig. 5.9 collects the F; scores of different training regularized logistic regression
algorithms for different threshold values in the [110, 200] range, where the “aging
knee” takes place. The best threshold for dividing the “Short RUL cell” and “Long
RUL cell” classes has been found in 150 cycles.
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Fig. 5.9. F; score for classification with different threshold values.
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5.3.3 Determining the optimal number of test cycles

The number of test cycles 8 has been introduced before as a means of obtaining
more measurements for the features of the cell under test. This way, each input
example in the dataset is comprised of 6 cycles and their respective measurements.
A specific number of cycles 6 provides 6 measurements for each feature except AC,

and 6-1 measurements for AC.

A larger 8§ allows gathering more information about the cell. This comes at
expense of reducing the RUL for test purposes (due to the § test cycles). Thus,

there is a tradeoff between & and the success rate achieved.

To determine the optimal value for 8, the success rate of the RLR algorithm has
been used. Different sets of variables have been tested, with a different number of
measurements per feature, and applying certain transformations. The best

combination of features found is gathered in Table 5.1, which makes a total of 46

measurements.
Feature Samples used as input Number of measurements
C Cs 1
AC [ACy, .. ACH) 5-1
Pk [Pky, ... Pke] )
IR [IRi, ... IRs) )
TIEDVD [TIEDVD;, .. TIEDVDj| )

Table 5.1. Features used in the algorithms.

The Regularized Logistic Regression algorithm has been evaluated with different
values of §, using 60% of the dataset for training, 20% for validation, and 20% for
test purposes. Fig. 5.10 shows the success rate (accuracy), defined as the number

of correct classifications over the number of total classifications, as a function of §.

It can be seen that values of § above 10 do not improve the accuracy of the
method, while additional measurements further reduce the RUL of the cell. Thus,

the case of § = 10 will be the only considered in the rest of the analysis.
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Fig. 5.10. Accuracy for each Svalue.

5.3.4 Results

The confusion matrix for the case of & = 10 is shown in Fig. 5.11. The overall
accuracy in the classification obtained with this method is around 97.27%, with

93.7% accuracy for detecting “Short RUL cells”, and 98.1% accuracy for “Long
RUL cells”.
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Fig. 5.11. Confusion matriz for the case of §=10.

It should be emphasized that this high accuracy is achieved for cells in an
unknown moment of their life, i.e., there is no information on the past aging of the

cells, and the number of cycles they have suffered before the measurements is

unknown.
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5.4 Remaining Useful Life estimation

After observing the classification capabilities of the features, a different approach
is taken, where these features are processed to perform actual RUL estimation, i.e.,
predicting the specific number of remaining cycles for a given cell. Unless made
explicit, the regression algorithms will use the same 46 inputs as the classification
algorithm described in the previous section. This means that Capacity will be
available as a feature, thus performing what has been previously defined as Direct

FEstimation.

In the following sub-sections, the regression algorithms that have been

implemented and tested are described.

5.4.1 Multivariable linear regression

The first RUL regression method considered is Regularized Multivariable Linear
Regression (MLR), as it is probably the simplest. The output of this algorithm for

a given input is given by the expression (5.10).

yx,w) =w'x (5.10)

Where ¥ is the predicted RUL, x is a (48 + 1) dimensional (due to the bias term)

input array and w is a (48 + 1) dimensional weight array.

To obtain the best configuration for the weight vector w, a training algorithm

such as Gradient Descent, fits w by minimizing the cost function (5.11).

1 m n
JW) == (WTxi = )2 + 2 ) wy? (5.11)
i=1 j=1

Where the first summand is the traditional least-squares term, and the second
summand is the Ridge regularization term, introduced to avoid overfitting as in
the case of the classification problem. Again, the parameter m is the number of

training examples.
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5.4.2 Multi-Layer Perceptron and Multiple-Expert System

As an alternative to Multivariable Linear Regression, some more sophisticated
algorithms have been considered. One of these algorithms is the Multilayer

Perceptron (MLP), which has been introduced previously in section 4.3.1.

The MLP has been trained with the whole dataset (maintaining 60% for training,
20% for validation, and 20% for test) for RUL regression. The inputs to this
algorithm are the same as for the case of Multivariable Linear Regression. A single
hidden layer has been used, and the optimal size was found at 32 neurons by

conducting a parametric search.

In section 5.3, the classification approach has proven that the “Short RUL” and
the “Long RUL” classes have different behavior. As an improvement to a regular
MLP, “Expert” MLPs have been proposed. These experts have been trained and
tested with two different subsets: one for short RUL cells (those below 150 RUL
cycles) and the other for long RUL cells (those above 150 RUL cycles).

The expert algorithms have been combined in a Multiple-Expert System (MES),
shown in Fig. 5.12. Here, the “RUL Classifier” block (the RLR algorithm described
in section 5.3) chooses which expert to use after classifying the input in one of the

classes.

RUL
Classifier
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h
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- RUL
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Fig. 5.12. MES algorithm scheme.
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5.4.3 Convolutional Neural Networks

The algorithms introduced above use features that are pre-processed from the
waveforms of each cycle in the database. However, in this other approach, the idea
is to process the raw waveforms instead. The goal is to use as much information
available from the dataset, thus using minimal preprocessing. An example of these

raw waveforms is shown in Fig. 5.13.
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Fig. 5.13. Discharge waveforms of a single cell along with its life.

Algorithms capable of handling variable-length sequences, such as Long-Short
Term Memory (LSTM) networks, have been considered for this task. Other
considered algorithms include Convolutional Neural Networks (CNN), which are
capable of handling multi-dimensional signals. The initial study with LSTM
networks did not achieve meaningful results, so the CNN development will be

described.

