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A B S T R A C T

Visual appearance determines our understanding of an object or image,
and as such it is a fundamental aspect in digital content creation. It is
a general term, embracing others like material appearance, which can be
defined as the visual impression we have about a material, and involves the
physical interaction between light and matter, and how our visual system
perceives it. However, computationally modeling the behavior of our visual
system is a complex task, partially because no definite, unified theory of
perception exists. Moreover, although we have developed algorithms that are
able to faithfully model the interaction between light and matter, there is a
disconnection between the physical parameters that those algorithms use and
the perceptual parameters that the human visual system understands. This,
in turn, makes manipulating such physical parameters and their interactions
a cumbersome and time-consuming task, even for expert users. This thesis
aims at furthering our understanding of material appearance perception, and
leveraging it to improve existing algorithms for visual content generation.
This is done by establishing connections between the physical parameters
governing the interaction between light and matter, and high-level, intuitive
parameters or attributes understood by humans. Specifically, the thesis
makes contributions in three areas: proposing new computational models
for measuring appearance similarity; investigating the interaction between
illumination and geometry, and their effect on material appearance; and
developing applications for intuitive appearance manipulation, in particular,
human relighting and material appearance editing.

The first part of this thesis explores metrics to measure appearance similar-
ity. How to accurately measure similarity between two materials, or images,
is a classic problem in visual computing fields like computer graphics or
computer vision. We first approach the problem of measuring appearance
similarity between materials. We propose a deep learning-based frame-
work directly trained on images paired with human judgements on material
similarity, collected through user studies. In addition, we also explore the
problem of icon similarity. In this case, we rely on siamese neural networks,
and the subjective style and identity given by the artists play a key role in
such similarity measure.

The second part takes steps towards understanding the effect of con-
founding factors on our perception of material appearance. Two key factors
determining the final appearance of a scene are geometry and illumination.
We start by investigating the joint effect of geometry and illumination in
our performance recognizing materials through several crowdsourced exper-
iments and statistical analysis. We also perform an analysis of the effect of
motion blur on material perception.

In the third part, we explore intuitive applications to manipulate visual
appearance. First, we address the problem of single-image full-body human
relighting. We propose a new problem formulation and, based on it, design
and train a generative neural network capable of relighting a scene. Last,
we approach the intuitive material editing problem. We collect human
judgements on the perception of high-level attributes defining material
appearance, and present a generative model able to produce plausible edits
just by varying such collected attribute values.
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R E S U M E N

La apariencia visual determina como entendemos un objecto o imagen, y, por tan-
to, es un aspecto fundamental en la creación de contenido digital. Es un término
general, englobando otros como la apariencia de los materiales, definida como la
impresión que tenemos de un material, y la cual supone una interacción física entre
luz y materia, y como nuestro sistema visual es capaz de percibirla. Sin embargo,
modelar computacionalmente el comportamiento de nuestro sistema visual es una
tarea difícil, entre otros motivos porque no existe una teoría definitiva y unificada
sobre la percepción visual humana. Además, aunque hemos desarrollado algoritmos
capaces de modelar fehacientemente la interacción entre luz y materia, existe una
desconexión entre los parámetros físicos que usan estos algoritmos, y los parámetros
perceptuales que el sistema visual humano entiende. Esto hace que manipular estas
representaciones físicas, y sus interacciones, sea una tarea tediosa y costosa, incluso
para usuarios expertos. Esta tesis busca mejorar nuestra comprensión de la percepción
de la apariencia de materiales y usar dicho conocimiento para mejorar los algoritmos
existentes para la generación de contenido visual. Específicamente, la tesis tiene
contribuciones en tres áreas: proponiendo nuevos modelos computacionales para
medir la similitud de apariencia; investigando la interacción entre iluminación y geo-
metría; y desarrollando aplicaciones intuitivas para la manipulación de apariencia, en
concreto, para el re-iluminado de humanos y para editar la apariencia de materiales.

Una primera parte de la tesis explora métodos para medir la similaridad de
apariencia. Ser capaces de medir cómo de similares son dos materiales, o imágenes, es
un problema clásico en campos de la computación visual como visión por computador
o informática gráfica. Abordamos primero el problema de similaridad en la apariencia
de materiales. Proponemos un método basado en deep learning que combina imágenes
con juicios subjetivos sobre la similitud de materiales, recogidos mediante estudios
de usuario. Por otro lado, se explora el problema de la similaridad entre iconos. En
este segundo caso, se hace uso de redes neuronales siamesas, y el estilo y la identidad
que dan los artistas juega un papel clave en dicha medida de similaridad.

La segunda parte avanza en la comprensión de cómo los factores de confusión
(confounding factors) afectan a nuestra percepción de la apariencia de los materiales.
Dos factores de confusión claves son la geometría de los objetos y la iluminación de la
escena. Comenzamos investigando el efecto de dichos factores a la hora de reconocer
los materiales a través de diversos experimentos y estudios estadísticos. También
investigamos el efecto del movimiento del objeto en la percepción de la apariencia de
materiales.

En la tercera parte exploramos aplicaciones intuitivas para la manipulación de la
apariencia visual. Primero, abordamos el problema de la re-iluminación de humanos.
Proponemos una nueva formulación del problema, y basándonos en ella, se diseña
y entrena un modelo basado en redes neuronales profundas para re-iluminar una
escena. Por último, abordamos el problema de la edición intuitiva de materiales.
Para ello, recopilamos juicios humanos sobre la percepción de diferentes atributos
y presentamos un modelo, basado en redes neuronales profundas, capaz de editar
materiales de forma realista simplemente variando el valor de los atributos recogidos.
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M E A S U R A B L E C O N T R I B U T I O N S

This thesis has led to the following results, further detailed in Section 1.5:

• Four JCR-indexed journal publications (one of them in ACM Transac-
tions on Graphics) [171, 170, 172, 56].

• Two peer-reviewed conference publications [207, 173].

• Two research internships (totalling more than nine months) at Adobe
Research in San Jose (California, USA).

• One peer-reviewed poster presented at SIGGRAPH conference [57].

• One patent application as a result of the internships at Adobe Research
in San Jose (California, USA) [301].

• One publicly available dataset resulting from one of the journal publi-
cations.

• Four invited talks in different international institutions and workshops.

In addition to the aforementioned results, during this thesis the following
tasks were also performed:

• Supervisor for one BEng final degree project and three interns.

• Reviewer for five journals and seven international conferences.

This thesis has been done within the ERC project: CHAMELEON: Intuitive
Editing of Visual Appearance from Real-world Datasets.
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I N T R O D U C T I O N A N D O V E RV I E W





1I N T R O D U C T I O N

"Somewhere, something incredible is waiting to be known."
Carl Sagan, 1934-1996

Visual data plays a key role in the way we understand and perceive the
world around us: As humans, about 90% of our input information comes
from sight. Just in a glimpse, we can gather data about the environment
around us, acquiring information on the illumination, or understanding the
visual appearance of objects or images. Visual appearance refers to the par-
ticular look of an object or an image, but also involves how our visual system
integrates and processes such information to give us an understanding of
it, whether the information comes from a real-world scene that we observe,
from a non-realistic illustration, or from a realistic rendering depicted in an
image [127]. Visual appearance is therefore a general term, embracing others
like material appearance that can be defined as “the visual impression we
have of a material” [65], involving a physical interaction between light and
matter, and how our visual system perceives it.

Figure 1.1: Examples of different appearances that are found in nature. The particular
look of a real-world scene that we observe is built by a complex multidi-
mensional interaction capable of creating effects of astonishing richness
such as in pearls (left), northern lights (middle), or the wings of a butterfly
(right).

This physical interaction between light and matter is one of the aspects
determining the visual impression of a material, and is a consequence of
the way the illumination is reflected and transmitted, but it also involves
several other aspects like the geometry of an object, or whether it is in
motion [65]. Such multidimensional physical interaction allows creating
appearances of astonishing richness (e.g., pearls, northern lights, or the
wings of a butterfly; see Figure 1.1), which have, throughout the years,
inspired painters or photographers and, more recently, computer graphics
professionals. Our society is increasingly relying on computer-generated
imagery for everyday tasks; consequently, visual appearance and material
appearance are a fundamental aspect, not only of how humans understand
the world and communicate concepts or ideas, but also of how we create and
develop digital content.

On the other hand, how our visual system integrates and processes such
multidimensional physical interaction to give us the final impression about
a material is not yet fully understood. Under typical viewing conditions,
humans can effortlessly recognize materials and infer their key physical
properties at a glance. Indeed, just by briefly looking at them we can usually
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tell whether they would feel soft, cold, or if they would be wet. However,
untangling the processes that happen in our visual system, and finding a
direct relationship between our subjective impression and the parameters
that govern the underlying physical interaction, remains an open challenge
without a definite solution. This, subsequently, difficults the creation of
computational models (or algorithms) of appearance that take into account
human perception.

Being able to compare how similar two objects or images are, or being
able to infer an object’s properties from an image, are valuable and im-
portant abilities that we, as humans, perform every day for a wide range
of common tasks. They are, however, hard well-known open problems in
fields like computer graphics and vision. This thesis, therefore, aims at
improving computational models for measuring appearance similarity by
taking into account the subjective nature of human perception, exploring
how the interaction between physical parameters affects material appearance
perception, and easing the use of applications for appearance manipulation
by developing more intuitive frameworks.

One of the first open problems this thesis looks into is appearance simi-
larity. In our daily lives, we are constantly comparing the different visual
appearances, either to understand which piece of fruit we want to buy in
the supermarket, or to select the style of the digital illustration we will use
to decorate the background of our laptop (see Figure 1.2). Comparing and
measuring the similarity between appearances is a task that humans perform
effortlessly. However, it is a challenging problem, where the influence of
confounding factors, like geometry or illumination, or the subjective nature
of human perception (which has often been ignored by traditional methods)
play a key role. Therefore, to obtain more precise methods that measure
appearance similarity, or help to obtain plausible solutions in cases where
a unique mathematical model does not exist, human perception should be
taken into account. This thesis (Part III) looks at both material appearance
similarity and image (vector graphics icons) similarity.

Secondly, this thesis aims at taking steps towards a better understanding
of material appearance perception by investigating the interaction between
physical parameters, their effect on material appearance, and how they
influence our perception of it (Part IV). Material appearance is defined by
the complex interaction between light and matter giving objects a particular
look, and also by how our visual system perceives and understands it. The
physical parameters describing such interaction in a scene are heterogeneous,
ranging from low-level parameters defining the appearance of a material
(e.g., the amount of dispersed microscopic interference pigments within
a dielectric resin used to represent pearlescent appearances), to high-level
parameters like the illumination of a scene, the geometry of an object, or
whether it is in motion (see Figure 1.3). Our experience suggests that humans
are able to correctly recognize a wide variety of materials: If we observe the
same static object made of chrome in sunlight and moonlight, we would see
completely different depictions of the same object, yet our visual system is
capable of telling that it is actually made of chrome by just seeing a blurred
reflection of the environment with a gray-like tint, a few smudges, and
maybe some scratches. How our visual system processes this information,
abstracts itself from the effect of confounding factors on the appearance, and
is then able to recognize the chrome object, remains not fully understood.
Investigating the influence of confounding factors as well as their relationship
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1 .1 measuring appearance similarity

Figure 1.2: Examples of a scene where we would compare the visual appearance of
materials, effortlessly, either to pick the freshest fruits, or the best looking
flowers. Measuring the similarity between appearances is a long-standing
problem in computer graphics and vision for which no definite solution
exists yet.

with the physical information encoded in the data is a key aspect towards
understanding how humans interpret material appearance.

The last part of this thesis explores the development of intuitive applica-
tions for appearance editing (Part V). Being able to intuitively edit material
appearance is a core area in the field of computer graphics (see Figure 1.4).
It is not only a fundamental aspect of digital content creation, but an in-
herent part of our lives as well: We rely on computer-generated imagery
in many daily tasks, while many industrial processes depend on correct
appearance simulations to convey the desired visual information. Therefore,
the development of proper applications or algorithms for the manipula-
tion of appearance is key for current methods and algorithms, but can also
have an impact on emerging fields such as computational materials or fab-
rication. Nowadays, we have the storage to acquire accurate real-world
information, and the power and technical knowledge to accurately repre-
sent its appearance [70, 211]. However, computational representations of
appearance rely on complex physical parameters and models that are sub-
optimal with respect to what humans can easily understand and process:
The data is machine-friendly, but not human-friendly. Despite its current
importance, the applications to edit the visual appearance remain unintuitive
and inefficient, where expert knowledge is often required to understand their
parameters and the interactions between them. Finding (and developing)
connections between the complex physical parameters used by current appli-
cations, and the perceptual parameters that humans employ to understand
material appearance, could open up a new space with great potential for
intuitive applications to edit appearance.

In summary, this thesis presents contributions on three relevant areas
of visual appearance: measuring appearance similarity taking subjective
judgements into account (Part III), analyzing the influence of confounding
factors in our perception of material appearance (Part IV), and proposing
intuitive applications for relighting or material editing (Part V).

1.1 measuring appearance similarity

The first part of the thesis deals with establishing metrics to measure ap-
pearance similarity. This is a long-standing problem in fields within visual
computing, like computer vision or computer graphics. In particular, this
thesis focuses on measuring material appearance and icons’ appearance
similarity. Since the subjective nature of perception should be taken into
account, these concepts differ from original notion of image similarity, which
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can be defined as the difference between intensity patterns in two images.
Material appearance similarity, instead, defines how similar two materials
are, and it could be measured directly from images or from their physical
representation (the BRDF); however, the latter would not take into account
the influence of confounding factors. Icons’ similarity, on the other hand,
could be influenced by the different styles or visual identities given by the
artists during the creative process. Traditional methods to measure similarity
have relied on hand-crafted feature vectors [95], metrics directly working in
BRDF space [223, 91], or directly in image space [224]. However, those do
not take into account the influence of human perception, or the potential
effect of confounding factors in the final appearance.

We propose computing visual appearance similarity in terms that corre-
late with the human notion of similarity. Unfortunately, mapping raw data
or optical parameters to perceptual parameters is severely ill-defined, and
therefore a challenging process. We leverage the large availability of visual
appearance data representing the physical parameters that govern the inter-
action between light and matter, online tools that allow running large-scale
user studies to capture the subjective impression defining appearance, and
deep learning models that are able to identify the features that better corre-
late with the human notion of appearance similarity. Part III of this thesis
explores first how to combine subjective human judgements on material
appearance with deep learning models, and develop a similarity measure
from material appearance working directly on image space. Then, we investi-
gate the problem of measuring similarity between icons by leveraging online
datasets and siamese neural networks to learn our measure.

First, we tackle the complex problem of creating a robust material appear-
ance similarity measure that correlates with human judgements. We design
and render a dataset of images representing a wide variety of real-world
materials, shapes, and illuminations. We use such dataset to launch crowd-
sourced experiments from which we gather perceptual data on material
appearance similarity, in the form of subjective judgements. We leverage
this data, together with the corresponding images in the rendered dataset, to
learn a deep learning-based measure capable of correlating with the human
notion of material similarity. We employ a set of custom loss functions
suitable for the aforementioned problem, and validate our model against
previous work. Last, we propose several applications enabled by our met-
ric, such as: material suggestions, database visualization, clustering and
summarization, and gamut mapping.

We also present a method to measure similarity in the non-photorealistic
domain of iconography, where the style or visual identity given by the artists
play a key role in the message they convey. First, we collect a database of
icons from online sources where each icon image is paired together with
semantic labels that are given by artists. We train a siamese neural network to
measure icons’ appearance similarity according to the given semantic labels.
We further validate the model by launching a crowdsourced experiment
where we collect groundtruth subjective judgements from humans. Last,
we use our method to develop useful applications such as icon retrieval by
similarity, or icon set proposals.

1.2 confounding factors in material perception

When we observe a photograph of a chrome sphere, our visual system is
capable of gathering information from several variables such as the geometry
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(i) (ii) (iii)

Figure 1.3: Different appearances obtained by varying confounding factors: (i) The
same scene under different illuminations, (ii) two different geometries
with the same material and illumination [172], (iii) renderings of an object
with the same geometry, material, and illumination, where the object has
different degrees of motion. In all three examples, the insets show the
illumination used to render the scene.

or the illumination, and tell that the material of such sphere is actually
chrome. Something similar happens if we modify the object’s geometry to
be a dragon statue, if we move it to a place with a different illumination, or
if we add a certain degree of motion to it. Our visual system, even though
the image that has arrived to it completely differs from the original chrome
sphere, is capable of abstracting itself from the influence of confounding
factors in the final look, and inferring that these objects are all made of the
same chrome material. Identifying the physical causes of the patterns and
features that our visual system creates to understand what we observe is
widely considered to be the central challenge of vision [86, 89]. In Part IV
of this thesis, we investigate how confounding factors — such as geometry,
illumination, or motion (see Figure 1.3) — affect human perception. While
previous work has studied the influence of illumination [86, 128] and geome-
try [320, 118], we first propose a systematic, in-depth analysis of their joint
influence. Then, we additionally study the influence of motion (in isolation),
and how it affects a set of attributes describing material appearance.

First, we perform a comprehensive analysis of how the interplay between
geometry, illumination, and their spatial frequencies affects human perfor-
mance on material recognition tasks. From this analysis we observe that
simple image statistics do not correlate with human perception [90, 10].
Therefore, we perform a high-level comparison between human answers and
highly non-linear statistics such as deep neural networks [295, 89], finding
preliminary evidence that these highly non-linear models and humans may
use similar high-level factors for material recognition tasks.

We also look at the influence of motion in our perception of material
appearance, and specifically, at the influence of motion blur in the presence
of linear object movement. We start by creating a database with a diverse
set of stimuli covering a wide range of appearances and under different
degrees of motion. We use such database to develop two experiments where
participants rate different material attributes. Our analysis shows that certain
attributes undergo a significant change, varying appearance perception under
motion.

1.3 intuitive applications for appearance editing

As mentioned before, we nowadays have enough power, storage, and tools
to, in many cases, precisely acquire and simulate the appearance of the real
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Figure 1.4: Example of intuitive editing of material appearance. The method takes
as input an image with an opaque object, and it is capable of changing
its appearance to a glass-looking one where lighting effects such as inter-
reflections, and even caustics are computed automatically (image from the
work of Gutierrez et al. [115]).

world. This opens up extra features, such as computationally reproducing
objects’ appearance faithfully, or using deep learning algorithms trained
with computer-generated datasets. However, the data-driven paradigm shift
we are witnessing also leads to limitations: There is a disconnect between
the physical parameters of the captured data employed by the algorithms
and human-understandable perceptual parameters, making the use of appli-
cations to model and edit appearance cumbersome and often restricted to
professionals. In addition, the data captured from the real world are hetero-
geneous, vary between acquisition methods, and are very high-dimensional,
aggravating the intuitiveness of such applications which, in turn, yields
a more restricted creative process for professionals. Finding relationships
between the physical parameters used by the algorithms and the perceptual
parameters understandable by humans can help developing more intuitive
applications where no expert knowledge is required beforehand. Tradition-
ally, intuitive applications involved finding direct mappings between phys-
ical estimates and perceptual traits [142, 50]; or deriving low-dimensional
spaces that are easy to explore and navigate in human-understandable
terms [276, 246]. The emergence of deep learning has opened up additional
possibilities, where we can accurately model the physical properties of large
scale datasets [295], derive low-dimensional embeddings [350], or directly
propose intuitive applications [274, 148]. In Part V of this thesis, we approach
two well-known problems: relighting and material appearance editing. We
present two frameworks that require only human-understandable parame-
ters as the input, and are capable of producing plausible solutions for both
problems. We rely on a combination of large-scale datasets representing the
physical parameters, user studies capable of capturing the subjective nature
of human perception, and deep learning methods capable of finding the
features that connect them.

First, we tackle the relighting problem. We propose a framework to intu-
itively relight images with full-body humans in them, where the user just
gives a target illumination together with the input image. We leverage pre-
computed radiance transfer (PRT) and spherical harmonics (SH) to propose
our image reconstruction formulation, which explicitly models diffuse and
specular reflection. We gather and generate a dataset of full-body humans
with our formulation and train a deep neural network on this data capable
of intuitively relighting a photograph with a human in it.
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We additionally propose a method to intuitively edit material appearance
in RGB images. We rely on a synthetic dataset to collect ratings on high-level
attributes such as glossiness or metallic. Using the dataset together with the
human ratings, we train a generative neural network capable of faithfully
editing the appearance of the material in an image just by providing a value of
an attribute. We conduct an additional crowdsourced experiment to validate
our method and demonstrate its applicability also in real photographs.

1.4 goal and overview

This thesis is divided in three main parts, one for each of the three topics
described in the introduction.

• Part III discusses the problem of appearance similarity. In Chapter 3,
we propose a deep learning framework to measure material appearance
similarity. We learn our model directly from human judgements by
using a custom loss function. We validate our model, show that it
outperforms previous work, and how it correlates with perceptual
judgements. In Chapter 4, we propose a framework to measure icons
appearance similarity learned directly from noisy labels that is later
tested against human judgements.

• Part IV studies the influence of confounding factors in our perception
of material appearance. In Chapter 5, we propose a comprehensive
study to understand the joint role of geometry and illumination in our
performance recognizing materials. We do an analysis on the frequency
domain, explore the correlation with simple image statistics, and find a
possible connection between high-level factors and low-dimensional
spaces created by deep neural networks. In Chapter 6, we continue
exploring the influence of confounding factors by launching several
user studies where we analyze how motion blur affects our perception
of certain material attributes.

• Part V proposes intuitive applications to manipulate the appearance
of a scene just from single images. Chapter 7 presents a framework
for full-body human relighting. The framework relies on a synthetic
dataset and a deep neural network. We show that our improved image
formulation leads to better relighted reconstructions. In Chapter 8, we
present a framework for intuitive material editing using just a single
image, and a value representing a change in appearance for a material
attribute (e.g., glossiness or metallic). We rely on several user studies
to collect human judgements regarding such material attributes, and
we use this data to train a generative adversarial network capable of
performing material editing.

While the author of this thesis is the leading author in many of the pre-
sented works, they have been done in collaboration with different colleagues.
To favor readability, the work described is contextualized at the beginning of
each chapter and, when needed, the contribution of the author of this thesis
is explicitly described.

1.5 contributions and measurable results

publications In the following we state the publications which support
the contributions of this thesis. Most of the work presented in this thesis has
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been already published. In particular, in four journals (including one paper in
ACM Transactions on Graphics, and also presented at SIGGRAPH) indexed
in the Journal Citations Report (JCR), and two peer-reviewed international
conferences:

• Measuring Appearance Similarity (Part III, Chapters 3 and 4):

– The main work on material appearance similarity (Chapter 3) was
accepted and presented at SIGGRAPH 2019, and published in
ACM Transactions on Graphics [171]. This journal has an impact
factor of 5.084, and its position in the JCR index is 8th out of
108 (Q1) in the category Computer Science, Software Engineering
(data from 2019).

– Further analysis on the role of objective and subjective measures
in material similarity learning (Section 3.7) has been published as
a peer-reviewed poster in SIGGRAPH 2020 [57].

– One paper performing a preliminary study on deep learning for
appearance similarity in icons (Chapter 4) has been published in
Multimedia Tools and Applications in 2019 [170]. This journal
has an impact factor of 2.313, and its position in the JCR index is
34th out of 108 (Q2) in the category Computer Science, Software
Engineering (data from 2019).

• Confounding Factors in Material Perception (Part IV, Chapters 5 and 6):

– The main work proposes a thorough and rigorous study on the
joint role of geometry and illumination on material recognition
(Chapter 5). It was accepted to the Journal of Vision (JoV) in
2021 [172]. This journal has an impact factor of 2.240, and its
position in the JCR index is 39th out of 62 (Q3) in the category
Ophthalmology (data from 2020).

– An additional study on the effects of motion in our perception of
material attributes (Chapter 6) was published and presented in
the Symposium on Applied Perception (SAP) in 2019 [207].

• Intuitive Applications for Appearance Editing (Part V, Chapters 7

and 8):

– The main work proposes a deep-learning based system for full-
body human relighting (Chapter 7). It was presented at the Eu-
rographics Symposium on Rendering (EGSR) in 2021 [173]. This
work was done during the internships at Adobe Research.

– One paper where we devise an in-the-wild framework for intuitive
material editing with high-level attributes (Chapter 8). This work
was referred to the Computer Graphics Forum (CGF) journal [56].
This journal has an impact factor of 2.078, and its position in
the JCR index is 49th out of 108 (Q2) in the category Computer
Science, Software Engineering (data from 2020).

research internships Two research internships, totaling more than
nine months, were carried out during this PhD:

• June 2019 – October 2019 (four months): Research Intern at Adobe
Research, San Jose (California). Supervised by Dr. Xin Sun. As a result
of this internship, a patent application was filed [301].
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• June 2020 – December 2020 (five months): Research intern at Adobe
Research, San Jose (California). Supervised by Dr. Xin Sun. This
internship led to the publication of one of the articles of this thesis [173]
(Chapter 7).

supervised students During the development of this thesis the author
has supervised the following students:

• 2020: Jorge Esteban. BEng final degree project: Analysis of a deep
learning-based framework for automatic eye movement classification. Grade:
8.7/10. Title in Spanish: Estudio de un sistema de clasificación automática
de movimientos oculares basado en técnicas de aprendizaje profundo

• 2020: Daniel Subias. Internship: Exploration of NeRF-Based Methods for
Material Editing.

• 2020: Jorge Condor. Internship: An In-the-wild Surface Normal Estimation
Framework.

• 2018: Alejandro Lanaspa. Internship: Style Transfer for Texture Synthesis.

research projects This thesis has been carried out within the following
research project:

• CHAMELEON: Intuitive editing of visual appearance from real-world datasets.
European Research Council (ERC). Grant agreement No 682080. PI:
Diego Gutierrez.