CNNs are a subtype of machine-learning algorithms, generally used to process
time-domain sequences or spatially related sequences such as images (Gu et al.
2018). They are based on using 1D or 2D convolutional filters on the input sequence,
reducing its dimensionality. After the convolutional layer, the dimensionality of the
signal/image is reduced into a subset of more relevant features. The weights of the
filter are trained and adjusted with the same methods as conventional neural

networks.
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Convolutional layers are often combined with pooling layers, further reducing
the dimensionality of the input data. The most common pooling techniques are
Maximum Pooling or Average Pooling (Ciregsan, Meier, and Schmidhuber 2012;
Mittal n.d.), and are applied to the output of the convolutional layer. Additionally,
the outputs of the convolutional and pooling layers are often post-processed by an
additional network, such as a linear layer or an MLP, to obtain the final output,
which would be the RUL estimate in this case. In the context of CNN, these prost-
processing layers are also named “fully connected layers”. An example of this

process is shown in Fig. 5.14.

Preprocessing layers (Convolutional & Pooling layers) Postprocessing layers

Fig. 5.14. Example of a CNN with a post-processing network.

After several attempts with the time-domain waveforms, the performance of the
algorithms did not match the expectations, with high error results when trying to
predict the RUL cycles. For this reason, the approach was shifted to IC raw
waveforms. As introduced before, IC is defined as the derivative curve of the charge
against the voltage of the cell for each charge (or discharge in this case) cycle (5.2).
Thus, it can be obtained with simple pre-processing from the voltage waveforms

contained in the dataset.

An example of IC waveforms is shown in Fig. 5.15, which corresponds to the
discharge waveforms shown in Fig. 5.13. As introduced in section 5.2.3, IC curves
show different capacitance peaks at different voltage values, depending on each
chemistry and aging process. The peaks and their variations along cell life have
been proven to contain information about the aging process, thus they can be used
as a HI (Ansean et al. 2019). Both raw and normalized versions of these waveforms

have been considered for the algorithms.
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Incremental Capacity [AhV™1]

2.2 2.4 2.6 2.8 3.0 3.2 3.4
Cell voltage [V]

Fig. 5.15. Examples of Incremental Capacity Waveforms.

Studies in the field of medical signal processing (Lawhern et al. 2016) have
grouped time-domain signals from the same nature into matrixes, forming virtual
images, where one dimension is time and the other may be distance or of other
nature. This allows applying 2-dimensional convolutional layers to the waveforms,
which have proven to be effective in fields such as image recognition or object

identification and classification.

Using these approaches as inspiration, multiple IC waveforms are grouped into
virtual images, which will be processed by 2-dimensional CNN and pooling layers.
In this case, the virtual images have voltage in one of the axis and time (over

several discharge cycles) in the other.

The number of waveforms considered has been maintained as & = 10 from the
previous sections, since provides a good tradeoff between accuracy in the prediction
and using a low number of cycles. Therefore, ten Incremental Capacity waveforms

have been used to create each single virtual image.

The cycles in the dataset have a different number of samples (and so do the IC
curves). As a starting point, these curves have been resampled to 100 samples each
in the range [2.1, 3.4V]. A virtual image is formed by arranging ten 100-sample IC
waveforms into a 10x100 matrix (Fig. 5.16).

155



Hybrid and Intelligent Energy Storage Systems in Standalone Photovoltaic Applications
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Fig. 5.16. Incremental Capacity waveforms grouped in a virtual image.

Tuning the CNN structure may be a difficult task since there is a great number
of hyperparameters to be adjusted (Schmidhuber 2015). Some of the more common
parameters are the number of input and output channels of each convolutional
layer, the shape of the convolutional kernel (or filter) on each convolutional layer,
the stride parameter, or the shape of the pooling kernel after each convolutional
layer. Parametric searches have been conducted to obtain the best values of these

hyperparameters, and the optimal configuration found is shown in Table 5.2.

Layer Type Parameters

Channels in:1 out:2

I Convolutional Kernel 5x1

Stride 2x1

II Average Pooling Kernel 2x2
Channels in:2 out:4

111 Convolutional Kernel 1x5

Stride 1x2

v Average Pooling Kernel 1x2

Table 5.2. CNN configuration.

After the convolutional and pooling layers (pre-processing network from now
on), the algorithm reduces the input from 10x100 = 1000 features into four channels
with shape 1x12. These pre-processed features are then unwrapped into a single
array of 48 features. To increase the performance of the algorithm, it was decided
to include additional features after the pre-processing layer, to be post-processed
with the 48 features that output the convolutional layers. Specifically, C, IR, and
TIEDVD gave the best results. Two cases have been considered: the case of

including just one measurement of each feature and including all 10 measurements.
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For the post-processing network, simpler machine learning algorithms have been
tested. The best results were obtained using a two-hidden-layer MLP and the same
number of neurons as inputs in the hidden layers. As an example, Fig. 5.17 shows
the structure of the network for the case of one measurement for each additional

feature, up to 484+3=51 inputs to the post-processing layer.

Post-
Fully-connected processing
Conv AvgPool Conv  AvgPool Layer network
Layer Layer Layer Layer 1x48
1x10x100 ) 4x1x12 —
Capacity _ L
Internal Resi ce ~ U
TIEDVD 1x3

51-561-561-1

Fig. 5.17. CNN structure.

5.4.4 Preliminary results

The algorithms introduced in the previous sections have been trained with
different approaches. In the first design stage of the algorithms, the hypothesis for
the training process was to consider each cycle in the database as an individual

example, uncorrelated with the rest of the examples.

The training method selected for the initial tests was Farly Stopping (ES)
(Girosi, Jones, and Poggio 1995). It has been briefly described in Chapter 4, but it
will be explained in detail down below. With this technique, the cycles of the
dataset are randomly assigned to three subsets: the training, validation, and test

subsets:

e Training subset: on each iteration of the training process, the output for
the training subset is obtained, and the parameters of the network are
modified to reduce the error between the obtained output and the real
output.

e Validation subset: on each iteration of the training process, the output

for the validation subset is obtained, and its error is computed. The
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network related to the best validation error is selected as the best network
at the end of the training process.

e Test subset: This subset is not used during the training process. It is used
afterward to benchmark different algorithms by checking the error

obtained with this subset.

This subset division is the go-to option in the literature since it is the most
straightforward option that avoids overfitting. In this case, 60% of the dataset has
been used for training, while 20% has been used for validation and the remaining

20% for test purposes. Further, this subset division will be revisited.

To compare the algorithms, different error metrics are going to be used.
Specifically, the Root Mean Square Error (RMSE), as defined in (5.12), and the
Mean Relative Error (MRE), as defined in (5.13).

m
1
RMSE = |— (3, = 9)? (5.12)
mi=1
1 ly: = il
MRE (%) =—ZM %100 (5.13)
meE

Where m is the number of examples in the test subset, y; is the actual output
for the i-th example in the test subset, and ¥; is the output of the algorithm for the

i-th example in the test subset.

The preliminary error metrics, obtained for the simpler algorithms and trained
with the aforementioned approach, are contained in Table 5.3. As it may be
observed, algorithms that are more complex and capable of capturing non-
linearities, such as Multi-Layer Perceptron and the Multiple Expert System (MES),

perform much better.

Algorithm RMSE (Cycles) MRE (%)
MLR 90 53.81
MLP 52 23.03
Multiple Expert System 49 15.2

Table 5.3. Preliminary error metrics.
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Different subset division

In the preliminary training stage, each of the cycles of the cells in the dataset
has been considered as a single, uncorrelated example. The subset division for the
training process has been carried out by randomly selecting these cycles for the
training, validation and subset groups. This implies that different cycles derived
from the same cell could end up in the training, validation and/or test subsets. By
using this division, the algorithm learns some information from every cell when
training. The result is a high performance in the error metrics, which is ultimately
caused by something similar to overfitting, not in the conventional sense, but at a
“cell level”. Furthermore, this training process would not be realistic from an
application point of view, since when estimating RUL for a new cell, the algorithm

has never seen other cycles from that cell in training.

Different options for the subset division are depicted in Fig. 5.18. The approach
followed in the preliminary training is the one in Fig. 5.18a. In it, the subsets are
created by randomly taking 60% of all the cycles for training, 20% for validation,
and 20% for test. To try to obtain error metrics closer to a realistic implementation,
a different approach is going to be taken for the subset division, as shown in Fig.
5.18b. This approach randomly divides the cells into training cells, validation cells,
and test cells (with the same 60%-20%-20% ratio). The training, validation and
test subsets contain the cycles of their corresponding cells. This way, there are not
multiple cycles from the same cell in different subsets, and the results are closer to

the expected error metrics in an implementation stage.

| |

[ ] Training Validation Test
Cells Cells Cells
[Training] [Validation] [ Test ]
Cycles Cycles Cycles
Training Validation Test
[ Cycles ] [ Cycles ] [ Cycles ]

(a) (b)

Fig. 5.18. Different subset divisions. Prone to overfitting at the cell level (a). Immune to
overfitting at the cell level (b).
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NOTE: The results for the life stage estimator of section 5.3 are updated and

have been obtained with this subset division.

Reqularization techniques

Additionally, to avoid overfitting to a higher degree, different regularization
methods have been applied. These regularization methods include Ridge
regularization (Hoerl and Kennard 1970), Lasso regularization (Tibshirani 1996),
and other techniques such as dropout layers (Goodfellow et al. 2020; Ganin,
Lempitsky, and Ru 2015; Srivastava et al. 2014).

Ridge (5.14) and Lasso (5.15) regularization include the weights of the network
into the loss function, penalizing high weights and achieving smoother output

functions.

J

1 m n
JW) = = (Fuw) = y)? +2 ) wf? (5.14)

1 m n
JW) == (£, w) =31 42 ) |w) (5.15)
i=1 j=1

In the previous equations, J is the cost function value, m is the number of
examples in the database, x; is the i-th example in the dataset, y: is the output for
said example, n is the number of weights in the network, wj is the j-th weight and

A is a parameter set by the user.

Dropout layers, as explained in the previous chapter, have also been used as a
different method to avoid overfitting. Different drop-out rates (p) have been

considered for this task.

5.4.5 Results

The test results for the algorithms are collected in Table 5.4. It may be observed
how the error rates are, in general, worse than those obtained in the previous
section are. This reaffirms the fact that overfitting at the cell level was taking place,
and that the new subset division gives results closer to the expected in a real

implementation of the algorithms.
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Similarly, the general trend is that algorithms that are more complex tend to
obtain better error metrics, since the worst error rates, both for RMSE and MRE,
are obtained with the simpler algorithm (MLR). However, the results obtained with
this simple algorithm are slightly better than the results that were obtained by the
authors in the original study, where the dataset was introduced. The algorithms

used there were similar, although the approach to RUL estimation was not strictly

the same.
Algorithm RMSE (Cycles) MRE (%)
MLR 109.9 60.57
MLP 86.3 36.29
Multiple Expert System 86.2 19.06
CNN IC waveforms only 100.81 21.15
CNN Normalized IC
86.69 21.14
waveforms
CNN IC + Additional
84.21 17.31
features (1 sample)
CNN IC + Additional
82.67 18.17
features (10 samples)
CNN Ridge (A = 0.003) 79.09 16.06
CNN Lasso (A = 0.003) 83.49 16.8
CNN Dropout layers
91.26 16.19

(p = 5%)

Table 5.4. Error metrics for MLR, MLP, MES, and variants of CNN.