11





Part II

A R E V I E W O F T H E L I T E R AT U R E





2P R E V I O U S W O R K

This chapter performs a review of the literature concerning visual appearance and
material appearance. We start by reviewing the literature regarding visual appear-
ance perception (Section 2.1). We present previous work studying the perception
of high-level attributes describing material appearance, discuss if our visual sys-
tem works as an inverse optics or as a matching statistics approach, introduce the
problem of material recognition, and review the influence of confounding factors in
our perception of material appearance. Then, we move onto how to model visual
appearance and material appearance (Section 2.2). We introduce datasets captur-
ing real-world material appearances, review low-dimensional spaces for material
appearance modeling, discuss the appearance of deep learning frameworks, present
different approaches to model icons’ appearance, and introduce methods to measure
style and shape similarity. In the last part, we review the computational methods
employed to edit visual appearance (Section 2.3). We address the problem of material
appearance editing, discuss image-based approaches, introduce inverse rendering and
image-based rendering methods for appearance manipulation, and, finally, present
the problem of human relighting.

2.1 visual appearance perception

The exact way in which our visual system infers and understands the ap-
pearances of the image that arrives to it is yet to be discovered [86, 85, 307, 3].
While we have learned how to faithfully represent materials, through their
physical interaction between light and matter [249], material perception is a
cognitive process [241] whose underlying intricacies are not fully understood
yet [9, 88]. There have been many works aiming to understand the perceptual
properties of materials [9, 88, 82, 205]; a comprehensive review can be found
in the work of Thompson and colleagues [307]. Finding a direct mapping be-
tween perceptual estimates and physical parameters is a hard task, involving
many dimensions that are not necessarily correlated. This section reviews
the literature regarding human perception of visual appearance and material
appearance.

material properties To understand the perceptual properties of a
given material is a hard task given the complexity of the information that
arrives at our visual system. A large body of work has been devoted to un-
derstand the visual cues that we use to infer isolated appearance properties
such as glossiness [40, 331, 182, 75, 305, 319], translucency [106, 335, 104],
softness [268, 39], or color [29]; while others aimed at understanding the
perceptual cues used by artists when depicting materials in realistic paint-
ings [62, 58]. We, humans, are able to infer the physical properties of objects
without the need of touch [90, 87, 205, 1, 304], just by briefly looking at
them [280, 281].

material perception : inverse optics or matching statistics

One of the goals in vision science research is to untangle the processes
that happen on our visual system in order to understand their roles and
know what information they carry. There is an ongoing discussion on
whether our visual system is solving an inverse optics problem [150, 250],
or if it matches the statistics of the input to our visual system in order to
understand the world that surrounds us [2, 218, 308]. Recent studies dismiss
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the inverse optics approach and claim that it is unlikely that our brain
estimates the parameters of the reflectance of a surface, when, for instance,
we want to measure glossiness [82, 100]. Instead, they suggest that our visual
system joins low- and mid-level statistics to make judgements about surface
properties [4]. On this hypothesis, Motoyoshi et al. [218] suggest that the
human visual system could be using a measure of histogram symmetry
to distinguish glossy surfaces. Other works have explored image statistics
in the frequency domain [119, 266], for instance, to characterize material
properties [103], or to discriminate textures [146, 265]. However, it is argued
whether our visual system actually derives any aspects of material perception
from simple statistics [10, 159, 235]. Recent work by Fleming and Storrs [89]
proposes that to infer the properties of the scene, our visual system is doing
an efficient and accurate encoding of the proximal stimulus (image input
to our visual system). Thus, highly non-linear models, such as deep neural
networks, may better explain human perception.

material recognition Recognizing materials and inferring their key
features by sight is invaluable for many tasks. Our experience suggests
that humans are able to correctly predict a wide variety of rough material
categories like textiles, stones or metals [82, 99, 84, 186, 3]. Humans are
also capable of identifying the materials in a photograph just by briefly
looking at them [280, 281] or of inferring their physical properties without
the need to touch them [90, 87, 205, 1, 209]. This ability is built from
experience, by actually confirming visual impressions with other senses.
However, even though a lot of work is devoted to understanding how to
recognize materials, how to quantify the individual contribution of each
visual and non-visual cue in our perception of materials remains an unsolved
open problem [9, 82, 88, 205]. For a comprehensive study on early material
recognition systems and latest advances, we refer to the reader to the work of
Fleming [83]. In this thesis (Chapter 5), we give a step towards understanding
how humans recognize materials by studying the joint influence of geometry
and illumination in our perception. We launch several user studies proposing
a comprehensive analysis of the results, explore how image statistics correlate
with human answers, and find a preliminary relationship between high-level
factors used by humans and low-dimensional spaces created by a deep neural
network.

influence of confounding factors Material perception is a com-
plex process that involves a large number of distinct dimensions [279, 230]
that, sometimes, are impossible to physically measure [135]. It depends
not only on the intrinsic properties of the material, but also on external
factors. Humans are capable of estimating the reflectance properties of a
surface [28, 228, 68] even when there is no information about its illumina-
tion [67, 85], yet we perform better under illuminations that match real-world
statistics [86]. We are not good perceiving the shape of an object in isola-
tion [238, 264], and if the curvature of a geometry is carefully tweaked, we
can modify our perception of the material it is made of [320], or of the
illumination in the scene [240]. Usually, in order to accurately perceive the
materials that surround us, humans rely on a combination of cues that in-
clude shape [320, 118, 267, 227, 216], illumination [347, 19, 32, 310, 128, 165],
motion [207, 63, 117, 312, 221, 262, 208], touch [334, 309], or the interaction
between some of them [172, 43, 275, 236]. This thesis continues taking steps
towards understanding the influence of confounding factors in the perception
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of material appearance. We start by exploring the joint influence of geometry
and illumination in our performance recognizing materials (Chapter 5); then,
we analyze the influence of motion in our perception of a set of material
attributes through several user studies (Chapter 6).

2.2 visual appearance modeling

Humans are visual creatures, as such, visual appearance and material appear-
ance are a core aspect, not only on how we understand the world, but also
on how we create digital content. Current pipelines to model appearance are
heterogeneous, and the data are machine-friendly but not human-friendly.
This creates a disconnection between the physical parameters used by those
pipelines, and the perceptual parameters that humans understand [3, 2, 81].
This chapter reviews the literature regarding visual appearance modeling,
discuss current datasets capturing real-world material appearance, present
approaches to circumvent the disconnection between physical parameters
and perceptual parameters, and review the literature to model appearance
similarity in iconography.

material datasets One core aspect to manipulate material appearance
is to have accurate computational representations in the form of datasets
that cover a wide spectrum of real-world appearances. Early image-based
material datasets include CURet [51], KTH-TIPS [120], or FMD [280]. Open-
Surfaces [22] includes over 20,000 real-world images, with surface properties
annotated via crowdsourcing. This dataset has served as a baseline to oth-
ers, such as the Materials in Context Database (MINC) [23], an order of
magnitude larger; SynBRDF [160], with 5,000 rendered materials randomly
sampled from OpenSurfaces; or MaxBRDF dataset [323], which includes
synthetic anisotropic materials. Also, there have been efforts on designing
common languages for the description of materials such as MDL (Material
Definition Language) [155] which can be rendered with the OptiX ray tracing
engine [242]. Databases with measured materials include MERL [211] for
isotropic materials, UTIA [79] for anisotropic ones, the Objects under Natural
Illumination Database [194], which includes calibrated HDR information, or
the database by Dupuy and Jakob which measures spectral reflectance [70].
For most of the proposed methods and frameworks in this thesis we have
chosen, as a starting point, the MERL dataset since it contains a wider variety
of isotropic materials, directly measured from the real-word, and it is still
being successfully used in many applications such as gamut mapping [299],
material editing [276, 297, 275], BRDF parameterization [292], or photometric
light source estimation [199]. In this thesis (Chapter 3), we also contribute to
that end by publicly releasing a dataset with wide variety of realistic scenes
under different illuminations, geometries, and materials.

low-dimensional spaces A large body of work has been devoted to an-
alyzing the relationships between the physical parameters defining material
appearance, and deriving low-dimensional perceptual embeddings [211, 331,
226, 276, 292, 78, 50]. These embeddings can be further used to derive mate-
rial similarity metrics, which are useful to determine if two materials convey
the same appearance, and thus benefit a large number of applications. Those
include metrics computed either directly over measured BRDFs [91, 223], in
image space [248, 224, 299], or in re-parametrizations of BRDF spaces based
on perceptual traits [246, 276]. Besides, low-dimensional spaces modeling
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material appearance are useful for particular applications such as BTF filter-
ing [142], understanding the motion of liquids [149], representing cloth [8],
material editing [276, 219], or manipulation of textural information [184].

deep-learning based methods Recent works have suggested that
material perception might be driven by complex non linear statistics, similar
to the ones extracted by neural networks [89, 295, 57]. Image patches have
shown to contain enough information for material recognition [273], and
several works have leveraged this to derive learning techniques for mate-
rial recognition tasks. Recent work has shown the extraordinary ability of
deep features to match human perception in the assessment of perceptual
similarity between two images [350]. Bell et al. [23] introduce a CNN-based
approach for local material recognition using a large annotated database,
while Schwartz and Nishino explicitly introduce global contextual cues [272].
Georgoulis et al. [102] use both an object’s image and its geometry to cre-
ate a full reflectance map, which is later used as an input to a four-class
coarse classifier (metal, paint, plastic or fabric). Deep neural networks
have been also successfully used for material editing in inverse rendering
problems [190, 212, 256, 180]. In this thesis, we draw inspiration from the suc-
cesses of the works mentioned above, and rely on deep learning frameworks
for measuring material similarity while correlating with human judgements
(Chapter 3), using siamese neural networks to measure icons similarity
(Chapter 4), creating a framework for intuitive editing of appearance from a
single-image in the problem of human relighting (Chapter 7), and developing
an intuitive method for image-based material editing (Chapter 8).

modeling icons appearance The visual appearance of icons plays a
key role in how we interact with graphical user interfaces in our everyday
life. The style and visual identity that is given by the artists when creating
them, plays a key role in the message they convey [317, 318, 132, 6]. However,
such message may not be easy to computationally model, in part, due
to the interaction with human perception. Previous works have focused
on generating semantically relevant icons to improve visualizations [277].
In particular, Setlur and Mackinlay [278] develop a method for mapping
categorical data to icons. They found out that users prefer stylistically similar
icons within a set, as opposed to automatic sets that might differ in look-
and-feel. Lewis et al. [185] studied how the perception of icons is affected by
spatial layouts, and present a shape grammar to generate visually distinctive
icons. More recently, the work of Liu et al. [193] proposes a semi-automatic
method to create icons from images according to a given style, while the
work of Bernstein and Li [26] describes a technique to make icons scale
independent. Computationally measuring the similarity between icons is
an interesting and complex problem with the potential of developing more
intuitive applications that would help professional workflows and novice
users alike. We investigate this problem in Chapter 4, where we propose an
image-based measure of icons similarity by taking into account both, their
style and their visual identity, and using deep learning methods.

measuring style and shape similarity Style similarity metrics have
been recently proposed for fonts [232], infographics [263], 3D models [200,
192], or interior designs [21]. The work of Garces et al. [94] uses a hand-
made feature vector to measure style similarity for clip arts. However,
since the feature descriptors were manually selected for that particular task,

18



2 .3 visual appearance editing

they do not account for additional high-level properties. In a follow-up
work, they find that shape is a property that people take into account when
comparing clip arts [95], however, it is not measured in their existing style
metric. Deep learning-based methods have recently also been used to fit
icons into a particular interface [353] or to learn personal styles [189]. To
measure shape similarity is a long-standing problem in computer graphics.
Bober [30] shows how to represent and match shape representations under
the MPEG-7 standard [285]. Osada et al. [239] propose several silhouette-
based descriptors that can be used for 2D and 3D shape retrieval. Other
shape descriptors have been proposed, including Hu-moments [133], shape
context [24], the use of Zernike moments [158], a pyramid of descriptors [167],
or Fourier descriptors [346]. Kleiman et al. [164] focused on 3D shape
similarity, using part-based models, while other works compare shapes using
single closed contours [176, 12]. In contrast to the works that rely on a feature-
based representation of the data, kernel methods aim to obtain directly the
similarity matrix for a fixed set of objects, thus, such approaches do not
generalize to objects outside the chosen set [110, 283]. The work of Laursen
et al. [74] proposes an embedding of a small fixed set of icons optimized for
comprehensibility and identifiability properties. Demiralp et al. [59] re-order
icon sets to maximize perceptual discriminability. Also, kernel methods
have been used to measure similarity and to propose content-based retrieval
methods [72, 332, 66, 333] The framework presented in Chapter 4 proposes
to automatically learn a distance metric measuring style and visual identity
in icons by training a deep siamese neural network.

2.3 visual appearance editing

Editing the visual appearance is a complex task since there is a disconnection
between physical parameters used to model appearance and the parameters
that our perception manipulates. We provide here a brief cross-section of
different material editing approaches, inverse rendering and image-based
rendering approaches, and discuss the human relighting problem.

brdf editing Several perceptually-based frameworks have been pro-
posed to provide users with more intuitive controls over parametric appear-
ance models [76, 247, 14]. Non-parametric models such as measured BRDFs
are harder to edit. One potential solution would be to fit the non-parametric
BRDFs to parametric models [298, 11, 27], use inverse shading trees [177],
rely on polynomial bases [25], or directly employing deep-learning tech-
niques [356]. Other authors have proposed links between human perception
and editing of non-parametric BRDFs through a set of intuitive percep-
tual traits [219, 276, 211]. A comprehensive review of appearance editing
methods can be found in the work of Schmidt et al. [269]. Recently, the
emergence of NeRF [215] allowing to capture and model a 3D scene from
several photographs taken at known locations, has enabled frameworks with
unprecedented levels of realism, where follow-up works also allow the ma-
terials to be edited [293, 348, 352]. However, these methods only provide a
new material definition that can later be used in a 3D scene, but do not allow
to modify the material directly in an existing image.

image-based editing Image-based material editing techniques allow
the user to directly alter the pixels in an image without manipulating an
underlying BRDF nor requiring to re-render a scene. The work of Khan
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et al. [156] exploits the fact that human vision is tolerant to many physical
inaccuracies to propose a material editing framework requiring a single
HDR image as input. Such approach was later extended to include global
illumination [115] or weathering effects [337]. Other methods are based
on frequency-domain analyses [33], visual goals [225], or use a light field
as input [20, 141]. Since geometry and illumination also play a key role
in the final appearance of the material, several works focused on explicitly
decomposing the image into material, illumination and geometry infor-
mation [17, 116, 341, 97], allowing to manipulate each of these properties
independently. This thesis presents a new method to manipulate material
appearance intuitively and in the wild, just from photographs (discussed in
Chapter 8), where we rely on a combination of human judgements and a
novel generative architecture allowing to produce realistic material edits.

inverse rendering methods The inverse rendering problem, re-
quires to obtain the shape, material, and illumination from a single im-
age. This is a highly ill-posed problem, with infinite solutions, classically
solved assuming that some information is known beforehand. Shape from
shading [252, 136] is one of the earliest methods, estimating shape from
shading under a known illumination. Other methods estimate shape rely-
ing on simple illumination models such as directional, point, or area light
sources [47, 233, 197], or environmental lighting encoded into spherical har-
monics [145]. Reflectance and illumination can be estimated from a known
convex shape [42], a shape with occluding contours [196], or just an approx-
imated geometry [157]. A similar line of research has focused on intrinsic
images [16, 338, 96, 97, 329], which aims to decompose a scene into its shading
and albedo components [175]. Recent techniques leverage deep learning
to predict illumination [130, 129, 98, 172], estimate specular reflectance and
illumination [101, 195], devise material reflectance metrics [57, 171], or per-
form intrinsic image decomposition [204, 188, 17]. Other line of work, relies
on complex hardware setups [48, 114, 351] to achieve this goals, however
such setups are not widely available. In this thesis, we approach the prob-
lem of human relighting in Chapter 7, where we draw inspiration from
inverse rendering and intrinsic images. Our framework estimates albedo
and shading from a single input image, however, we additionally decompose
shading into shape and illumination by developing a framework inspired by
precomputed radiance transfer (PRT) [253, 181, 291]. Our decomposition also
takes into account diffuse and specular material reflectance, thus producing
more realistic relighted results.

image-based rendering A classic application of image-based render-
ing (IBR) [284] allows to take several pictures of a subject from the same
viewpoint under different illuminations, and relight it using a weighted
linear combination of those images [54, 55]. More sophisticated approaches
optimize energy functions [183], work with layered decompositions [290],
or employ RGB-D cameras [125]. However, those techniques require a large
number of input images, as well as precise control over the lighting, making
them unfeasible for single-image, in-the-wild applications. Recent work
exploits the potential of implicit representations and Fourier mappings of
the input to learn high-quality 3D scene representations using one multi-
layer perceptron (MLP) per scene and several hundreds of images as the
input [215, 349, 31], although these methods do not generalize across scenes.
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The work of Wang et al. [326] addresses this by combining implicit models
with IBR to generate novel views without relighting.

human relighting Human relighting refers to the problem of changing
the appearance of a scene, with a human in it, by manipulating its illumi-
nation. Single-image human relighting approaches have been proposed for
faces [328]: Sengupta et al. [274] show how we can relight faces using convo-
lutional neural networks and spherical harmonics, later extended with more
complex model architectures [354], or by directly fitting encoder-decoder
architectures to light-stage portrait data [296, 222]. In this thesis (Chapter 7),
we devise a single-image in-the-wild method to intuitively perform full-body
human relighting using a UNet-like neural network [173]. Closer to the
proposed method is the work of Kanamori and Endo [148], performing full-
body relighting and assuming Lambertian materials. In contrast, we present
a framework that lifts their assumption of materials being Lambertian by
explicitly modeling the diffuse and specular reflectance in our data. We also
add a residual term to the image reconstruction equation that allows to better
model errors in the relighted image reconstruction.
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Part III

M E A S U R I N G A P P E A R A N C E S I M I L A R I T Y

The first half of this part introduces a framework to measure
similarity in the complex domain of material appearance. The
main contribution is the integration of human judgements within
a deep learning framework using a custom loss function. This,
in turn yields a framework whose similariy values agree with
the human notion of material appearance similarity. Second half
proposes a method to measure similarity in icons gathered from
online databases. The main contribution is the gathered dataset
together with the siamese deep learning architecture used to
directly measure similarity relying on semantic labels.





3M AT E R I A L A P P E A R A N C E S I M I L A R I T Y

This chapter introduces a model to measure the similarity in appearance between dif-
ferent materials, which correlates with human similarity judgements. We first create
a database of 9,000 rendered images depicting objects with varying materials, shape
and illumination. We then gather data on perceived similarity from crowdsourced
experiments; our analysis of over 114,840 answers suggests that indeed a shared
perception of appearance similarity exists. We feed this data to a deep learning
architecture with a novel loss function, which learns a feature space for materials
that correlates with such perceived appearance similarity. Our evaluation shows that
our model outperforms existing metrics. Last, we demonstrate several applications
enabled by our metric, including appearance-based search for material suggestions,
database visualization, clustering and summarization, and gamut mapping.

This work has been published in ACM Transactions on Graphics (TOG) and presented
at SIGGRAPH 2019 [171]. While I was the leading author (under the supervision of
Belén Masiá and Diego Gutiérrez); Ana Serrano, Sandra Malpica, and Elena Garces
provided invaluable help with developing additional analysis and applications, on
the manuscript text, and figures.

A follow up work analyzing in depth the role of objective and subjective measures
in material similarity learning was later presented as a peer-reviewed poster in
ACM SIGGRAPH 2020 Posters [57]. I was not the leading author in this work. My
contribution was setting up and training the deep learning networks with the different
configurations used in the analysis.

M. Lagunas, S. Malpica, A. Serrano, E. Garces, D. Gutierrez, & B. Masia
A Similarity Measure for Material Appearance

ACM Transactions on Graphics Vol. 38 (4), SIGGRAPH 2019

J. Delanoy, M. Lagunas, I. Galve, D. Gutierrez, A. Serrano, R. Fleming, & B. Masia
The Role of Objective and Subjective Measures in Material Similarity Learning

ACM SIGGRAPH 2020 Posters

3.1 introduction

Humans are able to recognize materials, compare their appearance, or even
infer many of their key properties effortlessly, just by briefly looking at them.
Many works propose classification techniques, although it seems clear that
labels do not suffice to capture the richness of our subjective experience with
real-world materials [83]. Unfortunately, the underlying perceptual process
of material recognition is complex, involving many distinct variables; such
process is not yet completely understood [9, 82, 205].

Given the large number of parameters involved in our perception of
materials, many works have focused on individual attributes (such as the
perception of gloss [246, 331], or translucency [105]), while others have
focused on particular applications like material synthesis [355], editing [276],
or filtering [142]. However, the fundamentally difficult problem of estab-
lishing a similarity measure for material appearance remains an open problem.
Material appearance can be defined as “the visual impression we have of a
material“ [65]; as such, it depends not only on the BRDF of the material, but
also on external factors like lighting or geometry, as well as human judge-
ment [82, 3]. This is different from the common notion of image similarity
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Figure 3.1: The cubes in the leftmost image have all been rendered with the same
aluminium material. Our similarity measure for material appearance
can be used to automatically generate alternative depictions of the same
scene, where the similarity of the materials varies in a controlled manner.
The next three images show results with materials randomly chosen by
progressively extending the search distance from the original aluminium,
from similar in appearance to farther away materials within the same
dataset.

(devoted to finding detectable differences between images, e.g., [327]), or
from similarity in BRDF space (which has been shown to correlate poorly
with human perception, e.g., [276]). Given the ubiquitous nature of photore-
alistic computer-generated imagery, and emerging fields like computational
materials, a similarity measure of material appearance could be valuable for
many applications.

Capturing a human notion of perceptual similarity in different contexts
has been an active area of research recently [94, 5, 201]. In this chapter
we develop a novel image-based material appearance similarity measure
derived from a learned feature space. This is challenging, given the subjective
nature of the task, and the interplay of confounding factors like geometry
or illumination in the final perception of appearance. Very recent work
suggests that perceptual similarity may be an emergent property, and that
deep learning features can be trained to learn a representation of the world
that correlates with perceptual judgements [350]. Inspired by this, we rely
on a combination of large amounts of images, crowdsourced data, and deep
learning. In particular, we create a diverse collection of 9,000 stimuli using
the measured, real-world materials in the MERL dataset [211], which covers a
wide variety of isotropic appearances, and a combination of different shapes
and environment maps. Using triplets of images, we gather information
through Mechanical Turk, where participants are asked which of two given
examples has a more similar appearance to a reference. Given our large
stimuli space, we employ an adaptive sampling scheme to keep the number
of triplets manageable. From this information, we learn a model of material
appearance similarity using a combined loss function that enforces learning
of the appearance similarity information collected from humans, and the
main features that describe a material in an image; this allows us to learn the
notion of material appearance similarity explained above, dependent on both
the visual impression of the material, and the actual physical properties of it.

To evaluate our model, we first confirm that humans do provide reliable
answers, suggesting a shared perception of material appearance similarity,
and further motivating our similarity measure. We then compare the per-1All the code, data,

and models are
available at:

webdiis.unizar.

es/~mlagunas/

publication/

material-similarity/

formance of our model against humans: Despite the difficulty of our goal,
our model performs on par with human judgements, yielding results better
aligned with human perception than current metrics. Last, we demonstrate
several applications that directly benefit from our metric, such as material
suggestions (see Figure 3.1), database visualization, clustering and summa-
rization, or gamut mapping. In addition to the 9,000 rendered images, our
database also includes surface normals, depth, transparency, and ambient oc-
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Ennis Grace Uffizi Glacier PisaDoge

Figure 3.2: All six environment maps used in the dataset and corresponding rendered
spheres with the black-phenolic material.

clusion maps for each one, while our collected data contains 114,840 answers;
we provide both, along with our pre-trained deep learning framework, in
order to help future studies on the perception of material appearance1.

3.2 materials dataset

3.2.1 Why a New Materials Dataset?

To obtain a meaningful similarity measure of material appearance we require
a large dataset with the following characteristics:

• Data for a wide variety of materials, shapes, and illumination condi-
tions.

• Samples featuring the same material rendered under different illumina-
tions and with different shapes.

• Materials represented by measured BRDFs, with reflectance data cap-
tured from real materials.

• Real-world illumination, as given by captured environment maps.

• A large number of samples, amenable to learning-based frameworks.

These characteristics enable renditions of complex, realistic appearances
and will be leveraged to train our model, explained in Section 3.4. To
our knowledge, none of the existing material datasets features all these
characteristics.

3.2.2 Description of the Dataset

In the following, we thoroughly describe the characteristics of our dataset,
including implementation details.

materials Our dataset includes all 100 materials from the MERL BRDF
database [211]. This database was chosen as starting point since it includes
real-world, measured reflectance functions covering a wide range of re-
flectance properties and types of materials, including paints, metals, fabrics,
or organic materials, among others.

illuminations We use six natural illumination environments, since they 2The HDR
illuminations are
gathered from:
http://gl.ict.

usc.edu/Data/

HighResProbes/

are favored by humans in material perception tasks [86]. They include a vari-
ety of scenes, ranging from indoor scenarios to urban or natural landscapes,
as high-quality HDR environment maps2.
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scenes Our database contains 13 different 3D models, with an additional
camera viewpoint for two of them, defining our 15 scenes. It includes widely
used 3D models, and objects that have been specifically designed for material
perception studies [118, 320]. The viewpoints have been chosen to cover a
wide range of features such as varying complexity, convexity, curvature, and
coverage of incoming and outgoing light directions. The 3D models feature
different complexities and come from various sources including:

• The Stanford 3D Scanning Repository3 (4 geometries and 5 views) .3Stanford 3D
repository:

http://graphics.

stanford.edu/

data/3Dscanrep/

• TurboSquid4 website (3 geometries and 4 views).