In the case of MLP-based algorithms (regular MLP and Multiple Expert
System), the results are interesting. The RMSE with both are similar, but the MRE
metrics are much higher for the regular MLP. This means that the MLP estimates
worse than the MES for the case of cycles with a low actual RUL since the MRE
error is higher when trying to estimate lower RUL values (error of only a few cycles
for cells with low RUL leads to a large MRE). To clarify this, Fig. 5.19 provides
information on the RMSE and MRE obtained for each value of actual RUL. Note
that MRE is 10-25% for practically the whole range of actual RUL, except for the
first 100 cycles. Thus, it can be concluded that MRE does not provide a good

representation of the error when predicting low RUL values.
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Fig. 5.19. RMSE and MRE rates for the MLP and MES algorithms for different actual
RUL values.

Regarding the CNN approach, some variations to the basic structure,
regularization method, and the number of additional features have been tried. The
details for each of these variations are collected in Table 5.4 as well. It is worth
noting how the version of the algorithm that normalizes IC waveforms, performs

much better than the non-normalized version.

By normalizing, the original shape of the waveforms is not preserved, and
therefore some information is lost (information of capacity is contained as the
integral of the IC curve, and thus is lost when normalizing these curves). However,
it seems that the training process is easier for the algorithm due to the normalized
data, and makes it capable of performing better even without the capacity
information. When adding the additional features (as capacity or internal

resistance), the algorithm recovers the information and performs even better.

Among the different regularization techniques implemented, the best results
were obtained when using Ridge regularization (with A = 0,003). The other different
techniques gave similar results than the non-regularized case in the best scenario
(the reported error metrics), and far worse results when using extreme values for

their tuning parameters.
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As a means of comparison, Table 5.5 shows the results of some recent studies
(Severson et al. 2019; Ma et al. 2020) that aim to perform RUL prediction with the
same dataset. Their approach is however a little bit different from the approach
taken here since they track information from all the past life of the battery, whereas
here, only ten test cycles are taken as inputs. It can be appreciated how the CNN
algorithm with Ridge regularization is on par with the best performing algorithm

in Table 5.5, but only requiring ten test cycles rather than information on the whole

past life of the battery.

Algorithm RMSE (Cycles)
Elastic Net 118
Broad Learning 115.97
Extreme Learning Machine 105.99
Broad Learning-Extreme Learning Machine 75.78

Table 5.5. Error metrics of algorithms found in the literature with the same dataset.

As a final example of RUL estimation, Fig. 5.20 shows the output of the best-
performing algorithm for all of the test cycles of one specific cell in the dataset
(#99). It can be appreciated how the RUL prediction curve follows accurately the

RUL line, which decreases linearly as the cell ages.

RUL prediction for cell #99

—— Actual RUL value
1000 + Predicted RUL value
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Ty .
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Life cycles

Fig. 5.20. Multiple Expert outputs for all the test cycles belonging to cell #100.
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5.5 Capacity estimation

Traditional approaches to battery-health estimation focus on capacity instead of
RUL as the main feature to be predicted. However, both variables are closely
related. Capacity has been used as one of the features used for RUL estimation in
the previous section, whereas, in this section, the capacity estimation problem is

addressed.

Here, the problem of capacity estimation is addressed with two different

approaches: straightforward capacity estimation and capacity curve regression.

5.5.1 Straightforward capacity estimation

Batteries in a conventional ESS application such as standalone photovoltaic
installations cannot be completely discharged to measure their capacity and
estimate their health, since this would mean an energy disruption event. This also
happens in other applications such as Uninterruptible Power Supplies (UPS). For
this reason, there is interest in developing algorithms capable of directly estimating
capacity from features available without discharging the battery pack. Additionally,
this estimate is very relevant for a BMS to compute other battery figures such as
SoC, which, to be accurate, need feedback on how the capacity is changing as the

cell ages.

Not all the features introduced in the previous sections are available under this
hypothesis. Besides capacity and capacity fade, it must be noted that IC curves
and the Cp and Vy; features are obtained when completely cycling the cell, or at
very low SoC. For this reason, only IR and TIEDVD are going to be used for

capacity estimation purposes.

Machine-learning techniques have been trained to output directly the capacity
of the cell. In this case, the CNN approach is not valid, since the IC waveforms
have been discarded as a feature. Additionally, the accuracy of the Life Stage
Classifier is reduced to 93.6% when using only IR and TIEDVD as features, which
worsens the error rate of the Multiple Expert System. Hence, MLP will be used as

the algorithm for the capacity estimation task. In this case, each input pattern will
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comprise ten measurements for TIEDVD and ten measurements for IR, preserving
the optimal value for & found in section 5.3. The optimal number of neurons in the
hidden layer has been found at 25 by conducting a parametric search. The output

of the algorithm is going to be capacity at that very same cycle.

As an example, Fig. 5.21 shows the actual capacity values and the output of the

algorithm for one cell in the dataset.

Capacity prediction for cell #99
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Fig. 5.21. Capacity estimation for cell #99.

The results of the algorithm applied to the whole dataset are contained in Table
5.6. The accuracy in the prediction of capacity is high according to the error metrics

obtained.

Algorithm RMSE [Ah] MRE (%)

Capacity Estimation 0.02 1.49

Table 5.6. Error results for Capacity Prediction.

5.5.2 Capacity curve regression

This approach aims to estimate the evolution of the capacity curve (Fig. 5.1)

from a set of past measurements. In this case, the hypothesis is that the cell has
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been monitored from the beginning of its life, and therefore, the increasing window

of the past evolution of capacity is known.

A simple capacity degradation model, which has been explored previously in the
literature (He et al. 2011), is considered for capacity modeling. It assumes that the
function of capacity aging in the cells, C(t), can be modeled as a sum of two

exponential functions, as given by (5.16).

C(t) =aeb +ce (5.16)

This aging model is parametrized by four parameters, {a, b, ¢, d}. A regression
algorithm, such as Levenberg-Marquardt (LM) (Levenberg 1944), can be used to

determine the evolution of the capacity curve by fitting these parameters.

As cycles are carried out, the window of past capacity measurements increases
and the regression is better. However, to provide good accuracy in the prediction,
the algorithms need a large window size. This is in part due to the abrupt decay of
the capacity in the last 150 cycles of life. With a window size of a few hundred
cycles, the algorithm does not see this decay, and cannot fit this part of the curve

accurately (Fig. 5.22).
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Fig. 5.22. Capacity curve regression with the LM algorithm.
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The RUL estimation algorithms developed earlier can be used to enhance this
regression approach. These data-driven techniques can provide a future estimate
for the End of Life (EoL) point of the battery. Since the hypothesis is that the cell

has been monitored from the beginning of its life, the EoL: point is given by (5.17).

EolLy; = RULy + ny, (5.17)

Where EoL; is the End of Life estimate at time k, RULy, is the estimate for RUL
given by the data-driven algorithm at time k, and n; is the number of cycles the

cell has already lived at time £.

The new EoL point can be added to the past window of capacity measurements,
so the values for the {a, b, ¢, d} parameters can be fitted with higher accuracy.
Now, the EoL capacity value acts as an “anchor point”, ensuring that the fitting

algorithm converges to a reasonable solution.

As seen in Fig. 5.23, the results obtained using the EoL estimation as an anchor
point are much accurate than those obtained without it (Fig. 5.22). Now, the
estimate for the EolL point allows the algorithm to detect the decay in the capacity
that takes place around cycle #800. Previously, the algorithm did not count with

the Eol. estimate, so it made a much more optimistic prediction of cell life.
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Fig. 5.23. Capacity curve regression with LM and the EoL estimate.
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Fig. 5.24 shows the average Maximum Relative Error (MaxRE), with and

without the EoL estimation, and an increasing window size, as defined in (5.18).

n A
MaxRE, (%) = %z max (lC"C—_Cl> %100 (5.18)
i=1 '

Where éi,k is the prediction of capacity for cell ¢ with a window size of k, C; is
the actual capacity of cell 7, and n is the number of cells in the test subset. As the
cell lives, the window size increases, and better results are expected. It is interesting
to note that past 100 cycles of life, the estimations are consistently accurate when
using the EoL estimate. The regression algorithm without anchor point takes
double (around 200 cycles) to start making reasonable predictions for the evolution

of the capacity, and even then, using the EoL estimate is still better.
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Fig. 5.24. Mazimum Relative Error (MaxRE) for different window sizes.

The average RMSE and MaxRE for both methods are collected in Table 5.7. It
can be observed how the regression with the EoL estimate performs consistently
better. This is especially significant in the case of MaxRE, where the algorithm

without an EoL estimate performs around 35% worse.

Regression type RMSE (Ah) MaxRE (%)
With EoL estimate 0.0445 10.05
Without EoL estimate 0.0545 13.54

Table 5.7. Capacity Estimation Error Metrics.
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5.6 Conclusions

Estimation of health-related parameters of batteries is a popular topic in battery-
related research. Such parameters include RUL, capacity, or SoH among others.
There is interest in developing tools in this field applied to lithium-ion batteries.
Due to the complexity of the problem, data-driven approaches are appropriate for
the task, although until very recently, publicly available datasets were small and

simple.

In this chapter, the problem of Remaining Useful Life estimation has been
addressed. The main hypothesis assumes that past information on cell use may not
available. For this reason, most approaches in the literature are not suitable here,

since they tend to track capacity from the beginning of cell life.

By conducting simple charge and discharge cycles, key features are obtained
from the voltage waveforms (such as IC waveforms), which have proven to be good
health indicators in other applications. These controlled cycles can be done in a
controlled environment, such as a laboratory, or an in-situ application, if the
storage system is a HESS with more than one storage element. Using said features,

the algorithm can determine different health-related features of the cells.

Both traditional and recent machine learning techniques have been proposed for
the task. Simple classification algorithms such as RLR are capable of classifying
used cells into “Short Remaining Useful Life” and “High Remaining Useful Life”

categories with an overall accuracy higher than 97%.

Additionally, different methods and features are explored, aiming to estimate
the exact number of remaining cycles for cells in an unknown moment of their lives.
Such methods include conventional linear regression techniques and MLP, or newer
algorithms such as CNN. The best results are obtained with Ridge regularization
applied on the CNN algorithm, obtaining 79.09 cycles of RMSE. These results are
on-par with other recent algorithms applied to this same database, but with the
benefit of not needing all the past information of the cell, but only a few recent

cycles.
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One of the most singular features explored has been 1C waveforms, which have
been described in the literature as a convenient HI. To extract this feature, the
cells need to be cycled with a low-current profile, which is not the case in this
database. One additional goal was to determine if these high-current IC waveforms
were sufficiently good to be used as a HI, even though they are not genuine 1C
curves. The results of the analysis certify that these high-current 1C waveforms still
contain useful information on battery degradation, and can be used as a HI as well.
As a future line, it would be interesting to obtain a database with low-current IC

waveforms and use the same algorithms.

A simple machine-learning tool has been proposed for the problem of capacity
estimation in applications where the cell cannot be controllably discharged. Using
a small subset of the features introduced in this chapter, the algorithm provides
estimates for capacity with a relative error of around 1.5%. This is useful for BMSs,
which need to provide SoC and SoH estimates, since capacity is an integral part of

the calculation of such variables, and it is not always available in an application.