• Havran et al [118] perceptually motivated geometries (2 geometries
and 2 views).

• Vangorp et al [320] blob shape (1 geometry and 1 view).4TurboSquid website
with 3D models:
https://www.

turbosquid.com

• Blender’s mascot Suzzane (1 geometry and 1 view).

• Utah teapot (1 geometry and 1 view).

• Standard sphere (1 geometry and 1 view).

By combining the aforementioned materials (100), illumination conditions
(6), and scenes (15), we generate a total of 9,000 dataset samples using the
Mitsuba physically-based renderer [140] with Jonathan Dupuy’s library8,
which includes support for MERL BRDFs. For each one we provide: The
rendered HDR image, a corresponding LDR image5, along with depth,5All HDR images are

tone-mapped using
the algorithm by

Mantiuk et al. [206],
with the predefined

lcd office display, and
color saturation and

contrast enhancement
set to 1.

surface normals, alpha channel, and ambient occlusion maps. All the images
are rendered with a resolution of 896 × 896 pixels using path tracing with
different samples per pixel according to the geometry (between 512 and 2048)
to avoid visible artifacts. After rendering, we use a bilinear up-sampling on
the resulting image to obtain a final resolution of 1024 × 1024. While not all
these maps are used in the present work, we make them available with the
dataset should they be useful for future research. Figure 3.3 shows sample
images for all 15 scenes.

3.3 collecting appearance similarity information

We describe here our methodology to gather crowdsourced information
about the perception of material appearance.

stimuli We use 100 different stimuli, covering all 100 materials in the
dataset, rendered with the Ennis environment map. We choose the Havran-
2 scene, since its shape has been designed to maximize the information
relevant for material appearance judgements by optimizing the coverage of
incoming and outgoing light directions sampled [118]. Figure 3.4 shows
some examples.

participants A total of 603 participants took part in the test through the
Mechanical Turk (MTurk) platform, with an average age of 32, and 46.27%
female. Users were not aware of the purpose of the experiment.

procedure Our study deals with the perception of material appearance,
which may not be possible to represent in a linear scale; this advises against
ranking methods [152]. We thus gather data in the form of relative com-
parisons, following a 2AFC scheme; the subject is presented with a triplet
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3 .3 collecting appearance similarity information

sphere waterpot

Einstein-1Suzzane

Havran-2

Einstein-2

statue

teapot

zenith

dragon-1

Havran-3

dragon-2

bunny

Lucy

blob

Figure 3.3: Sample images of all 15 scenes with different materials and illumination
conditions. First row: pink-felt and Uffizi; second row: violet-acrylic and
Grace; third row: nickel and Pisa. The 3D models bunny, dragon, Lucy and
statue belong to The Stanford 3D Scanning Repository; waterpot (modelled
by gykservy), Suzzane (killzone75), Einstein (oliverlaric), and zenith (Kuh-
nIndustries) were obtained from TurboSquid.

Figure 3.4: Sample stimuli for our appearance similarity collection. They correspond
to the Havran-2 scene, with materials from the MERL database, rendered
with the Ennis environment map. In reading order: chrome, gold-metallic-
paint3, specular-green-phenolic, maroon-plastic, dark-blue-paint and light-brown-
fabric.

made up of one reference material, and two candidate materials, and their
task is to answer the question Which of these two candidates has a more simi-
lar appearance to the reference? by choosing one among the two candidates.
This approach has several additional advantages: it is easier for humans
than providing numerical distances [213, 271], while it reduces fatigue and
avoids the need to reconcile different scales of similarity among subjects [151].

However, given our 100 different stimuli, a naive 2AFC test would require
495,000 comparisons, which is intractable even if not all subjects see all
comparisons. To ensure robust statistics, we aim to obtain five answers for
each comparison, which would mean testing a total of 2,475,000 comparisons.
Instead, we use an iterative adaptive sampling scheme [303]: For any given
reference, each following triplet is chosen to maximize the information
gain, given the preceding responses (please refer to Section 3.3.1 for a more
detailed description of the method).
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Each test (HIT in MTurk terminology) consisted of 110 triplets. To minimize
worker unreliability [330], each HIT was preceded by a short training session
that included a few trial comparisons with obvious answers [258, 94]. In
addition, 10 control triplets were included in each HIT, testing repeated-trial
consistency within participants. We adopt a conservative approach and reject
participants with two or more different answers. In the end, we obtained
114,840 valid answers, yielding a participants’ consistency of 84.7%.

As a separate test, to validate how well our collected answers generalize
to other shapes and illuminations, we repeated the same comparisons, this
time with symmetric and asymmetric triplets chosen randomly from our
dataset, with the condition that they do not contain the Havran-2 shape nor
the Ennis illumination. For symmetric triplets, the three items in the triplet
differ only in the material properties, while in asymmetric triplets geometry
and lighting also vary. We launched 2,500 symmetric triplets, and found
that participants’ majority matched the previous responses with a 84.59%
rate. When we added the same number of asymmetric triplets to the test,
participants’ answers held with a 80% match rate.

3.3.1 Adaptive Sampling Scheme for the User Studies

In order to adaptively sample the comparisons to be used as queries in the
material appearance similarity study, we use an adaptive sampling algorithm
proposed by Tamuz et al. [303], which takes into account previously answered
queries in order to estimate the optimal pattern of triplets in the next iteration,
by computing the potential information gain. We perform 25 iterations of the
algorithm and in each iteration we sample 10 new pairs for every reference
(not taking into account the 10 control ones), getting a total of 1000 triplets
split in 10 HITs that are each answered by 5 users. After this process, the mean
information gain per iteration is less than 10−5, confirming the convergence
of the sampling scheme. This scheme allows us to drastically reduce the
number of required comparisons, while providing a good approximation to
sampling the full set of triplets.

This method works iterating over two steps:

• Fit the kernel K using the answered triplets.

• Find the comparison (a, b) for each reference r that yields the largest
information gain.

This adaptive sampling scheme measures how well a triplet (r, a, b) ∈ T
is modeled in terms of a probability, where T is the set of all triplets. K
is defined as a kernel such that K = XXT , where kra is the element of K
in the row r and column a, and X is the low-dimensional embedding the
optimization aims to find. The probability of a triplet (r, a, b) being well
modeled is described as follows:

prab =
krr + kaa − 2kra + µ

(krr + kaa − 2kra) + (krr + kbb − 2krb) + 2µ
, (3.1)

where µ is usually a small value used as a regularizer (in our case µ = 0.05).
A higher value of prab indicates that a particular triplet is less well modeled.
The algorithm tries to minimize the empirical log-loss of that probability:

min
K

∑
r,a,b∈T

log(prab), subject to ∀i kii = 1 and K ⪰ 0. (3.2)
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Once the optimization in Equation 3.2 converges, the kernel K can be used
to obtain the materials that need more samples in order to be well modeled.

To obtain the pair of materials that yields the greatest information gain for
any reference image a posterior distribution τ(r) for the answered triplets A
is computed as follows:

τ(r) ∝ π(r) ∏
(r,a,b)∈T

prab, (3.3)

where π(r) is a prior distribution over the reference images, defined as a
uniform distribution. The probability that users will rate a as more similar
to any candidate r than to b can be expressed as:

p ∝
∫

r

krr + kaa − 2kra

(krr + kaa − 2kra) + (krr + kbb − 2krb)
τ(r)dr, (3.4)

if the user rates a more similar to r then, it has a posterior distribution τa
(note τb can be computed similarly):

τa = τ(r)
krr + kaa − 2kra

(krr + kaa − 2kra) + (krr + kbb − 2krb)
. (3.5)

Finally, for every possible triplet the information gain can be computed
as the difference between the information of the answered triplets and the
possible triplets that can be sampled such that:

IG = H(τ)− pH(τa)− (1 − p)H(τb), (3.6)

where H is an entropy measure H(τ) = −∑ τ log τ.
Since in our user-study each HIT is answered by 5 users and the model

assumes single answers, we consider the opinion of the majority as the
answer for each triplet.

3.4 learning perceived similarity

This section describes our approach to learn perceived similarity for material
appearance. Given an input image ψ, our model provides a feature vector
f (ψ) that transforms the input image into a feature space well aligned with
human perception.

We use the ResNet architecture [122], based on its generalization capa-
bilities and its proven performance on image-related tasks. The novelty of
this architecture is a residual block meant for learning a residual mapping
between the layers, instead of a direct mapping, which enables training
very deep networks (hundreds of layers) with outstanding performance. For
training we use image data from our materials dataset (Section 3.2), together
with human data on perceived similarity (Section 3.3). We first describe our
combined loss function, then our training procedure.

3.4.1 Loss Function

We train our model using a loss function consisting of two terms, equally
weighted:

L = LTL + LP (3.7)

The two terms represent a perceptual triplet loss, and a similarity term,
respectively. The terms aim at learning appearance similarity from the
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participants’ answers, while extracting the main features defining the material
depicted in an image. In the following, we describe these terms and their
contribution.

3.4.1.1 Triplet Loss Term LTL

This term allows to introduce the collected MTurk information on appearance
similarity. Let A = {(ri, ai, bi)} be the set of answered relative comparisons,
where r is the reference image, a is the candidate image chosen by the
majority of users as being more similar to r, and b the other candidate; i
indexes over all the relative comparisons. Intuitively, r and a should be closer
together in the learned feature space than r and b. It is not feasible to collect
user answers for all possible comparisons (n different images would lead to
n(n−1

2 ) tests); however, as we have shown in Section 3.3, the collected answers
for a triplet (r, a, b) involving materials mr, ma and mb generalize well to
other combinations of shape and illumination from our dataset involving
the same set of materials. We thus define AM = {(mr

i , ma
i , mb

i )} as the set
of relative comparisons with collected answers (ma represents the material
chosen by the majority of participants). We then formulate the first term as a
triplet loss [45, 270, 169]:

LTL =
1

|BA| ∑
(r,a,b)∈BA

[
|| f (r)− f (a)||22 − || f (r)− f (b)||22 + µ

]
+

(3.8)

where f (ψ) is the feature vector of image ψ, and the set BA is defined as:

BA =
[
(r, a, b) | (mr, ma, mb) ∈ AM ∧ (r, a, b) ∈ B

]
(3.9)

with B the current training batch. In Equation 3.8, µ represents the margin,
which accounts for how much we aim to separate the samples in the feature
space.

3.4.1.2 Similarity Term LP

We introduce a second loss term that maximizes the log-likelihood of the
model choosing the same material as humans. We define this probability pra
(and conversely prb) as a quotient between similarity values sra and srb:

pra =
sra

srb + sra
, prb =

srb
srb + sra

(3.10)

These similarities are derived from the distances between r, a and b in the
feature space, where a similarity value of 1 means perfect similarity and a
value of 0 accounts for total dissimilarity:

sra =
1

1 + dra
, srb =

1
1 + drb

, where (3.11)

dra = || f (r)− f (a)||22 , drb = || f (r)− f (b)||22 (3.12)

With this, we can formulate the similarity term as:

LP = − 1
|BA| ∑

(r,a,b)∈BA

log pra (3.13)
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Figure 3.5: Scheme of the training process, using both image data from our material
dataset, and human data of perceived similarity. We train our model so
that, for an input image ψ, it yields a 128-dimensional feature vector f (ψ).

3.4.2 Training Details

For training, we remove the Havran-2 and Havran-3 scenes from the dataset,
leading to 7,800 images (13 (scenes) × 6 (env. maps) × 100 (materials)),
augmented to 39,000 using crops, flips, and rotations. These 39,000 images,
together with the collected MTurk answers, constitute our training data. We
use the corrected Adam optimization [255, 161] with a learning rate that starts
at 10−3 to train the network. We train for 80 epochs and the learning rate
is reduced by a factor of 10 every 20 epochs. For initialization, we use the
weights of the pre-trained model [122] on ImageNet [60, 260]. To adapt the
network to our loss function, we remove the last layer of the model and
introduce a fully-connected (fc) layer that outputs a 128-dimensional feature
vector f (ψ). We use a margin µ = 0.3 for the triplet loss term LTL. Figure 3.5
shows a scheme of the training procedure.

3.5 evaluation

We evaluate our model on the set of images of the material dataset not
used during training. We employ the accuracy metric, which represents the
percentage of triplet answers correctly predicted by our model. It can be
computed as raw, considering each of the five answers independently as
the correct one, or majority, considering the majority opinion as correct [331,
94]. Using our MTurk data from Section 3.3, the results are 73.10% and
77.53% respectively for human observers, indicating a significant agreement
across subjects. Our model performs better than human accuracy, with
73.97% and 80.69% respectively. In other words, our model predicts the
majority’s perception of similarity almost 81% of the time. We include an
oracle predictor in Table 3.1, which has access to all the human answers and
returns the majority opinion; note that its raw accuracy is not 100 due to
human disagreement. Figure 3.6 shows examples from our 26,000 queries
where our model agrees with the majority response, while we discuss failure
cases later in this section. More examples of queries and our model’s answers
are included in Appendix A, Section A.2.

3.5.1 Comparison with Other Metrics

We compare the performance of our model to six different metrics used in
the literature for material modeling and image similarity: The three common
metrics analyzed by Fores and colleagues [91], the perceptually-based metrics
by Sun et al. [299] and Pereira et al. [248], and SSIM [327], a well-known
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3 2 5 0

5 0 5 0

Figure 3.6: Examples from our 26,000 queries (reference, plus the two candidates)
where our model agrees with the majority response (this is the case
almost 81% of the time). The numbers indicate the number of votes each
image received from the participants. More examples are included in
Appendix A, Section A.3.

image similarity metric. We analyze again accuracy, and we additionally
analyze perplexity, which is a standard measure of how well a probability
model predicts a sample, taking into account the uncertainty in the model.
Perplexity Q is given by:

Q = 2−
1
|A| ∑Ω log2 pra (3.14)

where Ω = (r, a) ∈ A, |A| is the number of collected answers, and pra is
the probability of a being similar to r (Section 3.4.1). Perplexity gives higher
weight where the model yields higher confidence; its value will be 1 for a
model that gives perfect predictions, 2 for a model with total uncertainty
(random), and higher than 2 for a model that gives wrong predictions. As
Table 3.1 shows, our model captures the human perception of appearance
similarity significantly better, as indicated by the higher accuracy and lower
perplexity values. Note that perplexity cannot be computed for humans nor
the oracle, since they are not probability distributions.

Additionally, we compute the mean error between distances derived from
human responses and our model’s predictions, across all possible material
pair combinations from the MERL dataset. To obtain the derived distances
from the collected human responses, we use t-Distributed Stochastic Triplet
Embedding (tSTE) [316], which builds an n-dimensional embedding that
aims to correctly represent participants’ answers. We use a value of α = 5
(degrees of freedom of the Student-t kernel), which correctly models 87.36%
of the participants’ answers. We additionally compute the mean error for
the six other metrics. As shown in Figure 3.7, our metric yields the smallest
error. Error bars correspond to a 95% confidence interval.

3.5.2 Ablation Study

We evaluate the contribution of each term in our loss function to the overall
performance via a series of ablation experiments (see Table 3.2). We first
evaluate performance using only one of the two terms (LTL and LP) in
isolation. We also analyze the result of incorporating two additional loss
terms, which could in principle apply to our problem: A cross-entropy term
LCE, and a batch-mining triplet loss term LBTL. The former aims at learning
a soft classification task by penalizing samples which do not belong to the

34



3 .5 evaluation

Evaluation of our model

Metric
Accuracy Perplexity

Raw Majority Raw Majority

Humans 73.10 77.53 - -

Oracle 83.79 100.0 - -

RMS 61.63 64.72 3.61 3.13

RMS-cos 61.60 64.67 3.86 3.33

Cube-root 63.71 67.40 1.96 1.86

L2-lab 63.76 67.21 2.16 2.07

L4-lab 60.60 62.93 15.36 11.66

SSIM 62.35 64.74 2.02 1.94

Our model 73.97 80.69 1.74 1.55

Table 3.1: Accuracy and perplexity of our model compared to human performance,
an oracle (which always returns the majority opinion), and six other metrics
from the literature: RMS, RMS-cos, Cube-root [91], L2-lab [299], L4-lab [248]
and SSIM [327]. For accuracy, higher values are better, while for perplexity
lower are better.

same class [302], while the latter has been proposed in combination with
the cross-entropy term to improve the model’s generalization capabilities
and accuracy [93] (more details about these two terms can be found in the
appendix). Last, we analyze performance using only these two terms (LCE
and LBTL), without incorporating participants’ perceptual data. As Table 3.2
shows, none of these alternatives outperforms our proposed loss function.
Although the single-term LP loss function yields higher accuracy, it also
outputs higher perplexity values; moreover, as Figure 3.7 shows, the mean
error is much higher, meaning that it does not capture the notion of similarity
as well as our model.

3.5.3 Alternative Networks

We have tested two alternative architectures, VGG [287], which stacks convo-
lutions with non-linearities; and DenseNet [134], which introduces concate-
nations between different layers. Both models have been trained using our
loss function. As shown in Table 3.2, both yield inferior results compared
to our model. DenseNet has a low number of learned parameters, insuf-
ficient to capture the data distribution, hampering convergence. VGG has
a larger number of parameters; however, the residual mapping learned by
the residual blocks in the architecture of our model yields the best overall
performance.

3.5.4 Results by Category

We additionally divide the materials into eight categories: acrylics, fabrics,
metals, organics, paints, phenolics, plastics, and other, and analyze raw and ma-
jority accuracy in each. We can see in Table 3.3 how our model is reasonably
able to predict human perception also within each category. For instance,
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Figure 3.7: Left: Mean error for different metrics (each normalized by its maximum
value) with respect to distances derived from human responses, across
all possible pair combinations from the MERL dataset (the LTL and LP
columns refer to the ablation studies in Table 3.2; please refer to the
main text). Error bars correspond to a 95% confidence interval. Right:
Representative example of the two most similar materials to a given
reference, according to (from top to bottom): Our model, and the two
perceptually-based metrics L2-lab [299], and L4-lab [248]. Our model
yields less error, and captures the notion of appearance similarity better.

Figure 3.8: Two examples where humans’ majority disagrees with our metric. For
both, humans agreed that the middle stimulus is perceptually closer to
the reference on the left, while our metric scores the right stimuli as more
similar.

although the numbers are relatively consistent across all the categories, hu-
mans perform on average slightly worse for phenolics or acrylics, and better
for fabrics; our metric mimics such behavior. The only significant difference
occurs within the organics category, where our metric performs worse than
humans. This may be due to the combination of a low number of material
samples and a large variety of appearances within such category, which may
hamper the learning process.

3.5.5 Failure Cases

Being on par with human accuracy means that our similarity measure dis-
agrees with the MTurk majority 19.31% of the time. Figure 3.8 shows two
examples where humans were consistent in choosing one stimuli as closer
to the reference (5 votes out of 5), yet our metric predicts that the second
one is more similar. In the leftmost example, the softness of shadows may
have been a deciding factor for humans. In the rightmost example, humans
may have been overly influenced by color, whilst our metric has factored
in the presence of strong highlights. These examples are interesting since
they illustrate that neither color nor reflectance are persistently the dominant
factors when humans judge appearance similarity between materials.
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Ablation study and alternative networks

Model
Accuracy Perplexity

Raw Majority Raw Majority

LTL 69.32 74.12 1.89 1.73

LP 75.22 82.31 3.16 2.13

LTL + LP + LCE 71.82 77.53 1.76 1.66

LTL + LP + LCE + LBTL 71.78 77.76 1.76 1.67

LCE + LBTL 56.88 58.44 1.96 1.93

VGG 70.70 76.40 2.25 1.89

DenseNet 60.90 63.49 2.66 2.46

Our model 73.97 80.69 1.74 1.55

Table 3.2: Accuracy and perplexity for other loss functions, as well as for two alterna-
tive architectures (VGG and DenseNet).

3.6 applications

We illustrate here several applications directly enabled by our similarity
measure.

3.6.1 Material Suggestions

Assigning materials to a complex scene is a laborious process [355, 44]. We
can leverage the fact that the distances in our learned feature space corre-
late with human perception of similarity to provide controllable material
suggestions. The artist provides the system with a reference material, and
the system delivers perceptually similar (or farther away) materials in the
available dataset, thus creating a controlled amount of variety without the
burden of manually selecting each material. Figure 3.1 illustrates this, where
the search distance is progressively extended from a chosen reference, and
the materials are then assigned randomly to each cube. Suggestions need
not be automatically assigned to the models in the scene, but may also
serve as a palette for the artist to choose from, facilitating browsing and
navigation through material databases. Figure 3.9 shows two MERL samples
used as queries, along with returned suggestions from the Extended MERL
dataset [276]. The figure shows results at close, intermediate, and far dis-
tances from the query. Additional examples can be seen in Figure 3.10, and
in Appendix A.3.

3.6.2 Visualizing Material Datasets

The feature space computed by our model can be used to visualize material
datasets in a meaningful way, using dimensionality reduction techniques.
We illustrate this using UMAP (Uniform Manifold Approximation and Pro-
jection [214]), which helps visualization by preserving the global structure of
the data. Figure 3.11 shows two results for the MERL dataset, using images
not included in the training set. On the left, we can observe a clear gradient
in reflectance, increasing from left to right, with color as a secondary, softer
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Analysis per material category

Category Materials Answers
Humans Our model Oracle

Raw Majority Raw Majority Raw

Acrylics 4 4719 67.27 70.69 67.57 74.18 79.89

Fabrics 14 16019 79.65 83.70 83.03 90.44 87.87

Metals 26 32337 74.20 78.90 75.63 83.10 84.54

Organics 7 8370 69.28 73.08 60.46 62.43 81.28

Paints 14 15101 74.22 78.85 75.22 81.84 84.61

Phenolics 12 13025 66.49 70.53 67.62 74.36 79.72

Plastics 11 12031 70.53 74.70 69.25 74.06 82.05

Other 12 13198 74.80 79.38 78.21 86.11 84.89

Total 100 114800 73.10 77.53 73.97 80.69 83.79

Table 3.3: Statistics per category. From left to right: Category, number of materials in
each category, number of collected answers, humans’ accuracy (raw and
majority), accuracy of our model, and oracle raw accuracy.

Figure 3.9: Two examples of material suggestions using our model. Queries from
MERL (violet frame), and returned results for perceptually close, interme-
diate, and far away materials from the Extended MERL dataset.

grouping factor. The right image shows a similar visualization using only
three categories: metals, fabrics, and phenolics.

3.6.3 Database Clustering

For unlabeled datasets like Extended MERL, our feature space allows to
obtain clusters of perceptually similar materials To further analyze the clus-
tering enabled by our perceptual feature space, we rely on the Hopkins
statistic, which estimates randomness in a data set [13]. A value of 0.5
indicates a completely random distribution, lower values suggest regularly-
spaced data, and higher values (up to a maximum of 1) reveal the presence of
clusters. The Hopkins statistic6 computed over our 128-dimensional feature6The Hopkins

statistic is an
averaged value over
100 iterations since

its computation
involves random

sampling of the
elements in the

dataset.

vectors for the Extended MERL dataset yields a value of 0.9585, suggesting
that meaningful clusters exist in our learned feature space (Figure 3.13 shows
three representativve clusters using the Extended MERL database). For
comparison purposes, using only metals in MERL the Hopkins statistic drops
to 0.6935, since their visual features are less varied within that category. Fig-
ure 3.12 shows an example of material suggestions leveraging our perceptual
clusters in unlabeled datatsets.
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Figure 3.10: Additional material suggestion results. Queries (violet frame) and results
for the closest materials in the Extended MERL dataset.

Metals

Phenolics

Fabrics

Figure 3.11: Visualization of the MERL dataset in a 2D space based on the feature
vectors provided by our model, using UMAP [214]. Left: The entire
MERL dataset. Right: Materials from three different categories (metals,
fabrics, and phenolics).

3.6.4 Database Summarization

Perceptually meaningful clustering leads in turn to the possibility of database
summarization. We can estimate the appropriate number of clusters using
the elbow method, taking the number of clusters that explains the 95% of the
variance in our feature vectors. In the 400-sample Extended MERL dataset,
this results in seven clusters. Taking the closest material to the centroid for
each one leads to a seven-sample database summarization that represents
the variety of material appearances in the dataset (Figure 3.14).

3.6.5 Gamut Mapping

In general, our model can be used for tasks that involve minimizing a distance.
This is the case for instance of gamut mapping, where the goal is to bring an
out-of-gamut material into the available gamut of a different medium, while
preserving its visual appearance; this is a common problem with current
printing technology, or in the emerging field of computational materials. We
illustrate the effectiveness of our technique in the former. Gamut mapping
can be formulated as a minimization on image space [248, 299]. We can use
our feature vector f (ψ) to minimize the perceptual distance between two
images as

minw|| f (o)− f (g ∗ w)||22, (3.15)

where o is the out-of-gamut image, and g ∗ w represents the image in the
printer’s gamut, defined as a linear combination of inks g [210]). Figure 3.15

shows some examples.
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Figure 3.12: Material suggestions using our perceptual database clustering. The
images show random materials assigned from three different clusters
of varying appearance. The robot model (cKalten) was obtained from
TurboSquid.

Figure 3.13: Representative samples of three clusters on the Extended MERL database.
The Hopkins statistic on our feature space confirms that our similarity
metric creates perceptually-meaningful clusters of materials.

3.7 objective and subjective measures

The deep learning model presented in Section 3.4 is shown to outperform
existing objective metrics in reproducing human assessment of material
similarity, presumably thanks to (i) the subjective measures used during the
training, as well as (ii) the ability of the model to learn deep features. It has
been shown that deep learning features can lead to a representation that
correlates with perceptual judgements [350]. Consequently, we consider here
to what extent each of the two characteristics above contribute to its success,
and whether subjective measures are actually needed.

We train two additional networks: a classification network (trained to clas-
sify each image given the represented material), a human similarity network
(original network described in Section 3.4) and a BRDF similarity network
(analogous to the latter but trained to mimic the Cube root cosine weighted
BRDF metric [91]).

We compute Representation Dissimilarity Matrices (RDMs) between a 10%
random subset of the training images. The dissimilarity is measured as the
l2 norm between normalized feature vectors. By organizing these matrices
according to various properties over the images, we can understand how the
space is organized and which are the properties that are best captured by the
network. We used image properties (shape and illumination) and material
properties (color of the material and reflectance properties).
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Figure 3.14: Example of database summarization for the Extended MERL dataset.
These seven samples represent the variety of material appearances in the
dataset.

Figure 3.15: Our similarity metric can be used for gamut mapping applications, by
minimizing the perceptual distance of our feature vectors. Each pair
shows the groundtruth (left), and our in-gamut result (right).

3.7.1 Analysis

analysis of rdms In Figure 3.16, we show the RDMs organized by the
reflectance properties of the materials. The classification network creates
strong correlations only between images showing the same material but does
not create relationships between ones with similar reflectance. Although
classification networks have been used as a reference for perception metrics
in recent works [350], we show here that the resulting feature space does not
align with material perception.

On the other side, the human similarity network strongly correlates materi-
als that have a similar reflectance. We see a clear distinction between metallic
and non metallic materials and big blocks for the completely diffuse materi-
als (top-left block) and highly specular plastics (bottom-right blocks in the
non-metallic materials). This shows that the network learned to distinguish
between different reflectance properties in a way that correlates with human
perception.

The RDM of the BRDF similarity network exhibits a less clear structure
and reveals an unevenly distributed space. Diffuse materials appear to be
in a small cluster in the space but all other materials are spread out with a
majority of large distances. Notably, the network does not make any clear
separation between metallic and non metallic materials, but seems to cluster
materials with a similar glossiness (very glossy plastics and very glossy
metals).

agreement with human perception We measure the agreement of
the distances in feature space against human judgements in the same way as
explained in Section 3.5, both for color and for gray-scale images. Although
color seems to play a minor role for the two networks trained on material
similarity, that is not the case for the classification network where accuracy
increases significantly with gray-scale images (59% vs. 68% agreement).
This network thus seems to use colors in a way that human did not use
when making their judgement. Notably, the BRDF similarity network (80%
agreement) yields very similar results to the human similarity network (82%
agreement). In Section 3.5, it was shown that using the BRDF metric, by itself,
aligns only 67% of the time with human judgements. However, the network
trained with this metric creates a space that reflects human judgement similar
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Figure 3.16: The RDMs are organized by reflectance for the three networks. The x-
and y-axis are organized by surface reflectance properties of increasing
glossiness: starting with diffuse materials to very glossy plastics, and
following with metals. The separation between metallic and non metallic
materials is depicted by the dotted black line.

to the one trained to directly mimic human perception. This suggests that
the structure of the deep network leads to a representation that aligns well
with human perception, as soon as the network is fed with a metric that
sufficiently represents human judgement.

3.8 discussion

We have presented and validated a model of material appearance similarity
that correlates with the human perception of similarity. Our results suggest
that a shared perception of material appearance does exist, and we have
shown a number of applications using our metric. Nevertheless, material
perception poses many challenges; as such there are many exciting topics
not fully investigated in this chapter. Several factors come into play that
influence material appearance, i.e., the visual impression of a material, in
a highly complex manner; fully identifying them and understanding their
complex interactions is an open, fundamental problem. As a consequence
of these interactions, the same material (e.g., plastic) may have very diverse
visual appearances, whereas two samples of the same material may look
very different under different illumination conditions [320, 86]. In aiming
for material appearance similarity, we aim for a material similarity metric
that can predict human judgements. There is a distinction, common in fields
like psychology or vision science, between the distal stimulus—the physical
properties of the material—, and the proximal stimulus—the image that is the
input to perception—. The key observation here is that human perceptual
judgements usually lie between these two, and our training framework
and loss function are designed to take both into account. We combine
the information about the physical properties of the material contained in
the images, by having the same material under different geometries and
illuminations, with the human answers on appearance similarity. In other
words, a pure image similarity metric would not be able to generalize across
shape, lighting or color, while a BRDF-based metric would be unable to
predict human similarity judgements.

We do not attempt to identify nor classify materials (Figure 3.17). Our
loss function could, however, incorporate additional terms (such as the cross-
entropy and batch-mining triplet loss term discussed in the appendix) to
help with classification tasks. We have carried out some tests and found
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Figure 3.17: In the feature space defined by our model, the middle image (chrome) is
closer in appearance to the reference (brass) than the image on the right
(brass). The insets show the environment maps used. Our model is driven
by appearance similarity, and does not attempt to classify materials.

Figure 3.18: Results using highly heterogeneous materials from the FMD dataset. We
show the three closest results returned by our model, from the reference
materials highlighted in violet. Note that the search was performed
across all three categories shown, not within each category.

anecdotical evidence of this, but a thorough analysis requires a separate
study not covered in this chapter.

Despite having trained our model on isotropic materials, we have found
that it may also yield reasonable results with higher-dimensional inputs. Fig-
ure 3.18 shows three examples from the Flickr Material Database (FMD) [280],
which contains captured images of highly heterogeneous materials. We have
gathered all the materials from the fabrics, metals, and plastics categories in the
database; taking one reference from each, we show the three closest results
returned by our model, using an L2 norm distance in feature space. Images
were resized to match the model’s input size, with no further preprocessing.
Note that the search was not performed within each category but across all
three, yet our model successfully finds similar materials for each reference.
This is a remarkable, promising result; however, a more comprehensive
analysis of in-the-wild, heterogeneous materials is out of the scope of this
chapter.

We have also tested the performance of our model on grayscale images.
In this case, we have repeated the evaluation conducted in Table 3.1 for our
model, using grayscale counterparts of the images. Despite the removal
of color information, we obtain results similar to those of our model on
color images: A raw accuracy of 72.55 (vs 73.97 on color images), a majority
accuracy of 78.64 (vs 80.69), a raw perplexity of 1.82 (vs 1.74), and a majority
perplexity of 1.67 (vs 1.55). This further enforces the idea that we learn a
measure of appearance similarity, and not image similarity.
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To collect similarity data for material appearance, we have followed an
adaptive sampling scheme [303]; following a different sampling strategy
may translate into additional discriminative power and further improve
our results. Our model could potentially be used as a feature extractor, or
as a baseline for transfer-learning [282, 340] in other material perception
tasks. A larger database could translate into an improvement of our model’s
predictions; upcoming databases of complex measured materials (e.g., Dupuy
et al. [70]) could be used to expand our training data and lead to a richer and
more accurate analysis of appearance. Our methodology for data collection
and model training could be useful in these cases. Similarly, upcoming
network architectures that may outperform our ResNet choice could be
adopted within our framework. Finding hand-engineered features could also
be an option and may increase interpretability, but it could also introduce
bias in the estimation.

In addition to the applications we have shown, we hope that our work
can inspire additional research and different applications. For instance, our
model could be of use for designing computational fabrication techniques
that take into account perceived appearance. It could also be used as a
distance metric for fitting measured BRDFs to analytical models, or even to
derive new parametric models that better convey the appearance of real world
materials. We have made our data available for further experimentation, in
order to facilitate the exploration of all these possibilities.
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4I C O N S A P P E A R A N C E S I M I L A R I T Y

Selecting an optimal set of icons is a crucial step in the pipeline of visual design. It
helps to structure and navigate through content, however, designing icons sets is
usually a difficult task for which expert knowledge is required. To ease the process of
icon set selection to the users, this chapter introduces a similarity metric which cap-
tures the properties of style and visual identity. We train a Siamese Neural Network
with an on-line dataset of icons organized in visually coherent collections that are
used to adaptively sample training data and optimize the training process. As the
dataset contains noise, we further collect human-rated information on the perception
of icons’ similarity which will be used for evaluating the proposed model. We show-
case several applications based on searches, kernel visualizations, and optimized set
proposals that could be helpful while exploring large collections of icons.

This work was published in Multimedia Tools and Applications [170]. While I was
the leading author in this project, Elena Garces and Diego Gutierrez helped by
supervising my work, giving invaluable feedback, and on the manuscript text and
figures.

M. Lagunas, E. Garces, & D. Gutierrez
Learning Icons Appearance Similarity

Multimedia Tools and Applications, Vol 78 (8), 2019

4.1 introduction

Visual communication is one of the most important ways to share and
transmit information [203, 202]. In the same way as words are used for
verbal communication, symbols or icons are the elements used to convey
information in a universal and ubiquitous language [6, 131]. Icons are
key elements to structure visual content and make it more appealing and
comprehensible. Thus, finding the optimal set of icons is a very delicate task
usually done by expert designers which involves semantic, aesthetic, and
usability criteria. Recent works aim at automatizing this task and make it 7Explanation of

Google’s design
language:
https://material.

google.com/

more accessible to the general public [18, 277, 278, 217], either by providing
a unified icon representation and rules, such as Google Materials7, or with
online datasets such as The Noun Project8 with more than one million
elements. While these datasets are undoubtedly useful, they can be hard to
explore due to their magnitude. 8Icons database The

Noun Project:
https:

//thenounproject.

com/

The following properties are desirable for an icon set to be effective:
first, being appropriate for the meaning -usually, the icon’s designer provide
semantic labels. Second, being visually appealing by means of a coherent style
and a carefully defined visual identity [278]. As seen in the literature [6] [15],
we define style as the set of pictorial features in the icons such as stroke, fill,
or curvature; and visual identity as the property that makes a set of icons
visually identifiable and unique, it is a higher-level property usually linked
to the shape of the object. Previous works have studied style in fonts [232],
clip art [94], or infographics [263]. Although the definition of style for these
domains shares certain properties with icons style, e.g. strokes, fills, or corner
smoothness; icons have additional characteristics that make them unique
and visually identifiable, and these are not taken into account in the existing
metrics. For example, in Figure 4.1, the collections notebooks and bags have a
different visual identity while their pictorial style can be considered similar.
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Figure 4.1: Example of six different collections of the dataset. Style and visual identity
are preserved for each collection. From left to right, we see the collections
labeled as: notebook, bags, t-shirt, circle-arrow, monitor, and label.

Note that each icon also has a unique semantic meaning independent of the
collection’s name.

On the other hand, the problem of choosing optimal icon sets is a recent
topic of research. Previous works [59] [74] have proposed perceptual kernels
for predefined icon sets based on crowdsourced data. These techniques learn
directly a similarity matrix (or kernel) strictly for the icon selection. As they
do not find a new low-level feature space for each icon, these techniques are
not able to generalize outside the initial sample space of ten or twenty icons.

In this chapter, we present a learning-based similarity metric that cap-
tures the properties of style and visual identity for iconography. Our main
contributions are:

• We present an icon dataset labeled by designers where each collection
shares a coherent style and visual identity.

• We learn icons’ appearance similarity using a Siamese Neural Network
with a triplet loss function and adaptive sampling trained from our
weakly-labeled dataset and evaluated with human ratings.

• We propose several applications including search by similarity and a
method to create icon sets optimized for style and visual identity in
order to help users on user-interface design tasks.

• We collect annotated ratings on the perception of appearance similarity
for iconography.

We greedily gather an icon dataset from the Noun Project online database.
Since the semantics of each icon is highly attached to the application, we
assume that each icon is labeled with a keyword that represents its concept
properly. The icons in this dataset are organized in collections, which share
a style and have a particular visual identity (see Figure 4.1). As previous
methods do not fully consider the pictorial properties of icons, we use the
collected dataset to train a new Siamese Neuronal Network by adaptively
sampling meaningful triplets of relative comparisons. However, as the
labeling of the collections is very noisy, -there is no unified and homogeneous
label set that we can completely trust- we need to gather new reliable data for
testing the model. We numerically evaluate the performance of our distance
metric on this test data, and compare its performance to existing similarity
metrics. Finally, we propose an application to optimize icon sets for the
properties of style and visual identity that can be used as a tool to help
users while designing graphical interfaces. To validate the method we launch
a crowdsourced survey to a group of 25 human-raters with experience in
Computer Graphics or Graphic Design. Users reported that our method
returns a set of icons sharing a representative appearance 75.25% of the times,
while random icon sets share a representative appearance 29% of the times.
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(a) (b) (c)

Figure 4.2: Examples of similarity between icons. (a) Icons with similar style and
visual identity. Note that both icons have rounded shapes and medium-
thick lines. (b) Icons with similar style yet different identity, one has
rounded shape while the other is a rectangle. (c) Icons whose style is
different and they also have different identities.

4.2 problem definition

Our main goal is to obtain a metric to measure style similarity and visual
identity between icons. As mentioned in Section 4.1, an icon can be defined
by its pictorial properties like outline stroke, fill or curvature [26], features
that conform the pictorial style of the icon. In addition, a set of icons is
also characterized by a particular visual identity [15] [6], i.e. one or more
properties that make it unique and visually identifiable. Commonly, these
properties relate to a particular shape or a motif, which repeats between
icons of the same collection e.g. a silhouette circle, a notebook-like shape, an
arrow, etc. (see Figure 4.1).

Finding clusters of perceptually different icon sets is really impractical
given the subtle differences between them. Instead, as seen in previous
work [94, 232, 192, 263], it is more intuitive to find a continuous metric
space where the distances between the icons correspond to distances in the
perceived similarity. Given that previous definitions of style use hand-crafted
features for other domains that do not apply for icons, we aim to find a
new similarity metric D that measures differences in style and differences in
visual identity:

D(i, j) = Ds(i, j) +Dv(i, j) (4.1)

where (i, j) is a pair of icons, the function Ds(i, j) ∈ R+ measures style
similarity, and the function Dv(i, j) ∈ R+ measures visual identity. For
icons with similar style and visual identity, D should return small values,
i.e. Ds ≃ 0 and Dv ≃ 0 (Figure 4.2, a). For icons with similar style but
with different identity, D = Dv (Figure 4.2, b). Finally, for icons where both
properties are very different, the similarity function will also have a high
value; D ≫ 0 with Dv ≫ 0 and Ds ≫ 0 (Figure 4.2, c).

4.2.1 Overview

An overview of the method can be seen in Figure 4.3. Our main goal is to
obtain a similarity metric D(i, j) where i, j are a pair of icons. To train the
similarity metric, we use a dataset which is annotated by icon designers.
Since there is no unified way of labeling, we cannot completely trust the
annotations and we might find noise in some of its classes. This kind of
datasets are called weakly labeled and additional efforts are required to work
with them. In our case, part of the dataset is used to launch crowd-sourcing
surveys and gather human-ratings that will allow us to test and compare the
proposed models (Section 4.3). The other part of the data will serve to train a
Siamese Neural Network (SNN) to work as the similarity metric (Section 4.4).
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Figure 4.3: Overview of our framework: The leftmost part shows the data gathering
process. First, we collect a dataset of icons and use it to train the similarity
metric. Since the dataset contains icons labeled by the designers, we cannot
completely trust their annotations and might find spurious data or noise.
Due to that, we use part of the data gathered to launch crowdsourcing
experiments in Amazon Mechanical Turk and obtain curated test data
that we use to compare the trained models. Once the data is collected,
we train a Siamese Neural Network (SNN) that works as our distance
metric, returning small values for icons that share style and visual identity
while returning large values for icons that do not share those properties.
With the trained model we are also able to compare icons distances and
perform similarity searches by returning the icons with the minimum
distance to a reference in the learned Euclidean space.

The SNN maps the input icons into a new Euclidean feature space where
they can be compared. The new mapping of the icons can be further used
to propose different applications like searches by similarity, or propose icon
sets optimized for the properties of style and visual identity.

The concept of weakly-labeled data might resemble weakly-supervised
learning [49, 311, 324]. However, in weakly-supervised learning we have a
constrained amount of annotated data, on the other hand, weakly-labeled
data has no annotations but we know some meta-information about each
sample. Moreover, in weakly-labeled data, we do not have any constraints
on the amount of data used during training.

4.3 collecting data

We obtain our icon dataset from the Noun Project website, which contains
thousands of black and white icons uploaded by graphic designers. Using
the provided API we greedily downloaded a total of 26027 different icons,
grouped in 1212 collections or classes each one sharing a label decided by
the author (see Figure 4.1 for a few examples). Each icon belongs to just
one class and most of the icons per class share similar style and visual
identity properties. As a first step, by means of stratified sampling, we
split the dataset into three subsets: training (70%), validation (10%), and
test (20%). We consider each class as the strata, then, we randomly select
elements from each class proportionally (according to the given percentages)
to sample the train, validation and test subsets. All the elements in each
class are sampled and the subsets are mutually exclusive, meaning that each
element is sampled only once and for one of the subsets. However, the
labels provided by the designers are not disjoint and we might find different
labels with the same style and identity and one label with different styles
or identity. This kind of weakly-labeled [286] data may yield problems like
not detecting if the model has overfitting or not allowing a fair comparison
with other architectures at testing time. Thus, further data collection and
adjustments are needed to take full advantage of the dataset.
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collecting curated data We collect valid data on the perception of
icon’s similarity that will be used to test the proposed models and select the
best one. We use Amazon Mechanical Turk (MTurk) to launch the experiments.
Similar to previous works [94] [21] [192], we gathered data in the form of
relative comparisons, since they are more robust and easier for human raters
than Likert ratings [59] [259]. The structure of each test, or HIT, consisted
of: first, a clear description of the task that human raters had to perform,
then, a training phase where we show a small set of four manually picked
relative comparisons displaying guidance messages if the user fails answering
correctly. The last part corresponds to the test phase, where the rater has to
answer a total of 60 relative comparisons where seven questions belong to a
manually selected control set with an obvious answer. The duration of each
HIT was approximately seven minutes, and all succesful participants were
paid.

We rejected all human raters that had more than one error (out of seven)
in the control questions. In the end, we launched 6000 relative comparisons
tests each of them answered by ten users, 962 HITs were approved and 38

rejected. To create the relative comparisons for each question, we randomly
selected one icon per class from three different random classes. We allowed
participants to do as many HITs as they wanted without repetition. A total of
213 users took part in the survey, 43% female. Among raters, 5.95% claimed
some professional experience in user interface and interaction design, while
6.43% have had some professional experience with graphic design.

4.4 modeling visual appearance of icons

Existing style similarity metrics [94, 263] use a handcrafted feature space only
suitable for their respective domains, where only local style features are taken
into account. On the contrary, besides style, our metric should measure also
visual identity, which is usually a higher-level property related to the shape
of the icon. Image similarity has been measured with existing deep models,
such as VGG19 [288], pre-trained on natural images; and fine-tuning these
networks has worked well for tasks such as interior design similarity [21].
However, we would need a huge amount of training data to improve the
performance of any existing network, and given that our domain is much
simpler than pictures of natural images, we choose to train a new network
with our data. To make sense of the difference, the widely used network
VGG19 has 144M of parameters, while our network has 47M parameters.

We use a Siamese Neural Network [36, 243, 270] consisting in three iden-
tical Convolutional Neural Networks (CNN) that share their parameters.
This kind of architecture is really powerful for learning a new Euclidean
space [270, 243, 229] where objects can be compared [36, 339]. Since the icons
inside a collection in the dataset share the properties of style and visual
identity, the SNN can be trained to map together the icons that share these
properties while it separates icons with different style and visual identity.
Each CNN has four convolutional layers that are followed by a batch nor-
malization [137] layer and a max-pooling layer. The last pooling layer is
connected to the linear classifier. The linear classifier contains three fully-
connected layers where the first two have 4096 and 1024 features respectively.
The last layer represents the final embedding f (x) of the image x into the
new feature space Rd, where the value of d has been empirically set to 256.
We also included two dropout [294] layers between the fully-connected ones
with a dropout regularization rate of 30%. An example of the architecture we
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Figure 4.4: Architecture proposed to measure icons similarity. The Siamese Network
has three inputs: Reference (xR), Positive (xP) and Negative (xN); and
three Convolutional Neural Networks (CNN) to obtain its embeddings
( f (x)). With these three embeddings, we can compute the error of the
network (L) using the triplet loss function described in Equation 4.2. The
CNNs share the same structure and parameters. Each of them has four
convolutional layers, that are followed by a batch-normalization layer
and a max-pooling layer. The last pooling layer is connected to a linear
classifier with three fully connected layers (FC). First FC has 4096 features,
second one has 1024, while the last FC has only 256, furthermore, last
FC of each CNN corresponds to the embedding f (x) of the input triplet
[xR, xP, xN ]. Between the FC layers there are dropouts with regularization
rate of 30%.

described is shown in the Figure 4.4, right. This architecture is trained using
triplets of images: a reference xR, a positive xP (icon with similar properties
to the reference), and a negative xN (icon with different properties to the
reference). To train the network we design a specific loss function which is
explained below.

4.4.1 The Loss Function

We consider the output of the last fully-connected layer of the Convolu-
tional Neural Network as an embedding f (x) ∈ Rd with input x. The
embedding represents x in a new d-dimensional Euclidean space. Since
we have a Siamese Neural Network formed by three CNNs that are iden-
tical with three inputs [xR, xP, xN ], we get three embeddings as the output
[ f (xR), f (xP), f (xN)] where f (xR) corresponds to the embedding of a refer-
ence input while f (xP) is the embedding of an input of the same class as
the reference and f (xN) is the input of an image that does not belong to
the same class as the reference. We want to ensure that a reference icon xR

is closer to every icon of the same perceptual similarity (style and visual
identity) xP, than to the rest of icons with different image properties xN .
Thus the triplet loss function L (Equation 4.2) has to ensure that the distance
in the d-dimensional Euclidean space between the reference and the positive
icon is minimum while it is large between the reference and the negative
icon [270, 243].

L =
M

∑
i=1

[
∥ f (xR

i )− f (xP
i )∥2

2−∥ f (xR
i )− f (xN

i )∥2
2+α

]
+

(4.2)
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Figure 4.5: Examples of the triplets sampled during training. The variables xR, xP

and xN refers to the reference, positive and negative icon respectively. The
positive icon and the reference are selected from the same class and they
have the larger Euclidean distance among the icons inside that class. The
negative icon has the shorter Euclidean distance to the reference among
the icons within a different randomly selected class.

Here M is the training set of triplets and α is a margin enforced between
negative and positive pairs which was empirically set to 0.2. The value α
prevents the function from evaluating to zero in cases where the distance
between the reference and the negative sample is larger than the reference
and the positive sample, thus letting it find larger margins while training.

adaptive sampling If we would like to create all the possible triplets
from the, approximately, 18200 icons in the training set we would have
(18200

3 ) ≃ 6.027 · 1012 possible combinations, an unmanageable number using
a standard desktop configuration. Furthermore, most of the generated
triplets would easily satisfy the constraints of the loss function and not
contribute to the training process at all, thus slowing it. For this reason,
following the approach of Schroff et al. [270], we generate the triplets on
the fly during the training process, selecting the ones that are active and
help in the convergence. We generate triplets that violate the most the
constraints imposed by the loss function. To do so, we randomly select one
icon from the training set as the reference, then, we select the positive sample
as the icon from the same class with the maximum distance in the Euclidean
space to the reference: argmaxxP

i
|| f (xR

i )− f (xP
i )||22. To obtain the negative

icon, we randomly pick a different class and select the icon that has the
minimum distance to the reference: argminxN

i
|| f (xR

i )− f (xN
i )||22. We repeat

this approach until a considerable number of triplets without repetition has
been obtained. This process is applied before every epoch and it requires to
compute the embedding for every icon at each iteration. In the first iteration,
embeddings are directly obtained from the network whose parameters have
been set using Xavier’s initialization [107]. Although it increases the training
time, it also ensures that all input triplets are meaningful for the training.
Figure 4.5 shows an example of the triplets sampled during training in the
first iteration.

4.4.2 Training the Model

We use ADAM optimization [162] and the triplet sampling explained in
Section 4.4.1. The mini-batch had a size of sixteen images and to update
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the parameters of the network we use standard back-propagation [178, 108].
At training time, we perform two sequential operations with each image
before feeding it to the network: first, data augmentation (randomly rotating
or flipping the image) and second, random crops. For the crops, we randomly
perform a crop of size 180x180 aligned to the corners in the original image,
with size 200x200. We started the training with a learning rate of 10−4 that
was reduced every 60 epochs by a factor of ten to let the model converge. To
create the validation set we also use the adaptive sampling, moreover, each
image is scaled to 180×180 instead of cropped and no data augmentation is
applied. We need around two days and 140 epochs to train the model.

4.5 evaluation

We evaluate the performance of the models by comparing their precision and
perplexity on the gathered data from the MTurk HITs. At testing time, no
data augmentation is applied and the inputs are directly scaled to 180 × 180
without cropping. First, we obtain the embedding for the three inputs of the
triplet [ f (xR), f (xP), f (xN)], since they are in a 256-dimensional Euclidean
space, we can calculate the Euclidean distance of each icon with respect to
the reference D(xR, xP) and D(xR, xN). Actually, if we want to obtain the
probability of choosing the icon xP over xN , what we are aiming to obtain is
a function of similarity instead of a distance, thus we define the similarity
between two icons s(xR, xP) as:

s(xR, xP) =
1

1 +D(xR, xP)
, (4.3)

when the positive xP and reference xR icon are completely similar D(xR, xP) =
0, their similarity is s(xR, xP) = 1. In the opposite case, if the pair of icons
is completely dissimilar: s(xR, xP) = 0. Knowing that D(xR, xP) cannot be
infinity, we can define the probability of choosing the icon xP against xN as:

P(xP) =
s(xR, xP)

s(xR, xP) + s(xR, xN)
(4.4)

We can obtain P(xN) similarly. Then, we compute precision and perplexity
in two ways: assuming the correct answer relies on each turker opinion
separately (raw) or assuming the majority opinion is the correct one (majority).
We also compare our results with two baselines previously calculated: the
Humans and the Oracle precision. To compute Humans baseline, we count
the rater’s opinion and compare it to the majority. For the Oracle baseline,
we count the opinion of the majority on each relative comparison, being the
precision always one.