As the last contribution, a discussion on the different levels of overfitting when
working with this kind of dataset has been included. Here, overfitting takes place
due to the data being correlated on a cycle-level basis and a cell-level basis.
Realizing this is level key to obtain reliable results from the data-driven algorithms,
especially approaching implementation stages, where completely new cells need to

be used in the test subsets.
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Chapter 6.- Conclusions and research lines

This chapter collects the main conclusions of the previous chapters and establishes
plausible future research lines.
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6.1 Conclusions

Throughout this thesis, the Energy Storage Systems of small standalone
photovoltaic installations intended for metering and communication purposes
have been studied. These storage systems are usually based on conventional
battery chemistries such as lead-acid, NiCd, or NiMH. Their architecture and
sizing methods have been explained. These ESSs suffer from different key
problems, which include temperature-related issues and incomplete charging
cycles. Both effects worsen the performance, both in the short-term due to
Partial State-of-Charge and effective capacity reduction, and in the long-term

due to accelerated aging.

The industry proposes partial solutions for these problems, such as multiple-
stage charging processes. However, these solutions do not mitigate completely
the partial charging problem and accelerate aging. On the other hand, this
thesis explores different solutions to deal with them, both modifying the

architecture of the system and by using intelligent algorithms.

As a first solution, Hybrid Energy Storage Systems are proposed. This
solution comprises two storage subsystems: a Cyclic Storage System (CSS) and
a Support Storage System (SSS). The CSS provides energy during the daily
cycle, whereas the SSS acts as a bulk energy reservoir. Storage systems with
different roles require chemistries with different features, therefore, specific
storage technologies have been proposed for each storage system. Specifically,
conventional battery technologies such as VRLA are proposed for the SSS role,
due to their lower price and stationary features. On the other side, newer

battery chemistries, such as LFP, are proposed for the CSS.

The sizing of these specific storage systems has been studied with simulation
data from real installations, and a novel sizing procedure has been defined. It
has been found that the best energy ratios are between 15-30% of the total
storage system for the cyclic subsystem, and conversely, around 70-85% of the
total storage system for the support subsystem. The recommended autonomy

of these systems in the studied locations has been estimated at around 150 to
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200 hours, and the power-peak-to-consumption ratio of the solar panels has

been estimated at around 10.

The mid-term performance of these hybrid systems has been analyzed. The
role division and the optimized sizing provide a theoretical improvement of the
partial SoC of up to 25%. The resilience of these systems has also been studied,
obtaining an increment up to a 45% of the absorbed energy after a blackout
period. The long-term benefits of these hybrid systems are yet to be proven,
although an extension on the battery life is expected, since each storage
subsystem is better suited for its specific role, and the lead-acid batteries in the

installation are not under deep daily cycles.

An ad-hoc DC/DC converter has been designed and implemented to test this
concept in a real installation, and its performance has been compared to another
conventional, non-hybrid system. After some months in operation, the lead-acid

battery of the HESS had its SoC increased by a 16%.

Industrial solar chargers in these applications tend to overcharge the
batteries to mitigate the problem of incomplete charging processes. This
practice, however, comes at expense of accelerating the aging of the batteries.
Machine-learning solutions have been also proposed as a complement to these
chargers. The studied approach aims to predict the voltage of the battery pack
48 hours ahead. This way, there is enough time margin to address a potential
failure in the installation. Additionally, if the solar charger does not have the
capacity of overcharging the batteries, this is a wide enough margin so that the
installation operators can intervene. Two different prediction techniques have
been studied for this task, NARX, and LSTM. The results obtained with both
techniques are positive, predicting the trend of the voltage waveform and
whether is going to be a failure situation. However, the exact waveform when
de voltage is low is difficult to predict, since the datasets do not count with

many examples of this situation.

The application of machine-learning techniques to the estimation of health-
related parameters in lithium-ion batteries has also been studied as a

complementary diagnose tool for HESS. Counting with multiple storage packs,

173



Hybrid and Intelligent Energy Storage Systems in Standalone Photovoltaic Applications

these systems can cycle batteries at little energy expense. This allows for test
cycles, which can be then post-processed with smart algorithms. Different
techniques have been proposed to this end, such as linear regression, logistic
regression, MLP, and CNN. Additionally, multiple health indicators have been
studied as features. The results show that the exact remaining useful life of
these cells can be predicted with reasonable accuracy. There is also a high
precision in classifying cells in the last stage of their life. This can be useful for

operators, so the cells can be replaced accordingly.
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6.2 Summary of contributions

The main scientific contributions of this thesis towards HESS in standalone

photovoltaic installations are listed below.

A review on standalone photovoltaic installations, their sizing
parameters, storage technologies, and underperforming causes
(Chapter 2).

A battery runtime-simulation model that combines the different
operation modes of the battery and allows for replicating Partial State
of Charge (Chapter 2).

Sizing of the storage packs of HESS in this application. A sizing
method based on sizing maps has been developed, which determines
the best ratios in the size of the solar panels and the size of the
different battery packs for an installation with given power
consumption. The sizing of the DC-DC converter in this application
has been addressed as well. (Chapter 3).

An improvement of the behavior of the installation with the HESS
over an installation with a conventional ESS. Models of these
installations have been developed to find the best-case scenarios and
to determine how much does a hybrid system improves the
performance over a conventional system. The results have been
backed up with experimental validation (Chapter 3).

Failure prediction algorithms for photovoltaic installations. Voltage
prediction tools have been developed to determine future energy-
disruption events. (Chapter 4).

Development of a daily solar generation taxonomy and classification
based on daily features obtainable in the installations. This
classification allows for making hypotheses on the future current
generated in the installations (Chapter 4).