The precision P tells us the percentage of icons that the model has pre-
dicted correctly according to our two criteria (raw and majority). The precision
value is computed as:

P =
Icons correctly predicted

Number of total relative comparisons
(4.5)

The perplexity Q is often used for measuring the usefulness of a model when
predicting a sample. Its value is 1 when the model makes perfect predictions
on every sample, while its value is 2 when the output is 0.5 for every sample,
meaning total uncertainty. We define the perplexity of our model as

Q = 2
(
− 1

M ∑M
i=1 log2 P(xP

i )
)

(4.6)
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Figure 4.6: Model performance while varying the number of layers. The vertical
axis shows the majority precision obtained while the horizontal axis
shows the model description. In the models description, CB refers to
the convolutional Blocks and FC to the Fully Connected layers. We can
observe how the best model has four convolutional Blocks achieving
nearly 74% majority precision. The models with less number of layers and
parameters are not able to reach that performance. Also, the model with
five convolutional blocks seems to overfit getting similar performance to
the model with just two convolutional blocks.

To know which one is the positive sample xP in the relative comparison we
rely on raw and majority criteria as for the precision. The value P(xP) will
be the probability given by the model using Equation 4.4, M corresponds to
the number of triplets we use for testing.

4.5.1 Other Architectures

We followed an incremental approach while designing the Siamese Neural
Network. We tested out how the number of convolutional blocks (CB) affects
model performance while keeping the same training parameters and same
layers in each block (Convolution + Batch norm. + Pooling). Figure 4.6 shows
how model performance varies, achieving best results with 4 convolutional
blocks.

Once we know that the best accuracy is obtained with four convolutional
blocks, we explore the performance varying the layers inside each block and
the number of Fully Connected layers. Table 4.1 shows the precision and
perplexity of the architectures described below. All the included architec-
tures have four convolutional blocks. Model-A has max-pooling between
the convolutions and two fully-connected (FC) layers. It has one of the
worst results since it does not include layers to avoid overfitting or improve
performance with non-linearities. Model-B includes max-pooling between
convolutions and dropout between the two FC layers. The architecture is
similar to Model-A and its result is the worst in terms of both, precision and
perplexity. Model-C includes only max-pooling between convolutions and has
three fully-connected layers with dropout between them. The new FC layer
does not improve the performance of this model and its results remain lower
in comparison to Model-C. Finally, Model-D includes max-pooling, batch-
normalization and ReLUs between convolutions and it also has dropout
between the three FC layers yet it does not improve the performance of
Model-D.
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Precision (P) Perplexity (Q)

Model Raw Majority Raw Majority

Humans 0.771 0.842 - -

Oracle 0.859 1 - -

Garces [94] 0.609 0.627 1.578 1.591

VGG19 [288] 0.639 0.654 1.558 1.571

Model-A 0.519 0.521 1.603 1.617

Model-B 0.508 0.507 1.608 1.622

Model-C 0.671 0.702 1.543 1.556

Model-D 0.667 0.699 1.515 1.527

Best model 0.706 0.738 1.555 1.568

Table 4.1: Comparison of the precision and perplexity of different models and meth-
ods. We can observe how the chosen method outperforms the rest com-
paring the precision and it is the closest one to the human ratings. On the
other hand, perplexity values are highly dependent on the formula used
to obtain probabilities from distances, while precision only depends on
turker’s answers. Due to that, our decision on choosing the best model has
been more influenced by the results on the precision.

4.5.2 Comparing Against Previous Work

In Table 4.1 we also compare our best model with a well-known pretrained
architecture VGG19 [288] and a hand-crafted feature vector for clip art
style [94]. VGG19 model is able to achieve 63% of precision yet it was
not designed to find a space where icons can be compared by similarity
and its results are worse than most of the trained architectures. Also, the
time needed to get the feature vector of an image is nearly two orders of
magnitude higher than with our model, that just needs 9 ∗ 10−4 seconds.
The method of Garces et al. achieves worse accuracy than VGG19 and
our model since the hand-crafted feature space was designed to measure
style similarity in their specific dataset and it is not capable to model visual
identity. Moreover, it is significantly slower than our method, using several
seconds to compute the descriptors of an image.

In the end, Model-C outperforms other Convolutional Block configurations
we tried and the previous works in terms of precision. Also, it is the closest
one to the Human and Oracle baselines. Although our model has one
of the best perplexity value, other architectures like Model-D and Model-C
outperform it. The perplexity is computed using the probability of choosing
xP over xN as the similar icon to xR, that’s why its value is highly dependent
on the formula used to compute the probability P from a distance D. Due
to that, we trust more the values of the precision when choosing our model
while we still consider the perplexity.

4.6 results and applications

The trained Siamese Neural Network is capable to produce high-quality
embeddings in a new Euclidean feature space which considers the properties
of style and visual identity. We can visualize this space in 2D by using
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Figure 4.7: Visualization created using the t-SNE algorithm. It reduces the dimen-
sionality of the feature vectors that our model learns to a two-dimensional
Cartesian space. Note how icons with similar appearance are grouped in
the same regions.

non-linear dimensionality reduction techniques, such as t-SNE [315]. Results
can be seen in Figure 4.7.

comparison with perceptual kernels As we show in Equation 4.1,
for the same style, our metric measures the difference in visual identity,
and, usually, this difference is linked to the shape of the object. Thus, we
compare our metric with the perceptual kernel of Demiralp et al. [59] which
is optimized for shape similarity (Figure 4.8 (a)). We take the same set of
ten gray-scale icons, use our metric to compute the distances and normalize
them between 0-1 range to obtain the matrix in Figure 4.8 (b). We also show
in (c), and (d) the icons with maximum distances with Demiralp’s kernel and
our distance D, respectively. We observe that, although the results differ a
little, both metrics perform very well in maximizing perceptual similarity.
However, as opposed to Demiralp et al. work, our metric can be used with
any input icon, while their kernel is strictly computed for that set of given
icons. We additionally show in Figure 4.8 (e) the icons with maximum
distances in our whole dataset. Note that differences in style and visual
identity are maximal.

search by similarity Our distance metric allows search by similarity.
Given a query icon, we can search the k-nearest neighbors over the entire
icon dataset. Results are shown in Figure 4.9. We compare our results with
the output given by the method presented by Garces et al. [94] and the
pretrained network VGG19 [288]. We can notice that while Garces et al.
performs reasonably well to capture low-level style features like strokes and
fills, it fails at higher-level elements, and the visual identity is not captured.
This is due to the fact that their hand-crafted feature space does not include
any feature to capture shape. The network VGG19 after being trained with
millions of images can be used as a powerful image descriptor thanks to
the knowledge it acquired regarding image features like contours, textures
or shapes. The results of VGG19 seem to have coherent visual identity yet
some fail in terms of style (see Figure 4.9 candle and calendar rows). This
imprecision is also observable in the numerical evaluation of Section 4.5.2.
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(a) (b)

(c)

(d)

(e)

Figure 4.8: Comparison with the shape kernel of Demiralp et al. [59] (darker means
more similar). (a) Shape kernel of Demiralp et al. using ten gray-scale
icons. (b) Kernel obtained using our metric. Note that, as opposed to
Demiralp’s kernel, the triangles using our kernel are not invariant to
rotation. In (c) and (d) we show pairs of icons with maximum perceptual
distances for Demiralp’s kernel (c) and our metric (d). Our model is
capable to return coherent icons with maximum perceptual distance
although we did not collect the data with this specific purpose. On the
other hand, the method of Demiralp et al. can only be computed for their
set of ten icons. (e) Pairs of icons with maximum distances using our
whole dataset.
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Figure 4.9: The following figure shows the most similar images given a reference
and compares them against previous work. We can observe how our
method returns visually appealing results considering both style and
visual identity, that better represent the input image.

optimized icon sets Our method can be useful helping designers in
creating applications or graphical user interfaces. Given a set of semantic
keywords, we can propose icon sets optimized for the properties of style
and visual identity. In the example of Figure 4.10, we choose the keywords
animals (A), arrows (B) and buildings (C) and we obtain three sets of icons
{xA}, {xB}, {xC} with 36, 112, and 55 elements, respectively. We define a
candidate icon set as a triplet (xA, xB, xC) ∈ T, where T is the set containing
all the possible combinations of icons for the selected keywords (note that
we decided to have triplets as icon sets, but this could arbitrarily grow to
icon sets of n elements with n ∈ [1, ∞]). For this case, T contains more
than 2 · 106 possible triplets. The goal is to find: argmini,j,k Dset(xAi , xBj , xCk ),
where Dset(xA, xB, xC) = D(xA, xB) +D(xB, xC) +D(xA, xC). The candidate
sets are those whose distances are minimal. As we can see in the figure, the
proposed icon sets are highly coherent.
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Figure 4.10: General icon set proposal for the keywords: animals (A), arrows (B) and
buildings (C). Sets are optimized for the properties of visual identity and
style using our method.

To evaluate how useful the proposed optimized icon sets are, we gather
subjective judgements from annotation experts. We show several optimized
icon sets to the rater and ask her two questions: "Do the icons in the set have
a representative appearance?". The human-rater can only answer either yes
or no. We created 100 sets using the method previously explained and 20

randomly sampling icons. Each survey contains 20 icon sets to be evaluated,
16 randomly sampled from the set of 100 created with our method and 4

randomly sampled from the set of random icon sets. Each icon set is made
by four icons belonging to four different keywords. The keywords are also
randomly sampled from a group of 9 candidates (animals, arrows, buildings,
clothes, food, faces, music, humans and documents). Each keyword contains
around 80 different icons from the test set with a wide variety of styles and
visual identities. The Figure 4.11 shows a screenshot of the test carried out
to validate the proposed icon sets. At the end we collected 25 subjective
evaluations from raters with previous experience in Computer Graphics or
Graphic Design, 8 raters are females and ages range between 20 to 32 years
old with an average of 25 years old. Raters thought the visual appearance of
the icons is representative within the sets returned by our method 75.25%
of the times. On the other hand, raters found the appearance of the set
representative only 28% of the times for sets with randomly sampled icons.

4.7 conclusion and future work

In this chapter, we have presented a model for measuring the properties of
style and visual identity in iconography. As opposed to previous works,
which only focus on low-level style features, our method is able to model
high-level properties of the icons, capturing its visual identity. Our learned
model maps each icon into a 256-dimensional feature space which allows
direct comparisons by computing Euclidean distances. We have shown that
our metric can be used to ease the process of icon set selection for users.
Moreover, our approach is generalizable and can be used with any image
outside the initial dataset.

There are many avenues for research following our work. The most im-
mediate extension is to take into account color compatibility measures [231]
to automatically colorize the icons to a particular color style. Similarity
metrics can also be used as a guide to evaluate content generation methods,
in our case, our metric could be used in combination with the work of Liu
et al. [193] to automatically iconify pictures according to a desired style.
In this regard, the success of deep generative methods for style transfer in
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Figure 4.11: Screenshot of the test developed to validate the usefulness of the pro-
posed icon sets. The icon set is made of four icons belonging to the
keywords: clothes (top-left), animal (top-right), faces (bottom left) and
food (bottom right). Below the images the question appears allowing
for a binary answer (yes or no). The blue button goes to the next icon
set and on the bottom left corner, whit gray background, we can see the
progress of the test.

fonts [314] suggests that such kind of techniques could be applied in this
domain too. Moreover, Our network could be used in combination with
semantic object labeling or object sketches to train better models that take
into account object semantics besides depiction.

On the other hand, while CNNs have received a lot of attention for natural
images, they are still highly unexplored for graphic designs. Since it is a
domain with a simpler underlying representation, in theory, it should require
less training data. We also believe that our work can inspire future works in
the problem of extracting shape descriptors for 2D images. It is well known
that Convolutional Neural Networks capture coarse shapes in the deeper
layers of the hierarchy [344], but it is ongoing work to really understand how
to disentangle this information to be used as a standalone shape descriptor.
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Part IV

C O N F O U N D I N G FA C T O R S I N M AT E R I A L
P E R C E P T I O N

This part focuses on the effect of confounding factors such as
geometry, illumination, or motion in our perception of material
appearance. In the first half, we focus on the joint role that geom-
etry and illumination have in humans performance recognizing
materials. Our main contribution is a comprehensive study ana-
lyzing the effect of such confounding factors, with special enfasis
in the frequency domain. Moreover, we analyze the correlation
of simple statistics and deep neural networks with human per-
formance. In the second half, we focus on the effect that motion
has in a set of material attributes. We launch two experiments,
the first one focuses on understanding the role of motion in our
perception of a set of attributes while the second one focuses on
the brightness attribute for a set of stimuli with different degrees
of motion and luminance. Our main contribution is therefore the
proposed systematic experiments together with our findings on
the effect of motion.





5G E O M E T RY A N D I L L U M I N AT I O N I N M AT E R I A L
P E R C E P T I O N

Observing and recognizing materials is a fundamental part of our daily life. Under
typical viewing conditions, we are capable of effortlessly identifying the objects that
surround us and recognizing the materials they are made of. Nevertheless, under-
standing the underlying perceptual processes that take place to accurately discern
the visual properties of an object is a long-standing problem. In this chapter, we
perform a comprehensive and systematic analysis of how the interplay of geometry,
illumination, and their spatial frequencies affects human performance on material
recognition tasks. We carry out large-scale behavioral experiments where partici-
pants are asked to recognize different reference materials among a pool of candidate
samples. In the different experiments, we carefully sample the information in the
frequency domain of the stimuli. From our analysis, we find significant first-order
interactions between the geometry and the illumination, of both the reference and
the candidates. In addition, we observe that simple image statistics and higher-order
image histograms do not correlate with human performance. Therefore, we perform
a high-level comparison of highly non-linear statistics by training a deep neural net-
work on material recognition tasks. Our results show that such models can accurately
classify materials, which suggests that they are capable of defining a meaningful
representation of material appearance from labeled proximal image data. Last, we
find preliminary evidence that these highly non-linear models and humans may use
similar high-level factors for material recognition tasks.

While I led this line of work (under the supervision and help of Belén Masiá and
Diego Gutiérrez), Ana Serrano collaborated by running the statistical analysis, and
helping with the manuscript text and figures. This work was published in the Journal
of Vision (JoV) [172].

M. Lagunas, A. Serrano D. Gutierrez, & B. Masia
The Joint Role of Geometry and Illumination on Material Recognition

Journal of Vision, Vol 21 (2), 2021

5.1 introduction

Under typical viewing conditions, humans are capable of effortlessly recog-
nizing materials and inferring many of their key physical properties, just by
briefly looking at them. While this is almost an effortless process, it is not
a trivial task. The image that is input to our visual system results from a
complex combination of the surface geometry, the reflectance of the material,
the distribution of lights in the environment, and the observer’s point of
view. To recognize the material of a surface while being invariant to other
factors of the scene, our visual system carries out an underlying perceptual
process that is not yet fully understood [67, 85, 2].

Then, how does our brain recognize materials? We could think that, similar
to solving an inverse optics problem, our brain is estimating the physical
properties of each material [250]. This would imply knowledge of many
other physical quantities about the object and its surrounding scene, from
which our brain could disentangle the reflectance of the surface. However,
we rarely have access to such precise information, so variations based on
Bayesian inference have been proposed [154].

Other approaches are based on image statistics, and explain material recog-
nition as a process where our brain extracts image features that are relevant
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Figure 5.1: Two spheres made of silver, under two different illuminations, leading to
completely different pixel-level statistics.

Figure 5.2: Two objects of different geometries but made of the same material, under
the same illumination. The object on the left appears to be made of a
shinier material.

to describe materials. Then, it would try to match them with previously
acquired knowledge, in order to discern the material we are observing. In
this approach our visual system would disregard the illumination, motion,
or other factors in the scene and try to recognize materials by representing
their typical appearance in terms of features instead of explicitly acquiring
an accurate physical description of each factor. This type of image analysis
can be carried out in the primary domain [100, 4, 82, 218, 227], or in the
frequency domain [234, 35, 103]. However, it is argued if our visual system
actually derives any aspects of material perception from such simple statis-
tics [10]. For instance, Fleming and Storrs [89] have recently proposed the
idea that highly non-linear encodings of the visual input may better explain
the underlying processes of material perception.

In this chapter, we thoroughly analyze how the confounding effects of
illumination and geometry influence human performance in material recogni-
tion tasks. The same material can yield different appearances due to changes
in illumination and/or geometry (see Figures 5.1 and 5.2), while it is possible
to have two different materials look the same by tweaking the two parame-
ters [320]. We aim to further our understanding of the complex interplay
between geometry and illumination in material recognition. We have carried
out large-scale, rigorous online behavioral experiments where participants
were asked to recognize different materials, given images of one reference
material and a pool of candidates. By using photorealistic computer graphics,
we obtain carefully controlled stimuli, with varying degrees of information
in the frequency domain. In addition, we observe that simple image statistics,
image histograms, and histograms of V1-like subband filters do not correlate
with human performance in material recognition tasks. Inspired by Fleming
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Figure 5.3: Graphical user interface of the online behavioral experiments. In particular,
this screenshot belongs to the Test SH. On the left, the user can see the
reference material together with her current selection. On the right, she
can observe all the candidate materials. To select one candidate material,
the user clicks on the corresponding image and it is automatically added
to the selection box on the left.

and Storrs’ recent work [89], we analyze highly non-linear statistics by train-
ing a deep neural network. We observe that such statistics define a robust
and accurate representation of material appearance and find preliminary
evidence that these models and humans may share similar high-level factors
when recognizing materials.

5.2 methods

We carry out a set of online behavioral experiments where we analyze
the influence of geometry, illumination, and their frequencies in human
performance for material recognition tasks. Participants are presented with a
reference material and their main task is to pick five materials from a pool
of candidates that they think are closer to the reference. A screenshot of the
experiment can be seen in Figure 5.3.

5.2.1 Stimuli

We obtain our stimuli from the dataset proposed by Lagunas et al. [171]. This
dataset contains images created using photorealistic computer graphics, with
15 different geometries; six different illuminations ranging from real-world
indoor scenarios to urban or natural landscapes; and 100 different materials
measured from their real-world counterparts which were pooled from MERL
database [211]. We sample the following factors for our experiments:

geometries Among the geometries that the dataset contains, we choose
the sphere and Havran-2 geometry [118]. These are a low and high spatial
frequency geometries, respectively, suitable to test how the spatial frequen-
cies of the geometry affect the final appearance of the material and our
performance at recognizing it.

• Sphere: Representing a smooth, and low spatial frequency geometry,
widely adopted in previous behavioral experiments [77, 142, 153, 300].

• Havran-2:11 It is a geometry with high spatial frequencies, and with 11To simplify the
notation we will refer
to Havran-2
geometry as Havran.

high spatial variations that has been obtained through optimization

63



geometry and illumination in material perception

Te
st

 H
H

Te
st

 S
H

Te
st

 S
S

Te
st

 H
S

Figure 5.4: Examples of the stimuli in each different online behavioral experiment.
On the left we show an example of the reference stimuli with one of the
six illuminations. On the right, we show a small subset (six out of the 100

materials) of the candidate stimuli with St. Peters illumination.

techniques. Havran-2 surface has had significant success in recent
perceptual studies and applications [171, 113, 322, 111].

The geometry in the reference and candidate samples changes, the stimuli
for each different experiment can be observed in Figure 5.4. The details are
as follows:

• Test HH: Both the reference and the candidates depict Havran geome-
try.

• Test HS: The reference depicts Havran and the candidates depict the
sphere.

• Test SH: The reference depicts the sphere while the candidates depict
Havran.

• Test SS: Both the reference and the candidates depict the sphere geom-
etry.

illuminations To prevent a pure matching task, we choose different
illuminations between the reference and candidate materials for all behavioral
experiments.

• The reference samples depict six different illuminations captured from
the real-world. All illuminations can be observed in Figure 5.5. To
have an intuition of the content in the captured illumination, the insets
show the RGB intensity for the horizontal purple line. We use all illu-
minations in the dataset since they contain a mix of spatial frequencies
suitable to empirically test how the spatial frequencies of the illumina-
tion may affect human performance on material recognition tasks. The
illuminations Grace, Ennis, and Uffizi have a broad spatial frequency
spectrum, Pisa and Doge mainly contain medium and low spatial fre-
quency content, while Glacier mainly has low spatial frequency content.
To simplify the notation, we will refer to them throughout the chapter
as high-frequency, medium-frequency and low-frequency illuminations,
respectively.

• The candidate samples depict the St. Peters illumination (except in an
additional experiment discussed in Section 5.4 where they depict Doge
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Uffizi Grace Ennis

GlacierPisaDoge

St. Peters

Figure 5.5: All illuminations depicted in the online behavioral experiments together
with their frequency spectrum. The inset corresponds to the pixel intensity
for the horizontal purple line.

illumination). St. Peters is an illumination that has been used in the
past for several perceptual studies [86, 276], it can be seen in Figure 5.5.
The inset shows the RGB pixel intensity for the horizontal purple line.

To quantify the spatial frequencies of the illuminations, we have employed the
high-frequency content measure (HFC) [37]. This measure characterizes the
frequencies in a signal by summing linearly-weighted values of the spectral
magnitude, thus avoiding to arbitrarily choose a separation between high and
low frequencies or visually assessing the slope of the 1/f amplitude spectrum.
A high HFC value means higher frequencies in the signal. Figure 5.7 shows
the HFC for each illumination.

materials We use all the materials from the Lagunas et al. dataset [171].
The reference trials are sampled uniformly to cover all 100 material samples
in the dataset. Examples of the stimuli used in each behavioral experiment
are shown in Figure 5.4 where the image on the left shows the reference
material and the right area shows a subset of the candidate materials.

5.2.2 Participants

The online behavioral experiments were designed to work across platforms
on standard web browsers and they were conducted through the Amazon
Mechanical Turk (MTurk) platform. In total, 847 unique users took part in
them (368 users belonging to the experiments explained in Section 5.3, and
479 belonging to the additional experiments explained in Section 5.4), 44.61%
of them female. Among the participants, 62.47% claimed to be familiar with
computer graphics, 25.57% had no previous experience and 9.96% declared
themselves professionals. We also sampled data regarding the devices used
during the experiments: 94.10% used a monitor, 4.30% used a tablet, and
1.60% used a mobile phone. In addition, the most common screen size was
1366 x 728 px. (42.01% of participants), minimum screen size was 640 x 360

px. (two people), and a maximum of 2560 x 1414 px. (one person). Users
were not aware of the purpose of the behavioral experiment.
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Uffizi Grace Ennis

GlacierPisaDoge

St. Peters

Figure 5.6: Candidate illumina-
tion employed in the
online behavioral
experiments together
with its frequency
spectrum. The inset
corresponds to the
pixel intensity for the
horizontal purple line.

High-frequency content measure

Figure 5.7: High-frequency content (HFC) mea-
sure computed for all the candidate
and reference illuminations. We can
observe how high-frequency illumina-
tions (Uffizi, Grace, Ennis, St. Peters)
also have a high HFC value, medium-
frequency illuminations (Pisa, Doge)
have a lower HFC value, and, last, low-
frequency illuminations (Glacier) have
the lowest HFC value.

5.2.3 Procedure

Subjects are shown a reference sample and a group of candidate material
samples. Each experiment, HIT in MTurk terminology, consists of 23 unique
reference material samples or trials, three of which are sentinels used to
detect malicious or lazy users. Users are asked to "select five material samples
which you believe are closer to the one shown in the reference image". Additionally,
we instruct them to make their selection in decreasing order of confidence.
We let the users pick five candidate materials because just one answer would
provide sparse results. We launched 25 HITs for each experiment and each
HIT was answered by six different users. This resulted in a total of 27.000

non-sentinel trials, 12.000 belonging to the four experiments analyzed in
Section 5.3, and 15.000 of them belonging to the five additional experiments
discussed in Section 5.4 (a total of nine different experiments with 25 HITs
each, each HIT answered by six users and 20 non-sentinel trials per HIT).
Users were not allowed to repeat the same HIT.

The set of materials in the candidate samples does not vary across HITs,
however, the position of each sample is randomized for each trial. This has
a two-fold purpose: it prevents the user from memorizing the position of
the samples, and it prevents them from selecting only the candidate samples
that appear at the top of their screen. The reference samples do not repeat
materials during a HIT and the reference material is always present among
the candidate samples. During the experiment, stimuli keep a constant
display size of 300 x 300 px. for the reference, and of 120 x 120 px. for the
candidate stimuli (except for some of the additional experiments explained
in Section 5.4 where both reference and candidate stimuli are displayed
at either 300 x 300 px. or 120 x 120 px.). Figure 5.3 shows a screenshot
with the graphical user interface during the behavioral experiments. On the
left-hand side, we can observe the selection panel with the current trial and
the selection of the current materials. The right-hand side displays the set of
candidate materials whereof users can pick their selection. Users were not
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able to go back and re-do an already answered trial but they could edit their
current selection of five materials until they were satisfied with their choice.
Additionally, once the 23 trials of the HIT are answered, to have an intuition
about the main features that humans use for material recognition, we asked
the user: "Which visual cues did you consider to perform the test?".

To minimize worker unreliability, the user performs a brief training before
the real test [330]. To avoid giving the user further information about the
test, we use a different geometry (Havran-3 [118]) during the training phase.
In this phase, the items of the interface are explained and the user is given
guidance on how to perform the test using just a few images [94, 258, 169].

sentinels Each sentinel shows a randomly selected image from the pool
of candidates as the reference sample. We consider user answers to the
sentinel as valid if they pick the right material within their five selections,
regardless of the order. We rejected users that did not correctly answer
at least one out of the three sentinel questions. In order to ensure that
users answers were well thought and that they were paying attention to the
experiment, we also rejected users that took less than five seconds per trial
(on average). In the end, we adopt a conservative approach and rejected
19.8% of the participants, gathering 21.660 answers (9.560 belonging to the
behavioral experiments explained in Section 5.3 and 12.100 belonging to the
additional experiments explained in Section 5.4).

5.3 results

We investigate which factors have a significant influence on user performance
and on the time they took to complete each trial in the four experiments:
Test HH, Test HS, Test SH and Test SS. The factors we include are: the
reference geometry Gref, the candidate geometry Gcand, and the illumination
of the reference sample Iref, as well as their first-order interactions (recall
that the illumination of the candidate samples remains constant in these
behavioral experiments). We also include the Order of appearance of each
trial. We use a general linear mixed model with a binomial distribution for
the performance since it is well-suited for binary dependent variables like
ours, and a negative binomial distribution for the time, which provides more
accurate models than the Poisson distribution by allowing the mean and
variance to be different. Since we cannot assume that our observations are
independent, we model the potential effect of each particular subject viewing
the stimuli as a random effect. Since we have categorical variables among
our predictors, we re-code them to dummy variables for the regression. In all
our tests, we fix a significance value (p-value) of 0.05. Finally, for factors that
present a significant influence, we further perform pairwise comparisons for
all their levels (least significant difference pairwise multiple comparison test).

5.3.1 Analysis of User Performance and Time

In our online behavioral experiments, we rely on the top-5 accuracy to
measure user performance. This metric considers an answer as correct if the
reference is among the five candidate materials that the user picked in the
trial. Since participants picked five materials ranked in descending order
of confidence, the top-1 accuracy could also be considered for our analysis.
However, the task they have to solve is not easy and users have an overall
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Correct answers by experiment Reference geom. Candidate geom.

Figure 5.8: Left: Top-5 accuracy for each of the four behavioral experiment. Center:
Top-5 accuracy for each reference geometry Gref. Right: Top-5 accuracy
for the candidate geometry Gcand. We can see how users seem to perform
better when the candidate and reference are a high-frequency geometry.
All plots have a 95% confidence interval. The names marked with ∗ are
found to have statistically significant differences.

top-1 accuracy of 9.21% which yields sparse results. A random selection
would yield a top-1 accuracy of 1% and a top-5 accuracy of 5%.

influence of the geometry There is a clear effect in user performance
when the the geometry changes, regardless if that change happens in the
candidate (Gcand, p = 0.005) or the reference geometry (Gref, p < 0.001).
This is expected, since the geometry plays a key role in how a surface reflects
the incoming light and, therefore, will have an impact on the final appearance
of the material. Figure 5.8 shows user performance in terms of top-5 accuracy
with a 95% confidence interval when the reference and candidate geometry
change jointly (left) or individually (center and right). Users seem to perform
better when they have to recognize the material in a high-frequency geometry
compared to a low-frequency one. Those results also suggest that changes
in the frequencies of the reference geometry may have a bigger impact on
user performance than changes in the frequencies of the candidate geometry
(i.e. users perform better with a high-frequency reference geometry and
low-frequency candidate geometry, compared to a low-frequency reference
geometry and a high-frequency candidate geometry).

influence of the reference illumination We observe that the
illumination of the reference image has a significant effect on user perfor-
mance (Iref, p < 0.001). This is expected since all the materials in a scene
are reflecting the light that reaches them, therefore changes in illumination
can significantly influence the final appearance of a material, and how we
perceive it [32]. Figure 5.9, left, shows the top-5 accuracy for each reference
illumination and groups of illuminations with statistically indistinguishable
performance. We can observe how users seem to have better performance
when the surface they are evaluating has been lit with a high-frequency
illumination (Ennis, Grace, and Uffizi); while users appear to perform worse
in scenes with an low-frequency illumination (Glacier); users show an in-
termediate performance with a medium-frequency illumination (Doge and
Pisa). Moreover, we performed a least significant difference pairwise multiple
comparison test to obtain groups of illuminations with statistically indistin-
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Figure 5.9: Top-5 accuracy for each reference illumination (Iref ). The horizontal lines
under the x-axis represent groups of statistically indistinguishable per-
formance. The reference illuminations marked with ∗ denote significant
differences The error bars correspond to a 95% confidence interval.

guishable performance. These groups can be observed in Figure 5.9, under
the x-axis. If we focus on Iref we can see how high- (green), medium- (blue),
and low-frequency (red) illuminations yield groups of similar performance.
There is an additional group of statistically indistinguishable performance
represented in pink color.

influence of trial order The order of appearance of the trials during
the experiment does not have a significant influence in users performance
(Order, p = 0.391).

first order interactions We find that the interaction between the
candidate geometry and the reference illumination has a significant effect
on user performance (Gcand ∗ Iref , p < 0.001). Users seem to perform bet-
ter with a high-frequency geometry (compared to a low-frequency one)
when the reference stimuli features a high-frequency illumination (Iref =Uffizi,
p = 0.019; Iref =[Grace, Ennis], p < 0.001). On the other hand, there ap-
pears to be no significant changes in performance between a high- and low-
frequency candidate geometry when the reference stimuli has a medium-
or low-frequency illumination (Iref =Doge, p = 0.453; Iref =Pisa, p = 0.381;
Iref =Glacier, p = 0.770). We argue that user performance is driven by the
reference sample. When the reference material is lit with a low-frequency
illumination, users seem to not be able to properly recognize it. Therefore,
changes in the candidate geometry are not relevant to user performance.
These results can be seen in Figure 5.9, center. Furthermore, under the x-axis,
we can observe the groups with statistically indistinguishable performance
where high-, medium-, and low-frequency illuminations yield groups of
similar performance.

We also found out that the interaction between the reference geometry
and the reference illumination has a significant impact in user performance
(Gref ∗ Iref , p = 0.012). Users seem to show better performance for all illumi-
nations with a high-frequency reference geometry (Gref =Havran, Iref =Uffizi,
p = 0.002; Iref =[Ennis, Pisa, Doge, Glacier], p < 0.001), except for Grace
illumination (p = 0.176), where the differences in humans performance are
statistically indistinguishable. These results, together with the groups of
statistically indistinguishable performance, can be seen in Figure 5.9, right.
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Figure 5.10: Left: Top-5 accuracy for each reference illumination when the candi-
date geometry (Gcand) changes. We can observe how users appear to
perform significantly better with a high-frequency geometry (Havran)
and illumination. On the other hand, for low-frequency illuminations,
changes in the candidate geometry yield statistically indistinguishable
performance. Right: Top-5 accuracy for each reference illumination when
the reference geometry (Gref ) changes. We can observe how users seem
to perform significantly better for all high-frequency illuminations, ex-
cept for Grace. The horizontal lines under the x-axis represent groups
of statistically indistinguishable performance. We can observe how the
groups usually cluster high-, medium- and low-frequency illuminations.
The reference illuminations marked with ∗ denote significant differences
in user performance between geometries for that illumination. The error
bars correspond to a 95% confidence interval.

In general, we can not conclude that there are significant changes in
performance due to the interaction between the candidate, and reference
geometry (Gref ∗ Gcand, p = 0.407). Nevertheless, with a low-frequency
reference geometry (Gref =sphere), users seem to perform significantly better
with a high-frequency candidate geometry (Gcand=Havran, p = 0.009).

5.3.1.1 Analysis of the Time Spent on Each Trial

To account for time, we measure the number of milliseconds that passed since
the trial loaded in their screen and until they picked all five materials and
pressed the "Continue" button. In Figure 5.11 we can see how the time spent
to answer each trial becomes stable as the behavioral experiment advances.

influence of trial order We find that the order of the trials has
a significant influence on the average time users spend to answer them
(p < 0.001). Users spend more time in the first questions and that after few
trials the average time they spend becomes stable at around 20 seconds per
trial (recall that the order does not influence performance). This is expected
as users have to familiarize with the experiment during the first iterations.
As the test advances, they learn how to interact with it and the time they
spend becomes stable.

influence of reference illumination The reference illumination
Iref influences the time users spend to answer each trial (p = 0.001). Users
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Figure 5.11: Average time the users spend for each trial according to the order of
appearance during the online behavioral experiment. We can observe
how, as the user progresses through the experiment, the time spent on
each trial becomes stable. The error bars correspond to a 95% confidence
interval.

spend more time when the stimuli are lit with Ennis illumination while they
are the fastest when the illumination is Doge.

We did not find a significant influence of the reference geometry Gref or
candidate geometry Gcand in the average time each user spent to answer
each trial.

first order interactions We observe that users take significantly
longer to answer the trials when the reference geometry and the candidate
geometry change (Gref ∗ Gcand, p = 0.001). This happens in the case where
the reference geometry has mostly low spatial frequency content and the
candidate geometry changes (Gcand=sphere, p=0.002); and when the reference
has mostly low spatial frequency (Gref =sphere, p=0.001) and the candidate
geometry changes.

5.3.2 High-level Factors Driving Material Recognition

In addition to the analysis, we also try to gain intuition on which high-level
factors drive material recognition, investigate how simple image statistics
and image histograms correlate with human answers, and analyze highly
non-linear statistics in material classification tasks by training a deep neural
network.

visualizing user answers To gain intuition on which high-level fac-
tors humans might use while recognizing materials, we employ a stochastic
triplet embedding method called t-STE (t-Student stochastic triplet embed-
ding) [316] directly on user answers. This method maps user answers from
their original non-numerical domain into a two-dimensional space that can
be easily visualized. Figure 5.12 shows the two-dimensional embeddings
after applying the t-STE algorithm to the answers of each online behavioral
experiment. Each point in the embedding represents one of the 100 materials
from the Lagunas et al. dataset. The insets show the color of each material
based on the color classification proposed by Lagunas et al. [171]. We can
observe how materials are clustered by color and, if we focus in a single
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Test HH Test HS Test SH Test SS

Figure 5.12: Visualizations of user answers to each of the four online behavioral
experiments (namely Test HH, Test HS, Test SH, and Test SS) using the
t-STE algorithm [316]. We can see how, for all experiments, materials with
similar color properties are grouped together. Furthermore, if we explore
the color clusters individually, we can see how there is a second-level
arrangement by reflectance properties. These observations suggest that
users may be performing a two-step process while recognizing materials
where first, they sort them out by color, and second, by reflectance
properties.

color, they seem to be clustered by reflectance properties (for instance, in
Test HH, red color cluster, we can observe how on the left there are specular
materials while on the right there are diffuse materials). This suggests that
users have followed a two-step strategy to recognize the materials, and that
the high-level factors driving material recognition might be color first, and
the reflectance properties second. At the end of the HIT, users were asked to
write the main visual features they used to recognize materials. Out of 368

unique users from the experiments analyzed in Section 5.3, 273 answered that
they have used the colors, and 221 answered that they relied on the reflections.
Among them, 157 answered both color and reflections as some of the visual
cues they have used to perform the task. This observation, together with the
t-STE visualization, strengthens the hypothesis of a two-step strategy.

image statistics Previous studies focused on simple image statistics as
an attempt to further understand our visual system [218, 4]. Nevertheless, it
is argued if our visual system actually derives any aspects of material percep-
tion using such simple statistics [10, 159, 235]. We tested out the correlation
between the first four statistical moments of the luminance (considered as
the ratio: L = 0.3086 ∗ R + 0.6094 ∗ G + 0.0820 ∗ B), the pixel intensity for
each color channel independently, and the joint RGB pixel intensity, directly
against users top-5 accuracy. To measure correlation we employ a Pearson
P and Spearman S correlation test. We found out that there is little to no
correlation except for the standard deviation of the joint RGB pixel inten-
sity where P2 = 0.43 (p < 0.001) and S2 = 0.50 (p < 0.001). Additional
information can be found in Appendix B.1.

image histograms We also compute the histograms of the RGB pixel in-
tensity (rgb), of the luminance (lum), of a Gaussian pyramid [179] (gaussian),
of a Laplacian pyramid [38] (laplacian), and of log-Gabor filters designed
to simulate the receptive field of the simple cells of the Primary Visual (V1)
Cortex [80] (gabor). To see how such histograms would perform classifying
materials, we train a support vector machine (SVM) that takes the image
histogram as the input and classifies the material in that image. We use
a radial basis function kernel (or Gaussian kernel) in the SVM. We use all
image histograms that do not feature Havran geometry as the training set
and leave the ones with Havran as test set. In the end, the best performing
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SVM uses the RGB image histogram as the input and achieves a 24.17% top-5
accuracy in the test set. In addition, we compare the predictions of each SVM
directly against human answers. For each reference stimuli we compare the
five selections of the user against the five most-likely SVM material predic-
tions for that stimuli. The best SVM uses the histograms of V1-like subband
filters and agrees with humans 6.36% of the time. Moreover, we compare
histogram similarities against human answers using a chi-square histogram
distance [245]. For a reference image stimuli we measure its similarity against
all possible candidate image stimuli and compare the closest five against
participants’ answers. The Gaussian pyramid histogram obtained the best
result, agreeing with humans 6.29% of the time. These results show how
simple statistics, and higher-order image histograms seem not to be capable
of fully capturing human behavior.

Each of the trained SVM achieved a top-5 accuracy in the test set of:
24.17% (rgb), 15.16% (lum), 22.50% (gaussian), 6.33%, 7.52% (laplacian),
and 16.33% (gabor), respectively. In addition, we have compared how the
SVM predictions agreed with humans’ answers from the online behavioral
experiments. For each SVM the agreement is: 4.24% (rgb), 4.33% (lum),
4.34% (gaussian), 5.04% (laplacian), and 6.36% (gabor) respectively. Last, we
have also computed the histogram similarity using a chi-squared distance.
Then, we have taken the five closest samples and compared that with human
answers. We do that for each of the five different histograms and each
achieves the agreement: 5.95% (rgb), 5.45% (lum), 6.29% (gaussian), 4.97%
(laplacian), and 5.07% (gabor) respectively.

image frequencies To understand if humans performance could be
explained by taking into account the spatial frequency of the reference
stimuli, at their viewed size, we have added the high-frequency content
measure (HFC), and the first four statistical moments of the reference stimuli
magnitude spectrum to the factors analyzed in Section 5.3. We found that the
Skewness (p < 0.001) and Kurtosis (p < 0.001) of the magnitude spectrum
seem to have a significant influence on humans performance; however, they
present a very small effect size.

highly non-linear models Recent studies suggest that, to under-
stand what surrounds us, our visual system is doing an efficient non-linear
encoding of the proximal stimulus (the image input to our visual system)
and that highly non-linear models might be able to better capture human
perception [89, 57]. Inspired by this hypothesis, we have a trained a deep
neural network called ResNet [123] employing a loss function suitable to
classify the materials in the Lagunas et al. dataset. The images feature the
same illuminations as the reference stimuli. We left out the images rendered
with Havran geometries for validation and testing purposes, and use the
rest during training. To know which material the network classifies we add
a softmax layer at the end of the network. The softmax layer outputs the
probability of the input image to belong to each material in the dataset.
In comparison, the model used by Lagunas et al. [171] does not have the
last fully-connected and softmax layer, and it is trained using a triplet loss
function aiming for similarity instead of classification.

To train the 35 layers ResNet (34 of the original model plus an additional
fully connected) [123] we have employed the dataset introduced by Lagunas
et al. [171], which contains renderings of materials with different illumina-
tions and geometries. We use a soft cross-entropy loss where samples that
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Figure 5.13: Two-dimensional visualiza-
tion obtained using the
UMAP algorithm [214]. The
inset shows the color of each
material. We can observe
how materials are arranged
by color clusters. Moreover,
we can observe similarities
between this visualization
and the t-STE visualization
on user answers.
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Figure 5.14: Normalized pairwise similar-
ity for each online behavioral
experiment and the deep neu-
ral network trained for mate-
rial classification. We can ob-
serve how the pairwise sim-
ilarity decreases as the stim-
uli in the experiments cover
fewer frequencies in the spec-
trum, where Test SS has the
lowest similarity.

do not belong to the same class are penalized [302]. The loss function takes
the probabilities output of the softmax layer and penalizes when they give a
high probability to the materials that do not belong to the input image. The
images input to the model are resized to 224x224 px.

The parameters of the model are initialized using a pretrained version on
ImageNet dataset [61]. We use the ADAM algorithm [161] as the optimizer.
The model has been trained during 50 iterations starting at a learning rate
of 10−3 and decayed by a factor of 10 at the iteration 20, 35, and 45; the
batch-size was set to 64 images. We use the PyTorch framework and use an
Nvidia 2080Ti GPU.

At the end of the training, the model achieves a top-5 accuracy of 89.63%
on the test set suggesting that such models are actually capable of extracting
meaningful features from labeled proximal image data. To gain intuition on
how the network has learned we have used the UMAP (Uniform Manifold
Approximation and Projection) algorithm [214]. This algorithm aims to
reduce the dimensionality of a set of feature vectors while maintaining the
global and local structure of their original manifold. Figure 5.13 shows a two-
dimensional visualization of the test set obtained using the 128 features of
the fully-connected layer before softmax. We can observe how materials seem
to be grouped first by color and then by its reflectance properties suggesting
that the model may have used similar high-level factors to humans when
classifying materials.

We additionally assess the degree of similarity between the high-level
visualization of each online behavioral experiment and the high-level vi-
sualization of the deep neural network. We calculate the similarity in a
pairwise fashion where we choose a material sample and retrieve its five
nearest neighbors in two different low-dimensional representations. Then,
we compute the percentage of materials that are the same in both groups of
nearest neighbors. We repeat this process for all the materials and calculate
the similarity as the average.
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The low-dimensional representations are obtained with stochastic methods,
where the same input can have different results if we vary the parameters.
To evaluate the degree of self-similarity, we run the t-STE algorithm [316]
on each behavioral experiment using five different sets of fully randomly
sampled parameters. We obtain a self-similarity value of 0.66, on average
across experiments. For comparison, a set of random low-dimensional
representations have a similarity of 0.06, on average. Figure 5.14 shows
the average pairwise similarity normalized by the value of self-similarity
and random similarity for all experiments and the deep neural network
visualization. If we compare between behavioral experiments, we can observe
a decreasing degree of similarity as their stimuli feature fewer frequencies
in the spectrum, where Test SS yields the lowest similarity in each of the
pairwise comparisons. We argue that Test SS has the lowest similarity
because it is the experiment where users have the worst performance thus
yielding a blurry high level visualization. On the other hand, the network is very
accurate classifying materials and yields a high-level visualization with well-
defined material clusters. Moreover, if we focus on the deep neural network
visualization, we can observe how its similarity values are, in general, on par
with those obtained by users in Test HH, Test HS, and Test SH. This result
further supports the hypothesis that both humans and deep neural networks
may rely on similar high-level visual features for material recognition tasks.
However, this is just a preliminary result that may highlight a future avenue
of research, and a thorough analysis of the perceptual relationship between
deep learning architectures and humans is out of the scope of this chapter.

5.4 discussion

From our online behavioral experiments, we have observed that humans
appear to perform better at recognizing materials in stimuli with high-
frequency illumination and geometry. Moreover, our performance when
recognizing materials is poor on low-frequency illuminations and it remains
statistically indistinguishable irrespective of the spatial frequency content in
the candidate geometry.

asymmetric effect of the reference and candidate geometry

It is also interesting to observe that humans seem to have better performance
with a high-frequency reference geometry, compared to a high-frequency
candidate geometry (p = 0.001, see Figure 5.15, left). The number of can-
didates with respect to the reference could be used as an explanation for
this observation, since users may devote more time to inspecting the single
reference than the higher number of candidates. At the same time, a lower
performance with a high-frequency reference geometry may speak against
an inverse optics approach since having multiple candidate materials with
the same geometry and illumination could provide a strong cue to inferring
the material.

One potential factor that may explain this difference in performance is
the different display sizes of the reference (300x300 px.) and the candidate
(120x120 px.) stimuli. To test this hypothesis, we have launched two ad-
ditional experiments where we collect answers on Test HS and Test SH
displaying the candidate and the reference stimuli at size 300x300, and other
two additional experiments where they are displayed at 120x120 px. We
sample the stimuli to cover all the possible combinations of illuminations
and materials and keep other technical details as explained in Section 5.2.
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Original High res. Low res.

Figure 5.15: Top-5 accuracy obtained by participants in the original experiment (left),
when the stimuli are displayed at 300x300 px. (middle), and at 120x120

px. (right). We can observe how the asymmetric effect of participants
performing better when Havran is the reference geometry (TestHS) com-
pared to when it is the candidate (TestSH) remains present when the
participants observe the reference and candidate stimuli at identical sizes
(middle and right). The ∗ denotes significant differences. The error bars
correspond to a 95% confidence interval.

We perform an analysis of the gathered data similar to the one explained in
Section 5.3, but using the different experiment type as a factor. From our
results we observe that such asymmetric effect remains present when the
stimuli are displayed at 300x300 px. (p < 0.001) and when they are displayed
at 120x120 px. (p < 0.001). Those results can be seen in Figure 5.15, middle
and right. It is also interesting to observe how users have slightly worse
performance when the stimuli are displayed at 300x300 px. At such display
size only three candidate stimuli per row could be displayed taking into
account the most used display size. Thus, seems reasonable to think that the
need for additional scrolling could be hampering participants’ performance.

influence of the candidate illumination We have seen that
humans seem to be better at recognizing materials under high-frequency
reference illuminations. However, in Figure 5.5 and 5.7 we can see that the
St. Peters candidate illumination features a similar frequency content to the
reference illuminations where users have better performance. To asses if
St. Peters illumination contains a set of frequencies that aids recognizing
materials under reference illuminations with a similar set of frequencies, we
have launched an additional behavioral experiment. In this experiment we
use Doge, a medium-frequency illumination, as the candidate illumination.
We sample the stimuli to cover all materials and reference illuminations in
Test HH. Other technical details are kept as explained in Section 5.2. From
the data collected (see Figure 5.16), we can observe how, using Doge as the
candidate illumination, humans performance follows a similar distribution
to the original experiment (with St. Peters as the candidate illumination).
Participants seem to perform better with high-frequency reference illumi-
nations (Uffizi, Grace, Ennis), they perform worse with medium-frequency
ones (Pisa), and have their worst performance with low-frequency reference
illuminations (Glacier). In addition, participants seem to have slightly bet-
ter performance with a high-frequency candidate illumination (St. Peters)
compared to a medium-frequency one (Doge).
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Figure 5.16: Left: Top-5 accuracy for each reference illumination when St. Peters,
a high-frequency illumination, is the candidate illumination. Right:
Top-5 accuracy for each reference illumination when Doge, a medium-
frequency illumination, is the candidate illumination. Both results have
been obtained for Test HH. We can observe how, for both candidate
illuminations, participants seem to perform better with high-frequency
reference illuminations (Uffizi, Grace, Ennis), they perform worse with
medium-frequency ones (Pisa), and have their worst performance with
low-frequency reference illuminations (Glacier). In addition, we also
observe that participants have slightly better performance when St. Peters
(high-frequency illumination) is the candidate illumination. The error
bars correspond to a 95% confidence interval.

interplay between material , geometry, and illumination We
have looked into how geometry, illumination, and their frequencies affect
our performance in material recognition tasks. Our stimuli were rendered
images in which we varied the frequency of the illumination, and of the
underlying geometry of the object present. To better understand how our
factors (illumination and geometry) affect the generated stimuli, and thus the
proximal stimulus, we offer here a brief description of the rendering equation,
providing an explanation of the probable effect of how the frequencies of the
geometry and illumination in the 3D scene affect the final, rendered image
that is used as a stimulus in our experiments. From the point of view of the
rendering equation, the radiance Lo at point x in direction ωo, assuming a
distant illumination and non-emissive surfaces can be approximated as

Lo(x, ωo) ≈
∫

Ω
Li(ωi) F(ωi, ωo) T(x, ωi, ωo) dωi, (5.1)

where Li accounts for the incoming light, the variable F accounts for the
reflectance of the surface, and T depends on the point of the surface we are
evaluating, therefore, on the geometry.

The simulation of the radiance Lo can be seen as a convolution (spherical
rotation) [254] between each signal: incoming radiance Li, material F and
geometry T. Moreover, if we analyze Lo in the frequency domain (where
F is the Fourier transform), and apply the convolution theorem ( f ∗ g =
F ( f ) · F (g)) the value of F

(
Lo
)

becomes

F
(

Lo
)
≈ F

(
Li
)
F
(

F
)
F
(
T
)
. (5.2)

Equation 5.2 shows how the frequency of the radiance Lo in the final image is
a multiplication of all the other signals, Li, F, and T in the frequency domain.
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Figure 5.17: Example of a convolution (F ∗ T, green line) between a material (F,
orange line) and a geometry (T, blue line) with different frequency
content. Left: We can see how when we convolve a geometry and a
material with high spatial frequencies, the resulting convolution also
retains high-frequency content. Right: We observe how when geometry
has low spatial frequencies and the material has high spatial frequencies,
the resulting convolution does not retain high-frequency content. Note
that T and F are not necessarily related to a real BRDF or shape from the
ones reported in this chapter.

Thus, the final image will only have the frequencies that are contained within
the three other signals. Figure 5.17 shows how when we convolve two high-
frequency signals, the resulting one keeps the high-frequency content; on
the other hand, when we convolve a high- and a low-frequency signal, the
resulting one has most of its frequencies masked.