Proposal of different Health Indicators in LFP batteries towards
health estimation techniques. Among them, the variables V,; and C

are introduced as novel features (Chapter 5).
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Development of a life-stage estimation tool based on Regularized
Logistic Regression, to determine whether a used battery is suitable
or not of being re-used in another application (Chapter 5).

Proposal of mnon-intrusive, Remaining Useful Life estimation
techniques to estimate the number of cycles a battery can still
withstand in a deep cycle application, such as Cyclic Storage Systems
in HESS, without the need of knowing all the past usage of the battery
(Chapter 5).

Proposal of a capacity estimation technique to anticipate the decay of

capacity in LFP batteries in a deep cycle application (Chapter 5).



Chapter 6.-Conclusions and research lines

6.3 Future research lines

Multiple research lines have been proposed along the text to continue the
work developed in this thesis. This section collects them and ponders on the

future steps to take.

e Asit has been introduced, standalone photovoltaic installations in this
application have a mostly DC consumption pattern, without high
power spikes. Thus, the simulations throughout the thesis and the
sizing conclusions have been obtained under the DC consumption
hypothesis. It would be of interest to do the same simulations with
other consumption hypotheses, from a different application, to check
how it influences the sizing of the hybrid system.

e The HESS proposed in Chapter 3 has been focused on mitigating the
impact of the Partial State of Charge in the application. However, it
would be interesting to develop aging models of the batteries to obtain
conclusions of the long-term benefits of the hybrid system. The HESS
can help reducing aging on VRLA since the number and depth of the
cycles that these batteries withstand are reduced. However, analyzing
empirically the benefits in aging may take some years to complete. To
obtain verification of the aging conclusions, it would be interesting to
have the HESS working for several years.

e Additionally, when analyzing the limited hybrid power in Chapter 3,
it could be seen how in some scenarios, working with a power limit in
the DC-DC hybrid converter is beneficial for the VRLA battery, since
it preserves a higher SoC. This is an interesting observation since it
implies that a smaller (and probably cheaper) DC-DC converter may
be better for some scenarios than a high-power converter. Studying
these limited operation modes is an interesting future research line.

e Regarding system failure prediction, the algorithms developed in
Chapter 4 have been trained and applied to a certain number of
installations that belong to the CHE network. However, for each

installation, a separate database has been created and a separate
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network has been trained. This results in a different network for each
one of the installations. Before the deployment of the algorithm in a
new installation, data in that installation needs to be monitored to
create the database and train the algorithm. For this reason, it could
be of interest to study the universality and adaptability of these
algorithms. The goal would be to develop a universal algorithm, which
would be deployed on any installation and learn from the data
measured there, thus adapting to that specific installation.
Regarding the aging estimation algorithms in Chapter 5, it could be
of interest to apply such techniques, developed for LFP batteries, to
other chemistries. This is conditioned on the availability of datasets,
but would improve the generalization of such algorithms. Specifically,
applying this to VRLA batteries could help to analyze the long-term
impact of the HESS.

Furthermore, these algorithms could be then used as a tool to develop
new Energy Management Strategies, taking into account the aging of
both battery packs and optimizing the long-term behavior of such
HESS. These EMS could process aging to include the replacement of
the battery packs, optimizing the use of the HESS with techno-

economic criteria.



Conclusiones y lineas futuras

Conclusiones y lineas futuras

Los sistemas de almacenamiento de energia en instalaciones fotovoltaicas
aisladas de la red han sido estudiados a lo largo de la tesis. Estos sistemas han
estado basados tradicionalmente en quimicas como el plomo-acido, el niquel-
cadmio o el niquel-manganeso. También se han estudiado sus métodos de
dimensionamiento, arquitecturas y distintos problemas a los que se ven sujetos.
Concretamente, se ha destacado el impacto de la temperatura y de las cargas
incompletas, que reducen las prestaciones de las instalaciones reduciendo la

capacidad de las instalaciones y acelerando el envejecimiento de las mismas.

Desde la industria se han propuesto distintas soluciones para paliar estos
problemas, como los procesos de carga con etapas de sobrecarga. Sin embargo,
estas soluciones no mitigan el problema completamente, y por el contrario
aumentan el envejecimiento. Esta tesis explora otras soluciones para lidiar con
estos sistemas. Por un lado, modificando la arquitectura del sistema y por otro,

utilizando algoritmia inteligente.

Los sistemas de almacenamiento hibridos (HESS) se han propuesto como una
solucion inicial. Se propone dividir el elemento de almacenamiento principal en
dos sub-sistemas: el sistema de almacenamiento ciclico (CSS) y el sistema de
almacenamiento de apoyo (SSS). El CSS se encarga de proveer energia durante
el ciclo diario, mientras que el SSS actiia como almacenamiento de emergencia.
Se han propuesto las tecnologias VRLA para la bateria de soporte y LFP para

la bateria ciclica.

El dimensionamiento de estos sistemas hibridos se ha simulado usando
perfiles de simulacién de instalaciones reales. Se ha planteado un método de
dimensionamiento basado en superficies, y se han determinado las mejores ratios
de hibridacién entre el 15-30% para el CSS. Se ha determinado que la autonomia
objetivo de estos sistemas esta de 150 a 200 horas, y la potencia de paneles
recomendable se ha establecido en unas 10 veces la potencia DC de consumo de

la instalacién.

También se ha analizado el funcionamiento a medio plazo de estos sistemas

hibridos. La division de roles y la estrategia simple propuesta consigue en

179



Hybrid and Intelligent Energy Storage Systems in Standalone Photovoltaic Applications

simulacién una mejora tedrica de hasta un 25% del SoC. También se ha definido
y analizado la resiliencia de estos sistemas, y se ha obtenido una mejora de
hasta un 45% en la energia absorbida en un sistema de almacenamiento hibrido

frente a uno convencional tras un estado sin energia.