We can relate the observations made from Equation 5.2 to the results on
user performance that we obtained from the online behavioral experiments.
We have seen that users seem to consistently perform better when they
recognize materials from high-frequency geometries and illuminations. This
finding is supported by Equation 5.2 since, to avoid filtering the frequencies
of the material in the stimuli, it should have a high-frequency geometry and
illumination. Moreover, a low-frequency geometry (or illumination) could
filter out the frequencies of the illumination (or geometry) and the material,
thus yielding fewer visual features on the final image and, as a result, worse
users performance. This is consistent with our findings from the analysis of
first-order interactions for users performance in Section 5.3.1.

material categories We have seen that the reflectance properties seem
to be one of the main high-level factors driving material recognition. In this
regard, we have also investigated users’ performance using the classification
by reflectance type proposed by Lagunas et al. [171], where the MERL
database is divided into eight different categories with similar reflectance
properties. On average, users perform best on acrylics, with a top-5 accuracy
of 45.45%, while they have their worst performance with organics, with an
accuracy of 10.22%. Figure 5.18 shows the top-5 accuracy for each category
in each reference illumination. Firstly, we observe that users seem to perform
better with high-frequency illuminations (Uffizi, Grace, Ennis). However, we
can see how fabrics and organics do not follow this trend. We argue that
fabrics and organics contain mostly materials with a diffuse surface reflectance
(low-frequency) that clamp the frequencies of the illumination and, therefore,
yield fewer cues in the final stimulus that is input to our visual system.
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Figure 5.18: Users’ performance, in terms of top-5 accuracy, for material recognition
tasks taking into account the reflectance of the materials. We can observe
how, on average, users perform better for high-frequency illuminations
(Uffizi, Grace, and Ennis). Also, we can see how for classes, like fabrics
or organics, containing materials with diffuse surface reflectance (low-
frequency), users do not have better performance with broad frequency
content illuminations. We argue that, since they have a low-frequency
surface reflectance, even though there is a high-frequency illumination,
those frequencies cannot be represented on the final stimulus that is
input to our visual system.

5.5 conclusions

In this chapter, we have presented a thorough and systematic analysis of the
interplay between geometry, illumination, and their spatial frequencies in
human performance recognizing materials. We launched rigorous crowd-
sourced online behavioral experiments where participants had to solve a
material recognition task between a reference and a set of candidate samples.
From our experiments, we have observed that, in general, humans appear
to be better at recognizing materials in a high-frequency illumination and
geometry. We found that simple image statistics, image histograms, and
histograms of V1-like subband filters are not capable of capturing human
behavior, and, additionally, explored highly non-linear statistics by training
a deep neural network on material classification tasks. We showed that
deep neural networks can accurately perform material classification, which
suggests that they are capable of encoding and extracting meaningful infor-
mation from labeled proximal image data. In addition, we gained intuition
on which are the main high-level factors that humans and those highly
non-linear statistics use for material recognition and find preliminary evi-
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dence that such statistics and humans may share similar high-level factors
for material recognition tasks.

limitations and future work To collect data for the online behav-
ioral experiment we have relied on the Lagunas et al. [171] dataset which
contains images of a diverse set of materials, geometries, and illuminations
that faithfully resemble their real-world counterparts. This database focuses
on isotropic materials, which are capable of modeling only a subset of real-
world materials. A systematic and comprehensive analysis of other hetero-
geneous materials, or an extension of this study to other non-photorealistic
domains, remains to be done. Our stimuli were rendered using the sphere
and Havran geometry, although those surfaces have been widely used in
the literature [171, 276, 142, 118], introducing new geometries could help to
further analyze the contribution of the spatial frequencies of the geometry in
our perception of material appearance [227]. Moreover, to select our stimuli,
we characterized the frequency content of real-world illuminations using the
high-frequency content measure [37]. We focus on real-world illuminations,
which are by definition broadband, therefore, we do not impose nor limit
their frequency distribution in our analyses; carefully controlling the spatial
frequency of the stimuli via filtering in order to isolate frequency bands and
study their individual contribution to the process of material recognition is
an interesting avenue of research.

In our additional experiments, we have investigated the asymmetric effect
in performance with a high-frequency reference geometry, compared to a
high-frequency candidate geometry when all stimuli are displayed at the
same size. A rigorous study of the interplay between display size, the spatial
frequencies of the stimuli, and how this affects humans’ performance on
material recognition remains an interesting line of future work. Furthermore,
despite the fact that our neural network was trained to classify materials,
without any sort of perceptual information, it achieved an agreement with
participants answers of 22.43%. This does not prove that the neural network
follows the same mechanisms as humans do when performing these tasks.
However, this result together with the increase in popularity of deep neural
networks, makes the analysis of the perceptual relationship between learned
features and the features that our visual system uses to recognize materials a
promising avenue to explore. Last, we hope that our analyses will provide
relevant insights that will help shed light on the underlying perceptual
processes that occur when we recognize materials and, in particular, on how
the confounding factors of geometry and illumination affect our perception
of material appearance.
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6M O T I O N I N M AT E R I A L P E R C E P T I O N

In this chapter, we analyze the effect of motion in the perception of material ap-
pearance. First, we create a set of stimuli containing 72 realistic materials, rendered
with varying degrees of linear motion blur. Then we launch a large-scale study
on Mechanical Turk to rate a given set of perceptual attributes, such as brightness,
roughness, or the perceived strength of reflections. Our statistical analysis shows
that certain attributes undergo a significant change, varying appearance perception
under motion. In addition, we further investigate the perception of brightness, for
the particular cases of rubber and plastic materials. We create new stimuli, with
ten different luminance levels and seven motion degrees. We launch a new user
study to retrieve their perceived brightness. From the users’ judgements, we build
two-dimensional maps showing how perceived brightness varies as a function of the
luminance and motion of the material.

This work was presented at the Symposium on Applied Perception (SAP) [207]. While
I was not the leading author in this work, my contributions lie on the design and
launch of the second experiment (Section 6.4.1) together with writing the manuscript.

R. Mao, M. Lagunas, B. Masia, & D. Gutierrez
The Effect of Motion on the Perception of Material Appearance

Symposium of Applied Perception, No. 16, 2019

6.1 introduction

The perception of material appearance is affected by confounding effects such
as the shape of the object, illumination, viewing conditions, etc. However,
being able to distinguish between materials and to infer their key properties
by sight is an inherent process in humans, which is invaluable for multiple
tasks. How this is done exactly remains unclear, since human perception is
a complex process influenced by a large set of variables. In fact, a unified
theory that fully explains such a process does not exist [82, 9].

To reduce the dimensionality of the perception of material appearance,
many works have focused on developing applications for material synthesis
[355], editing [276], or filtering [142]. Other works focus on investigating
individual variables that may affect our perception, such as translucency
[105], or gloss [246, 331].

With a few exceptions, most of the research on material perception has
focused on static stimuli. Doerschner et al [64] identified three motion cues
the brain could rely on to distinguish between matte and shiny surfaces.
Aliaga et al. [8] explore the interplay of cloth and dynamics, while Sakano
et al. [262] studied how self-motion influences the perception of gloss.
Nevertheless, a generalized approach that tries to explain the effect of motion
on a wide variety of attributes remains an open avenue of research.

In this chapter, we study the influence of linear motion in the perception
of material appearance relying on a set of intuitive, high-level perceptual
attributes [276]. Inspired by previous large-scale studies [258, 276], we rely
on crowdsourced data, from a set of 72 varied, realistic materials. To create
a dense space of stimuli, we add additional variations by modifying their
luminance, and render them with different levels of motion. This creates a
total of 284 stimuli, used in two different experiments.
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Figure 6.1: Left: Representative samples of the stimuli used in our first experiment,
in which we analyze the perception of a series of high-level attributes for
varying degrees of motion and different materials. Right The variation of
the high-level attribute brightness for different motion degrees and material
categories tested in our first experiment.
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Figure 6.2: Left: Representative samples of the stimuli used in our second experiment,
in which we look at the influence of varying luminance levels and motion
degree on perceived brightness. Right: Results of our second experiment,
showing a non-linear influence of motion degree and luminance level on
perceived brightness.

In the first experiment (see Figure 6.1), we statistically analyze the sig-
nificant change in how several of these high-level attributes are perceived
according to the degree of motion. While brightness decreases significantly,
more diffuse appearances remain constant as motion increases. This may
be explained by the fact that motion blur has a higher impact on the high
frequencies of an image which are usually associated with more specular
materials.

In a second experiment (see Figure 6.2), we focus on the perception of
brightness, where the first experiment showed a larger influence of motion.
We select rubber and plastic materials, with seven motion degrees and ten
luminance levels. Using human judgements through Mechanical Turk, we
build a brightness map as a two-dimensional function that shows the average
perceived brightness for each level of luminance and degree of motion.

Our contributions represent just a step towards a better understanding
of how motion affects material perception, a relatively unexplored topic
compared to studies on static stimuli. To encourage further research on this
topic, all our data will be made publicly available, including the material
database, code, and the users’ responses.
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6 .2 stimuli creation

Original stimuli Make homegenous Add motion

Figure 6.3: Summary of the process followed to generate stimuli of homogeneous
materials with different degrees of motion. From left to right, the first
column shows the frameworks used for rendering. The second column
is the rendering result using vMaterials and ray tracing engine OptiX
[242], including texture and small geometric details. The third column
represents the homogeneous material removing additional information
provided in vMaterials. The last column shows the stimuli with different
degrees of motion.

6.2 stimuli creation

The following section explains the process followed in order to create the
stimuli for our experiments.

materials We use the material library vMaterials, a large collection of
realistic materials and lights described in Material Definition Language
(MDL) [155]. We did not use a measured material database since they will
not give us the efficiency needed to, in the future, use high-level material
features to control and edit material appearance in real-time. Among all the
available options, we selected a subset of 72 materials that span six categories,
including glass, metal, paint, plastic, rubber, and stone. We decided to choose
materials categories that represent daily items to avoid introducing bias due
to unawareness in the participants’ answers.

The materials in vMaterials include additional layers that add texture
or small geometric details at rendering time. These features can alter the
information that arrives at our visual system and distract the participant from
its real purpose which is to observe the material itself. Therefore, in order to
focus the attention of the user, we decided to remove all additional layers
included in the material description, obtaining at the end, a homogeneous
representation of the material. This procedure is depicted in Figure 6.3.

adding motion To approximate the effect of motion in our stimuli, we
use an image algorithm consisting in a two-dimensional filter [34], described
in Equation 6.1.

Io(x, y) = ∑ k(x′, y′)× Ii(x + x′, y + y′) (6.1)

where Ii(x, y) and Io(x, y) are the input and output images respectively; and
(x, y) are the coordinate of the pixel in the image. The expression k(x′, y′)
means a convolution kernel, whose index in the kernel is (x

′
, y

′
). The range

of k(x′, y′) is 1 ≤ x′ ≤ kc and 1 ≤ y′ ≤ kr, where kc and kr are the number of
columns and rows in k. When the aperture is partially outside the image, we
interpolate outlier pixel values by mirroring Ii.

Our experiments only intend to investigate material perception for linear
movement, therefore k(x′, y′) is a horizontal vector, whose value is 1/kc. The
size of the kernel (kc), can be considered as the motion degree. In a static
situation, the motion degree is 0.

scene We use a sphere as the 3D model, a well-known surface, widely
used in previous user-studies [142, 86]. The 3D model is placed in the
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Figure 6.4: Subset of the stimuli used in the user experiment. Each row correspond
to a material from a material category. The x-axis shows the degree of
motion, going from 0 (a static stimuli) to 135 (fastest stimuli). For the
first experiment, we only use the motion degrees 0, 45, and 95 since they
provide significant visual changes in the final renderings.

centre of the scene. In order to render our stimuli, first, we use OptiX
[242], a general purpose ray tracing engine, with the homogeneous material
definition to generate an image of a static material, then we apply the two-
dimensional filter explained in Equation 1 to add motion to the scene. Figure
2 summarizes the process of stimuli creation.

6.3 first experiment : rating material attributes

This section describes the approach followed in order to collect human ratings
of perceptual attributes on materials under the influence of a certain degree
motion.

stimuli We choose a set of 72 different realistic materials, that span six
different material categories, and three degrees of motion: 0, 45, and 95 with
a significant difference between them in order to provide a notable change
in the stimuli appearance. Further explanation about the stimuli creation is
given in Section 6.2. A subset of the stimuli is shown in Figure 6.4, all the
stimuli are shown in the supplementary material.

participants Similar to previous work dealing with large-scale experi-
ments in computer graphics [258, 276, 171], we rely on Amazon Mechanical
Turk (MTurk) to launch our experiments. In the end, a total of 540 users
performed the task. Users were unaware of the purpose of the experiment.

procedure Our user-study deals with the perception of material ap-
pearance under the influence of motion. We ask the users to rate a set
of perceptual attributes regarding the material in the stimuli. They rate
the attributes in a Likert-like scale, which has proven to work reliably in
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6 .3 first experiment : rating material attributes

multi-modal problems [342]. Following previous work [69, 345, 276], our
scale ranges from 0 (very little) to 5 (a lot). We consider this range a good
compromise between the complexity to fill in the survey and the number of
available options for the participants.

Following the work of Serrano et al. [276], participants rate 14 perceptual
attributes, namely: plastic-like, rubber-like, metallic-like, fabric-like, ceramic-like,
soft, hard, matte, glossiness, brightness, roughness, tint of reflections, strength of
reflections, and sharpness of reflections. Covering both, high and mid-level
features of the material, allowing for a comprehensive evaluation of the
participants’ perception.

Each test consisted of 12 different trials, 4 groups of three spheres with
the same material and different motion degrees, randomly displayed. The
participants had to rate all the 14 perceptual attributes in all the trials of the
user study (HIT, Human Intelligence Tasks, in MTurk terminology). The
experiment was developed to work in standard web browsers. Before the real
experiment, there is a thorough description of the task, and a brief training
session in order to minimize worker unreliability [330]. During the real test,
participants were shown one stimulus at a time. In the end, each stimulus
was rated by 30 different users and we collected a total of 6480 answers for
14 attributes, yielding 90.720 ratings.

6.3.1 Analysis

Among the 14 perceptual attributes rated by the participants, we select a
subset of six to perform the statistical analysis, those include brightness,
glossiness, matte, roughness, sharpness of reflections and strength of reflections.
We conducted a Friedman rank sums test, a non-parametric version of
ANOVA [251], in order to analyze how the factors: material category and
motion degree have affected participants’ answers. The motion degree contains
three levels: 0, 45, and 95 while the material category has six: glass, metal,
paint, plastic, rubber, and stone. We decided to use a Friedman test since it
is suitable for Likert-like ratings and samples do not need to be normally
distributed. We chose a significance level of p = 0.05 in all our tests.

the influence of motion A summary with all the p-values for each
rated attribute and material category can be found in Table 6.1, a complete
table with all the p-values can be found in the supplementary material.
We observe that glossiness, brightness, strength of reflections, and sharpness of
reflections have a significant change in all the material categories (p < 0.05).
On the other hand, the attributes matte, and roughness are not influenced by
motion and do not have a significant change for all the material categories
(p > 0.05). These results may suggest that motion has a bigger effect on
our perception of the attributes that describe the specularity of the material
instead of on the ones that are used to characterize diffuse appearances.

the influence of the material The attributes matte, and roughness
are not influenced by motion in all the material categories. Only metal
and paint materials for the matte attribute will have a significant change
(p < 0.05). We argue that this significant change is produced because these
materials have a characteristic narrow specular lobe that under the effect
of motion blur will broaden, giving them a more diffuse and dimmer final
appearance.
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Attribute Material χ2 p-value Attribute Material χ2 p-value

M
at

te

Plastic 0.301 0.860

G
lo

ss
in

es
s

Plastic 24.958 0.004

Metal 13.942 0.001 Metal 19.080 0.072

Glass 0.833 0.659 Glass 52.166 0

Stone 1.240 0.538 Stone 64.045 0

Paint 10.033 0.007 Paint 29.110 0

Rubber 2.898 0.235 Rubber 19.648 0.054

Br
ig

ht
ne

ss
Plastic 70.490 0

R
ou

gh
ne

ss

Plastic 2.924 0.232

Metal 52.211 0 Metal 1.769 0.413

Glass 62.027 0 Glass 2.233 0.327

Stone 72.240 0 Stone 1.347 0.510

Paint 71.274 0 Paint 1.327 0.515

Rubber 59.049 0 Rubber 0.003 0.999

St
re

ng
th

of
re

fle
ct

io
ns

Plastic 41.848 0

Sh
ar

pn
es

s
of

re
fle

ct
io

ns

Plastic 45.868 0

Metal 42.993 0 Metal 51.283 0

Glass 66.824 0 Glass 101.800 0

Stone 29.444 0 Stone 48.995 0

Paint 18.885 0.079 Paint 38.979 0

Rubber 14.236 0.001 Rubber 34.243 0

Table 6.1: Results from Friedman rank test for all the materials and attributes over all
motion degrees. The last two columns show the results from the Friedman
test (χ2 and p-values).

Given the previous findings, we further investigate the significance of
each factor individually. We conduct a Nemenyi post hoc test with a single-
step p-value adjustment, suitable to find statistically significant groups after
the Friedman test. Table 6.2 shows the p-values for the attributes glossines,
brightness, strength of reflections, and sharpness of reflections; and both factors:
material category, and motion degree.

We can observe a clear trend for all four attributes, there is a significant
change in participants’ perception when the stimuli changes from static to a
middle motion degree (p < 0.05) and if the stimulus moves from static to the
highest analyzed motion degree (p < 0.05). However, if the stimulus changes
from a middle motion degree (45) to the highest motion degree (95), there are
no significant changes in participants’ answers (p > 0.05). This showcases
the non-linear nature of human perception of material appearance [307] and
tells us that linear changes in motion do not necessarily correlate with linear
changes on the perception we have about the stimuli [343, 41]. However, the
rubber material category does not show significant changes for attributes
glossiness, and strength of reflections when the degree of motion changes from
static to a middle motion degree (p > 0.05), but shows significant changes
when we move from a static to the highest motion degree (p < 0.05). This
could be due to the diffuse appearance of rubber, which lacks reflections.
Therefore, small changes in motion do not produce perceptually visible
changes in the specular appearance of the material, requiring higher motion
degrees to perceive those changes.

Figure 6.5 shows the trends of participants’ ratings for each of the six
perceptual properties and motion degrees. As previously discussed glossines,
brightness, sharpness of reflections and strength of reflections attributes have
significantly different answers under motion. For each attribute, we observe
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Attribute Material
Motion Pairs

Attribute Material
Motion Pairs

0-45 0-95 45-95 0-45 0-95 45-95

G
lo

ss
in

es
s

Glass 0 0 0.209

St
re

ng
th

of
re

fle
ct

io
ns

Glass 0.006 0 0.357

Metal 0.269 0.003 0.178 Metal 0.014 0.004 0.108

Paint 0.017 0 0.373 Paint 0.029 0.012 0.946

Plastic 0.004 0.800 0.892 Plastic 0.003 0.005 0.274

Rubber 0.070 0.003 0.553 Rubber 0.056 0.040 0.991

Stone 0.002 0 0.665 Stone 0.003 0 0.768

Br
ig

ht
ne

ss

Glass 0 0 0.988

Sh
ar

pn
es

s
of

re
fle

ct
io

ns

Glass 0 0 0.592

Metal 0.019 0 0.649 Metal 0.003 0.002 0.192

Paint 0 0 0.645 Paint 0.002 0.071 0.703

Plastic 0.002 0 0.380 Plastic 0 0.008 0.729

Rubber 0.005 0 0.783 Rubber 0.006 0 0.728

Stone 0 0 0.946 Stone 0.027 0.004 0.918

Table 6.2: Results from the Nemenyi post hoc test. In the left and right tables, the first
column is the name of the attribute rated by the participants. The names of
the material categories are placed in the second column. From the third to
the fifth column we have the p-values for each change in motion degree.

a falloff as the motion degree is increased. This is expected as the blur
introduced by the movement of the stimulus dims the image content, soften
highlights. Also, if we observe the sharpness of reflections attribute, we see
that material categories with clear reflections in their materials — like glass
— have higher ratings in the static stimulus and a steeper decreasing slope.
On the other hand, matte and roughness attributes, not considered statistically
significant, have slight changes as we increase motion, showing an almost
uniform behavior.

6.4 second experiment : brightness map construction

Given the results of the previous experiments (see Section 6.3), where we
found that the attributes that describe the specularity of material significantly
change under motion, we further investigate the behavior of our perceived
brightness. In the following section, we explain the steps carried on in order
to understand the effect of motion on our perception of brightness.

6.4.1 Influence of brightness

To further investigate the influence of motion on perceived brightness, we run
new experiments using rubber and plastic materials, including additional
motion degrees, and adding more levels of luminance in the stimuli.

stimuli We generate a series of stimuli for the materials rubber and
plastic, with ten continuous-changed luminance levels (1 to 10) under seven
different motion degrees (0, 5, 15, 45, 75, 95, 135). The stimuli used in this
experiment for the material rubber can be seen in Figure 6.2.

participants Similar to the previous user-study, we relied on Amazon
Mechanical Turk to launch the experiment. A total of 210 unique workers
took part in it. Users were unaware of the purpose of the experiment.
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Figure 6.5: Average rating given in the user-study for each of the six perceptual
attributes analyzed for each material type and for all the motion degrees.
The x-axis shows the variation in motion of the stimuli, the y-axis displays
the average rating given by the participants. Each color of the line plot
represents one of the material categories. Error bars correspond to a 95%
confidence interval. In attributes glossines, brightness, sharpness of reflections
and strength of reflections, the rating decreases while for matte and roughness
it shows an almost uniform behavior. All the plots for each attribute can
be found in the supplementary material.

procedure This experiment follows a similar scheme to the one explained
in Section 4. Participants are asked to rate a subset of six different attributes
(introduced in Section 6.3) on a continuous 5-point Likert-like scale. Also,
although we are only interested in brightness, in order to avoid participants
to know the real purpose of the experiment, they are asked to rate all the
subset of 6 attributes. We reduce the number of attributes to rate from 14

to 6 in order to avoid distractions in the user [62]. Each experiment has
10 different trials containing all the brightness levels and random motion
degrees. The trials are presented randomly to the participants. We collect

88



6 .4 second experiment : brightness map construction

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9
0

15

45

75

95

135
Rubber's brightness map

Luminance

M
ot

io
n 

D
eg

re
e

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9
0

15

45

75

95

135
Plastic's brightness map

Luminance

M
ot

io
n 

D
eg

re
e

Figure 6.6: Left: Rubber brightness map created using the stimuli from the experi-
ments. Right: Plastic brightness map. In both brightness maps, the x-axis
is the luminance of the stimuli while the y-axis is its motion degree. Both
figures show how as motion degree increases, brightness decreases non-
linearly.

15 answers for each sphere, brightness, and motion degree. In the end, we
gather a total of 2100 answers.

6.4.2 Analysis

After collecting all the data, we have a set of brightness’ ratings for stimuli
with variations in their motion degree and luminance. With it, we can build
two-dimensional maps that tell us the average perceived brightness for each
luminance and motion degree level.

building a brightness map In Figure 6.6, we can see the brightness
maps for the materials rubber (left) and plastic (right) The brightness maps
are constructed for all 10 luminance levels, in the x-axis, and 7 motion
degrees, in the y-axis, of the stimuli. In order to build the brightness map,
we get the average perceived brightness values of the participants using the
ratings of the experiment. Since we cannot generate an infinite set of stimuli,
the points that are not sampled are generated using linear interpolation.

luminance compensation Both brightness maps confirm the results
from the previous experiment (Section 6.3), as motion increases our ratings
of perceived brightness decrease. However, when the stimulus reaches a high
motion degree our perception of its brightness keeps almost constant. Also,
If we follow an isocontour in the brightness maps — the lines that have the
same average perceived brightness —, we can observe how, in order to keep
a constant perceived brightness, the slope of the isocontour bends. Moreover,
if we compare both brightness maps, we can observe how the plastic has
an overall less perceived luminance. We argue that this happens due to the
blur in the highlights of the plastic, a specular material, produced by the
effect of motion blur. While on the rubber, since it is a diffuse material, there
are no significant highlights and the effect of motion has a reduced impact
compared to the case of plastic.
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luminance split Isocontours show how in order to keep the same level
of perceived brightness, luminance levels have to increase non-linearly when
motion degree is increased linearly. Moreover, if we follow the isocontour
generated between the values 2 and 3 of luminance, we can see a clear
separation; on the left, we would have the dim area with values of perceived
brightness around 2.5 while on the right side of the isocontour we can see
a constant area with perceived brightness of 3.5. These two regions are
separated by the isocontour where our perceived brightness takes a value
of 3. This exhibits the non-linear behavior of human perception, and also
how, although the values of luminance and motion degree are changing, our
perception of brightness remains constant.

6.5 discussion and future work

6.5.1 Conclusion

We have presented an analysis of the effects of motion blur on our percep-
tion of a wide set of material attributes, for different material categories.
To do it, we analyze 38,880 ratings (72 (materials) × 3 (motion degrees) ×
30 (answers/stimulus)× 14 (attributes)) given for six different material at-
tributes: brightness, glossiness, matte, roughness, sharpness of reflections and
strength of reflections.

A reasonable concern when using Mechanical Turk as a source for par-
ticipants in user studies, is the possible effect of uncontrolled viewing con-
ditions (such as display characteristics or viewing environment). Never-
theless, previous studies have shown that MTurk can actually be used in
visual psychophysical experiments, and its results matched those under con-
trolled lab conditions, since a large number of participants reduces variance
(e.g. [126, 142]). Similarly, participants were not screened for proficiency
in English, so it may be that some subtleties in the description of material
appearance were lost.

Our results indicate that motion blur has a significant effect on our per-
ception of attributes related to the specular nature of the material, namely
glossiness, brightness, and strength and sharpness of reflections, whereas no
significant influence exists on the attributes matte and roughness. The four
aforementioned attributes—glossiness, brightness, and strength and sharpness
of reflections—are given significantly lower ratings as the motion degree in-
creases. This can be due to the removal of high frequencies of the stimuli as
a consequence of motion blur, since it has been shown that these relate to
specularity [71]. When looking at the nature of this influence through post
hoc analyses, we observe that, among lower motion degrees the influence
of motion blur on the perception of attributes is larger than among higher
ones; actually, there is no significant difference between motion degrees 45

and 95, while there is between degrees 0 and 45. This seems to indicate a
stabilization of perceived attribute magnitudes for higher motion degrees,
i.e., from a certain motion degree, increased motion blur does not change the
perception of these attributes.