Por otro lado, las ventajas a largo plazo de estos sistemas tienen que ser
comprobadas todavia. A priori, es de esperar que el sistema hibrido propuesto
prolongue la vida de las baterias de plomo actuales, debido a que no estan
sujetas a ciclados profundos diariamente. Son las baterias de litio las que estan

sujetas a este ciclado diario, més acorde con sus caracteristicas.

Para comprobar experimentalmente los resultados obtenidos en simulacién,
se ha implementado un sistema hibrido en una instalaciéon de la Confederacion
Hidrografica del Ebro. El sistema hibrido ha sido comparado con uno
convencional de las mismas caracteristicas. Tras varios meses en operacion, el

estado de carga de la bateria de plomo en el sistema hibrido ha aumentado un

16%.

Para mitigar el problema de la carga parcial, los cargadores industriales
actuales realizan sobrecargas periddicas a las baterias. Estas técnicas mitigan
parcialmente el problema a costa de envejecer las baterias por operar a tensiones
elevadas. Por este motivo, resulta interesante el uso de algoritmia inteligente
para ver cuando es necesario realizar estas sobrecargas, en vez de hacerlas
periédicamente. Para ello, se han propuesto técnicas de aprendizaje automatico
basadas en datos, que predicen si el sistema se va a caer con una antelacion de
48h, situacion en la cual se puede efectuar una sobrecarga. Se han aplicado los
algoritmos NARX y LSTM a esta tarea, obteniendo una deteccién de la
tendencia de caida cuando se va a producir un fallo. Sin embargo, la detecciéon
de la forma de onda exacta no es exacta, debido a los pocos ejemplos de estas

situaciones en las bases de datos.

También se ha estudiado la viabilidad de aplicar técnicas de aprendizaje
basado en datos al problema de estimacién de la salud de los sistemas de
almacenamiento basados en litio. Esto permitird dotar de herramientas a los

sistemas de gestion de las baterias para planificar reemplazos programados
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(mantenimiento preventivo) o gestionar los ciclos diarios para minimizar el
envejecimiento. Algoritmos como la regresion lineal, logistica, MLP y CNN han
sido entrenados con este proposito, obteniendo un sistema capaz de clasificar la
etapa de la vida de la bateria con una alta precisién (97.2%), y algoritmos
capaces de estimar el nimero exacto de ciclos de vida restante que le quedan a
una bateria, con un error de 79 ciclos en baterias de en torno a 1000 ciclos de
vida. También se han propuesto estos algoritmos para hacer un seguimiento y
prediccion de la capacidad futura de la celda, con errores de 0.05 Ah en baterias

de 1.1Ah.

A continuacion, se listan las principales lineas de investigacion a futuro que

se desprenden de los contenidos de la tesis.

e En las instalaciones fotovoltaicas estudiadas, el consumo es
principalmente en corriente continua. Esto ha servido como hipdtesis
para la normalizacién de las variables de dimensionamiento. Como
linea de futuro, resultaria interesante estudiar otros patrones de
consumo, y su impacto en las métricas de dimensionamiento
estudiadas.

e FEl sistema de almacenamiento hibrido propuesto en el capitulo 3 ha
sido utilizado para mitigar los efectos del estado de carga parcial
(PSoC) en la operacién a medio plazo del sistema. Sin embargo,
también resultaria interesante estudiar las ventajas a largo plazo. Con
dicho sistema, las baterias basadas en plomo sufren un ciclado menos
intenso, y es de esperar que su vida util se extienda. Como linea de
futuro, seria conveniente desarrollar modelos de envejecimiento para
las multiples quimicas involucradas, y determinar cuantitativamente
esta extension de la vida util. Ademas, bajo estos nuevos modelos,
nuevas estrategias de gestién de la energia pueden ser propuestas y
validadas.

e Adicionalmente, en el capitulo 3 se ha podido ver como en
determinados escenarios, tener un limite de potencia en el convertidor
de hibridacion resultaba ventajoso para la bateria de plomo, ya que

hacia que conservase un SoC promedio mas elevado. Este es un
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resultado interesante, ya que supone que un convertidor pequefio (y
presumiblemente més barato) puede operar mejor que un convertidor
de elevada potencia. HEsta operacion limitada resulta un campo de
estudio interesante para optimizar el diseno de dichos convertidores.
En lo referente a la prediccion de fallos en instalaciones desarrollada
en el capitulo 4, para cada instalacion, se ha necesitado una base de
datos propia y entrenar un algoritmo distinto. Esto limita en cierta
manera la implementacién practica de estos algoritmos para
instalaciones nuevas, ya que primero deben grabarse datos en dichas
instalaciones para entrenar los algoritmos. Por lo tanto, resulta
interesante estudiar la viabilidad de hacer un algoritmo universal y
adaptable, capaz de ser desplegado en cualquier instalacion, y
aprender en vivo de los datos que va midiendo, de tal manera que
adapte su comportamiento a cada instalacién especifica.

EN lo referente a la estimacion de vida realizada en el capitulo 5,
resulta interesante expandir el estudio, realizado con quimica LFP, a
otras quimicas. Esto depende en gran medida de la disponibilidad de
bases de datos, pero mejoraria la capacidad de generalizacion de las
técnicas desarrolladas. Concretamente, aplicar dichos algoritmos a
baterias VRLA ayudaria a analizar el impacto a largo plazo de los
HESS.

Adicionalmente, estos algoritmos pueden ser usados para desarrollar
nuevas estrategias de gestién de la energia, que tengan en cuenta el
envejecimiento de las baterias, y que optimicen el funcionamiento a
largo plazo del pack. De este modo, se podrian tener en cuenta
criterios de remplazo de las baterias para optimizar los HESS con

criterios tecno-econdmicos.
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