Moreover, we select an attribute and material category to do a more in-
depth analysis of the influence of motion blur on perceived brightness. In
this second experiment, we not only vary the motion degree, but also the
luminance of the material shown in the stimuli. We seek to observe how the
isocontours (i.e., lines of constant brightness) behave as we vary both motion
degree and luminance level. Despite the limited extent of our experiment, we
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observe how the non-linear behavior with motion degree persists. Further,
this behavior is different for different luminance levels, falling back to an
almost constant (independent of motion degree) behavior for both very high
and very low luminance levels. This intricate relationship suggests the need
for more detailed experiments, covering a wider range of appearances and
perceived attributes; this work takes the first steps in this direction, but a
comprehensive model of the influence of motion blur in material perception
remains as future work.

6.5.2 Future work

In this chapter, we have just investigated the effect of motion blur due
to linear motion in our perception of material appearance; other kinds of
motion, including rotation, multidirectional paths, accelerated movement,
etc., would require further analysis, for which we hope our work can provide
a solid basis. Similarly, we make the reasonable assumption that motion
blurred images are a good proxy for actual moving stimuli for the purposes
of our test.

Our stimuli have been rendered using homogeneous material files in MDL.
Exploring how the missing information encoded in the heterogeneities of
some materials (like stone, or wood) affects appearance perception is an
interesting extension, not included in our work. Some materials, especially
specular ones, may require a wider dynamic range than what a typical
display provides, an aspect of appearance perception not covered in this
chapter since our stimuli were tone mapped. Also, since users, in general,
tend to avoid extrema in Likert-based tests, it would be interesting to find
if using a 7-point scale would have an influence in their responses. Finally,
extending this work to find a correlation between image statistics and the set
of perceptual attributes analyzed remains unexplored. Human perception
of appearance is a sophisticated process, not fully understood, which poses
many challenges and opens interesting avenues of future research, and we
hope our work will inspire future exploration of the influence of motion in
our perception. For instance, our findings could be used to optimize the
performance of rendering pipelines where motion can have a big influence
like in the emerging fields of virtual reality or real-time ray-tracing.
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Part V

I N T U I T I V E A P P L I C AT I O N S F O R A P P E A R A N C E
E D I T I N G

This part is devoted to the development of intuitive applications
that manipulate visual appearance. First half focuses on the well-
known problem of relighting for the particular case of scenes with
full-body humans. We leverage a large dataset of synthetically
generated humans, precomputed radiance transfer, and deep neu-
ral networks to propose a framework that outperforms state of
the art in single-image full-body human relighting. Second half
explores a framework for intuitive editing of material appearance,
from RGB images, by using material attributes. We rely on crowd-
sourced data on such attributes together with a newly proposed
generative neural network architecture to obtain a plausible and
intuitive single-image material editing framework.





7F U L L - B O D Y H U M A N R E L I G H T I N G

This chapter presents a single-image data-driven method to automatically relight
images with full-body humans in them. Our framework is based on a realistic
scene decomposition leveraging precomputed radiance transfer (PRT) and spheri-
cal harmonics (SH) lighting. In contrast to previous work, our framework lifts the
assumptions on Lambertian materials and explicitly model diffuse and specular re-
flectance in our data. Moreover, we introduce an additional light-dependent residual
term that accounts for errors in the PRT-based image reconstruction. We introduce a
new deep learning architecture, tailored to the decomposition performed in PRT, that
is trained using a combination of L1, logarithmic, and rendering losses. Our model
outperforms the state of the art for full-body human relighting both with synthetic
images and photographs.

This work was done as part of both internships in Adobe Research, which contin-
ued as a collaboration afterwards. This was presented at the Eurographics Symposium
on Rendering (EGSR) [173]. While I led this line of research (with the guidance and
help of my supervisors Belén Masiá and Diego Gutiérrez). Xin Sun also helped giving
invaluable feedback, setting up the rendering engine to generate the synthetic dataset
of humans, and collaborating with the manuscript text.

M. Lagunas, X. Sun, J. Yang, R. Villegas, J. Zhang, Z. Shu, B. Masia, & D. Gutierrez
Single-image Full-body Human Relighting

Eurographics Symposium on Rendering (EGSR), 2021

7.1 introduction

The growth in mobile computing, together with the increasing demand for
visual social media has led to a tremendous rise in the popularity of consumer
digital photography. In full-body photographs lighting plays an important
role in transmitting the desired appearance of the subject, and changes in
the illumination can lead to drastically different renditions. However, these
photographs usually lack controlled illumination conditions.

We present a single-image relighting method that acts as a post-processing
step, allowing a casual user to plausibly change and manipulate the illumi-
nation on a subject in a photograph. Human relighting usually benefits from
multiple images as input, and requires solving an inverse rendering problem;
in the general case, illumination information needs to be disambiguated from
geometry and material appearance, based on simple pixel values. This is
a well-studied but ill-posed problem, for which no definite solution exists.
This chapter takes a data-driven approach to the problem, requiring only one
photograph and a user-specified target illumination as input (see Figure 7.1).
Our method relies on precomputed radiance transfer [291] (PRT) and spher-
ical harmonics lighting [254] (SH). Based on this, a convolutional neural
network (CNN) decomposes the image into its albedo, illumination, and
light transport components; from which the shading can be easily computed.
Disentangling the illumination from all other factors in the scene allows
for effective relighting, while the PRT-based scheme enables fast, efficient
rendering. Our work lifts the assumption of Lambertian materials present in
previous single-image human relighting methods [274, 148]. We model the
PRT decomposition in our framework by approximating material reflectance
using an Oren-Nayar [237] and GGX microfacet model [325] for the diffuse
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Figure 7.1: Relighted results given a single image as input for different illumination
maps. Please refer to Figure 7.12 for more details about the reconstruc-
tions.

and specular components, respectively. In addition, we extend the image
reconstruction formulation by adding a residual term learned by our model,
which accounts for errors in image reconstruction that would be obtained
using only the terms proposed by PRT.

To train our model, we create a synthetic dataset containing almost 140,000

images with a rich variety of humans (105), poses (5), and illumination
maps (266). We quantitatively and qualitatively evaluate relighting results
on both synthetic images and real photographs, and perform extensive
ablation experiments to validate our design choices in the model architecture,
reflectance model for data generation, and loss functions. Compared with
the current state of the art in full-body single-image human relighting [148],
our model yields more accurate reconstructions of relighted images for both
synthetic images and real photographs.

7.2 background

In this section, we briefly review the building blocks of our technique:
Spherical harmonics (SH) lighting [254], and precomputed radiance transfer
(PRT) [291].

PRT [291] and SH lighting [254] enable rendering dynamic low-frequency
environments with realistic highlights and real-time shading. They estimate
the amount of radiance reflected at a point in the scene by solving a simplified
version of the rendering equation:

R(x) =
∫

S2
L(x, ωi) T(x, ωi) dωi, (7.1)

where R is the reflected radiance or image intensity computed over the
sphere S2 of incoming directions ωi, L is the incoming light at point x from
direction ωi, and T is a transport function computed for each vertex that
includes the material reflectance fr, visibility term V that is 1 if the point is
not occluded and 0 otherwise, and the cosine term which uses the normal n
at point x. The function T can be expressed as:

T(x, ωi) = fr(x, ωi) V(x, ωi) (ωi · n). (7.2)
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The formulation presented by PRT expands the illumination L and the
transport T using (real) spherical harmonics basis functions Yl,m, such that:

L(x, ωi) =
∞

∑
l=0

l

∑
m=−l

Ll,m(x)Yl,m(ωi),

T(x, ωi) =
∞

∑
l=0

l

∑
m=−l

Tl,m(x)Yl,m(ωi),

(7.3)

where Ll,m and Tl,m are the corresponding coefficients for illumination and
transport, respectively (see [253, Sections 3 and 4] for additional details on
how to obtain Tl,m and Ll,m). The integral in Equation 7.1 then becomes:

R(x) =
∞

∑
l=0

l

∑
m=−l

Ll,m(x) Tl,m(x). (7.4)

This formulation has two advantages: It allows to approximate the ren-
dering equation as a fast dot product, and it disentangles the illumination
and the transport in the scene. In this way, relighting a scene only requires
computing the coefficients of the new illumination L′

l,m, while keeping Tl,m
fixed.

Traditionally, relighting methods based on the estimation of illumination
and transport coefficients from a single image soften the problem by assum-
ing that the scene has a light source at a sufficient distance to neglect the
angular variation between points, i.e., L(x, ωi) ≈ L(ωi). They also estimate
a transport function T encoding only the cosine term [274], or the cosine
term together with the visibility function [148]. These methods assume all
materials to be Lambertian, removing the reflectance term from the transport
Tl,m(x), and modeling it as a constant for each point of the scene represented
by the albedo ρ(x). With this, expressing Ll,m as a vector L and Tl,m(x) as a
vector per point of the scene T(x), R(x) can be approximated as (hereafter,
we omit the dependency on x for clarity):

R ≈ ρ︸︷︷︸
albedo

· (TT · L)︸ ︷︷ ︸
shading S

, (7.5)

where the dot product between transport and illumination yields the shading
S(x) of a point in the scene, then scaled by the albedo ρ. The error of the
approximation will be related to the number of coefficients used to estimate
the illumination and transport in Equations 7.3 and 7.4; this number of
coefficients depends on the number of terms used to approximate the infinite
term summation of Equation 7.4, l = [0..N].

To increase realism in the inferred and rendered images, we lift the Lam-
bertian material assumption of previous work and include a better approxi-
mation of material reflectance in the transport function T. We approximate
the reflectance term in Equation 7.2 by keeping the albedo ρ as a constant
and using a white material with an Oren-Nayar [237] for the diffuse com-
ponent, and a GGX model with Smith shadowing factor and Fresnel [325]
for the specular reflection. Then, we use Equation 7.3 to encode such re-
flectance in a new transport function T, later used to render new images
with Equation 7.5. As Figure 7.2 shows, this allows to better capture the
directionality of specular reflections. Our reflectance model employs the
following parameters: albedo, roughness, metallic, and transparency (refer
to Section 7.4 for additional details). Both the Oren-Nayar and the GGX
models share the same roughness parameter. The final reflectance model is
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Ours [KE18] [KE18]Ours

Figure 7.2: Comparison between the data generated with our framework and that of
the recent work by Kanamori and Endo [148], used to train the respective
models. Our transport function T takes into account angular dependencies
in the reflectance term, better capturing specular reflections and improving
high-frequency details in the shading.

defined as a combination of up to seven BSDFs, which can be either a diffuse
Oren-Nayar microfacets model or a specular GGX model.

7.3 our image reconstruction formulation

This section describes our image reconstruction formulation, including the
motivation behind the addition of a new residual term.

Since using a large number of basis coefficients in Equation 7.5 to approx-
imate R with a low error is computationally expensive, we introduce an
additional residual vector E, leading to:

R ≈ ρ︸︷︷︸
albedo

· (TT · L)︸ ︷︷ ︸
shading S

+ (ET · L)︸ ︷︷ ︸
residual E

, (7.6)

where the dot product between the residual vector E and the illumination L
yields a residual value per point E(x). Again, the dependency on x is omitted
for clarity, but Equation 7.6 applies to each point in the scene, yielding the
corresponding images; in the following, we will use S to denote the shading
image, and E for the residual image. The residual vector E does not have a
physical meaning; instead, it is a set of learned coefficients that aim to model
the errors in image reconstruction that we would obtain using only the terms
(albedo, transport, and illumination) with a limited number of coefficients.

7.3.1 Problem Formulation

Our main goal is to relight an image ψ with a full-body human in it, given a
user-specified target illumination L′:

ψ̂ = R(ψ, L′), (7.7)

where R is a relighting function, and ψ̂ is the resulting relighted image with
target illumination L′.

Using a model such as the one in Equation 7.6, one can change L to L′

to obtain the relighted image. However, given a single image as input, the
transport T, illumination L, residual E, and albedo ρ are unknown. To obtain
an approximation of T, L, E, and ρ, we introduce the parametric function G,
which takes as input the image ψ and a set of parameters β:

{T, L, E, ρ} ≈ G(ψ, β). (7.8)
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In particular, we model G using a convolutional neural network whose
parameters are represented by β. Note that G tries to approximate each
of the terms {T, L, E, ρ} irrespective of the underlying reflectance model
previously used to generate them. With the output of G and a given user-
specified illumination L′, we can use Equation 7.6 to directly approximate
the relighting function R.

7.4 dataset

To learn the parametric function G introduced in Section 7.3 we have created
a synthetic human image dataset of almost 140,000 images including a rich
variety of humans, poses, and illuminations, which we describe in this
section.

human 3d models Existing models captured using photogrammetry
mostly consist only of diffuse and normal maps. To fully exploit the capabil-
ities of our framework and go beyond Lambertian materials, we purchase
rigged 3D human models and clothing from the DAZ website [52], which
include realistic materials and texture maps for diffuse color, specular, opac-
ity, roughness, metallic, translucency, and normals. In total, we collected 105

different clothed models; augmented with five poses each, this yields a total
of 525 different renditions. For each pose we simulate cloth interaction after
posing the model, and, to foster diversity, perform subtle random changes to
the hue of the diffuse color.

illuminations We used freely-available spherical high-dynamic range
images (HDRIs) from HDRIHaven [121], corresponding to both indoor and
outdoor scenarios. To normalize the HDRIs, we compute a reference radiance
for each image by obtaining the mean shading in Equation 7.5, where L
are the coefficients of the HDRI, and T is obtained analytically by sampling
all unit directions in the sphere. We scale all the illuminations L to have a
reference radiance in the range [0.7, 0.9]. In total we gathered 266 different
HDRIs.

rendering We used Monte Carlo path tracing to render realistic images
and to obtain the transport vector T for each scene. To generate L for each
illumination, we integrate over the unit sphere of directions. We fix N = 4
(l = [0..4]), which leads to 25 spherical harmonics coefficients in T and L (in
contrast, the work of Kanamori and Endo [148] estimates only Lambertian
materials and uses N = 2). Among all the available maps defining reflectance
for each purchased model, during rendering we employ the albedo (diffuse
color), roughness, metallic, and transparency maps. In total, we render
139,650 different scenes. For each scene, we generate: Its path-traced (PT)
image, the PRT image computed using Equation 7.5, an alpha mask of the
human, the shading, the normals, the albedo, and a material map containing
the roughness, transparency, and metallic, each of them encoded in separate
channel of an RGB image. All images are rendered with a resolution of
768 × 768 pixels; using 256 samples per pixel for the PT image, and 1,024 for
the transport T and all other scene properties. Figure 7.3 shows two samples
from our dataset, cropped down from the squared aspect ratio.
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PT image PRT image Mask Shading Normals Albedo Materials

Figure 7.3: Two examples in our dataset. For each scene we obtain its path-traced (PT)
rendered image, its PRT image rendered with our image reconstruction
formulation, the alpha mask, the shading, the normals, the albedo, and a
material map describing the roughness, transparency, and metallic (each
encoded in a separate channel of an RGB image).

7.5 our model

In this section we explain our model architecture and its components, to-
gether with an intuition behind our design choices; in addition, we provide
details on our training, hyper-parameters, and loss function.

7.5.1 Model Architecture

To represent our parametric function G we use a convolutional neural net-
work based on a UNet-like model [257]. Figure 7.4 shows an overview. It
consists of a shared encoder that receives the input image ψ, and several
decoders responsible for estimating albedo ρ, transport T, residual coeffi-
cients E, and the illumination of the input image L. We add skip-connections
between the shared encoder and each decoder to encourage better recon-
structions, except for the light decoder. Last, we have a rendering layer based
on Equation 7.6 that generates the shading S, the residual E, and the final
relighted image ψ̂.

shared encoder Our encoder has a standard architecture consisting of
several convolutional blocks with batch-normalization (BN) that sequentially
decrease the resolution of the features by a factor of two. The features
between convolutional blocks are used as skip-connections with the decoders.

decoders Each decoder has a residual block (similar to ResNet [123]), and
a generator block except for the light decoder that only has a generator block.
The generator block varies between decoders. The output of the albedo,
transport, and residual coefficients decoder has the same spatial resolution
as the input image. We only add batch-normalization to the albedo decoder.
The architecture of each generator is as follows (see also Figure 7.5):
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Figure 7.4: Our model architecture. The masked input image goes through a shared
encoder that converts it into a feature map. Such feature map simultane-
ously serves as an input to the albedo, transport, and residual decoders.
The three decoders output the albedo ρ, transport T, and residual coeffi-
cients E, respectively. The features from these three decoders and from
the shared encoder are concatenated and fed to the light decoder, which
outputs the illumination coefficients L. Last, the rendering layer outputs
the albedo (equal to the output from the albedo decoder), shading, resid-
ual image, and the final relighted image.

• The albedo decoder has several convolutional blocks with skip connec-
tions. In each convolutional block features are scaled by a factor of two.
The output of the albedo decoder is clamped to lie in the range [0, 1].

• To properly capture geometry and material reflectance in the scene,
a good estimation of the transport matrix T is needed. The transport
and residual decoders feature a generator tailored for the PRT de-
composition in Equation 7.6. Deep neural networks, by design, add
non-linear functions that clamp negative values. However, the trans-
port coefficients are defined with both positive and negative values.
Thus, we would rely on the last convolution without non-linearities to
generate all the negative content in the coefficients. To give additional
degrees of freedom to the decoders, we decompose the coefficients as
T = T+ − |T−| where T+ corresponds to the positive part and |T−| is
the absolute value of the negative part. Instead of directly predicting T,
we add two generators (similar to the albedo one) to predict T+ and
|T−|, respectively, and later we reconstruct the coefficients T. We apply
a similar strategy to the residual coefficients E.

• The light decoder differs from the previous as its input is the output of
the shared encoder and the residual blocks of the albedo, transport, and
residual decoders. Those features go straight to a generator that follows
a similar decomposition as for the transport and residual decoder,
however, the generator architectures differ. The generator has several
convolutional blocks that reduce the spatial dimensions of the features
by a factor of two. After the convolutions, we perform an average
pooling making the features one-dimensional, and a fully-connected
layer outputs the positive and negative illumination coefficients in each
generator, with shape 3 ∗ 25 (25 being the total number of coefficients
when N = 4). Then, we reconstruct L using the positive and negative
part.
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Figure 7.5: Workflow of each component of our model. The shared encoder contains
several convolutional blocks that reduce the spatial dimensions by two and
output a feature map of the input. Such feature map goes to the albedo,
transport, and residual decoders. Each decoder (except for the light one)
has a residual block and a generator. The generator concatenates skip-
connections and upscales (C & Up) the spatial resolution of the features.
The output of the decoders has the same spatial resolution as the input
image. Last, the light decoder uses the features of the encoder, together
with the features from the residual block of each decoder, to predict the
illumination in the scene.

7.5.2 Training

The dataset in Section 7.4 is split into training and validation, where we select
7 clothed models (with all their poses) that are representative of challenging
scenes as the validation set. The rest of the humans with their poses are used
for training. The input to our model are images rendered with PRT, where
we crop the human using the bounding-box defined by the mask with a
padding of 20 pixels. Since our network is fully-convolutional it allows inputs
of arbitrary resolution. We normalize the image pixels to lie in the range
[−1,+1] and multiply it by the alpha mask before forwarding it through
the model. For training we use the Adam optimization algorithm [163]
with the decoupled weight decay regularization [198]. The learning rate
has a value of 5 · 10−5. We set an effective batch size of 16. We use the
PyTorch framework [244] with PyTorch-Lightning [73] to design our model
and experiments. The model is trained for 25 epochs on eight Tesla V100-
SXM2-16GB, lasting 55 hours approximately.

7.5.3 Loss Functions

Our loss function L can be expressed as:

L = Lρ + LT + LL + LS + Lψ̂, (7.9)

where each term supervises the prediction of albedo, transport, illumination,
shading, and the final relighted image. Note that the residual coefficients
are not directly supervised. Instead, we let the network freely learn a set
coefficients E that aim to improve the quality of the rendered images. Each
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Figure 7.6: Example result of our model for a synthetic image (see also Table 7.1,
synthetic images). Neither the human nor the illumination were used for
training. We show direct comparisons with the groundtruth (GT), the L2

error in the final image, and our residual term scaled by a factor of 10 for
visualization purposes.

of the terms in L is additionally composed of different losses. We linearly
combine the different terms using a weight of 1 for all of them.

• Reconstruction loss (LL1) We apply an L1 loss function to each pre-
dicted map with respect to groundtruth data. To encourage a better
reconstruction, we leverage the architecture tailored for PRT rendering,
and additionally include an L1 loss between the positive and negative
coefficients in LT and LL.

• Render loss (Lr) The terms in Equation 7.6 are computed using the
albedo, transport, illumination, and residual vectors. For each of those
vectors (except the residual E), there is both a predicted (which is
being learned) and a groundtruth vector. To increase robustness, we
introduce in LS and Lψ̂ an L1 error term for each possible way of
generating the shading and relighted image in Equation 7.6 from the
predicted and groundtruth vectors.

• Log loss (Llog) The transport, and the illumination coefficients have an
unbounded range. To compress it, we apply a logarithmic loss of the
following form:

Llog = || log(|x|+ 1)− log(|x̂|+ 1)||22

in LT and LL. We apply |x| in the logarithmic loss to avoid errors on
the negative values of the coefficients. We leverage the PRT decompo-
sition to apply the logarithmic loss also to the positive and negative
decomposition of transport and illumination.

7.6 results

We show and evaluate results of our model on both synthetic images, where
groundtruth data is available, and real photographs. Throughout the eval-
uation, we show the reconstructed albedo ρ, shading S (resulting from the
combination of transport T and target illumination L′, see Equation 7.6), the
final rendered result ψ̂, and the residual image E. We also include ablation
studies to clearly demonstrate the influence of each component in the final
relighted images

synthetic images We use the validation subset of our dataset (see
Section 7.5.2) rendered with six new illuminations not used for training: ennis,
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Albedo Shading Image

Model L1 (x100) L2 (x100) PSNR L1 (x100) L2 (x100) PSNR L1 (x100) L2 (x100) PSNR

Ours 2.88 0.44 24.18 3.77 0.71 24.05 1.64 0.19 28.94

Kanamori and Endo 4.95 1.19 20.68 6.75 1.90 18.29 2.94 0.47 26.06

Without E 3.67 0.66 23.05 6.71 2.74 17.89 1.97 0.24 27.13

Without PRT decomposition 4.54 1.00 21.08 10.57 5.69 14.43 2.13 0.24 26.80

Without Llog 4.02 0.83 21.84 10.34 5.35 14.55 2.14 0.24 27.82

With N = 2 3.31 0.58 23.33 8.60 4.21 16.18 1.83 0.22 28.33

With T∗
3.68 0.76 21.74 7.53 3.54 16.65 2.25 0.31 27.29

Lambertian materials 3.58 0.68 22.66 7.22 2.91 17.09 1.91 0.21 27.92

Table 7.1: Quantitative results of our model for synthetic images and real photographs,
measured with three metrics: L1 and L2 distances, and PSNR. Note that
the L1 and L2 metrics have been scaled by a factor of 100. We also include
a comparison to the model of Kanamori and Endo [148], which our model
consistently outperforms. Boldface highlights the best result in each case.

Figure 7.7: Comparison between our model and the model provided by Kanamori
and Endo [148] in two examples of the validation dataset. We can see
how our model outperforms them rendering the input image, albedo,
and shading. Note that the shading encodes both the transport and the
illumination of the scene.

grace, pisa, doge, glacier and uffizi [168]. We render the final relighted (target)
image using the predicted illumination of the scene to reconstruct the shading
and the residual. Since groundtruth data is available, we also compute
quantitative error measures for the albedo, shading, and final rendered image.
Specifically, we compute the L1 and L2 distances, as well as PSNR, averaged
across the dataset. Table 7.1 (synthetic images) shows the results, including a
comparison with the pretrained model of the recent work by Kanamori and
Endo [148]. Our more complete material reflectance formulation, together
with our residual term (see ablation studies in Subsection 7.6.1) lead to
significantly lower L1 and L2 values, and higher PSNR for the albedo and
shading, as well as the final relighted image. Figure 7.6 shows a direct
comparison of our reconstructed image with the groundtruth; both images
match with a very small L2 error. Figure 7.7 shows a comparison between
our model and the pretrained model given in the work of Kanamori and
Endo on synthetic images. We can see how our model better estimates
the shading and albedo, leading to more accurate results where directional
effects are better reproduced (see the highlights in the face of the first image,
for instance).
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Figure 7.8: Example results of our model on real photographs (see also Table 7.2). For
each image, from left to right: groundtruth input image, resulting image
relighted with our model, L2 error, albedo, shading, and residual term
scaled by a factor of 10 for visualization purposes.

real photographs To test our model on real photographs we use free-
license images downloaded from Unsplash [313]. To obtain the alpha mask
we rely on freely available APIs [147]. In total we collected 10 different images
with a single human in them. Error metrics for the resulting rendered images,
averaged over the 10 photos, can be found in Table 7.1 (real photographs).
As with synthetic images, our results significantly outperform previous
work [148]. Maybe surprisingly, the error metrics indicate better results with
real photographs (both for our method and using the pretrained model of
Kanamori and Endo) than using synthetic images. This is possibly due to
the fact that the synthetic validation dataset contains some quite extreme
illuminations (e.g., glacier or grace), while the photographic dataset has
more natural illuminations that the two models are able to reproduce better.
Figure 7.8 shows the reconstruction performed by our model for two different
input photographs, including albedo and shading components, while a direct
comparison with previous work is shown in Figure 7.9. Again, we see how
our model is able to better capture directional effects (see, e.g., the faces or the
highlights in the jackets) and overall produce more accurate reconstructions.
Finally, in Figure 7.12 we show a variety of relighting results under different
illuminations (refer to the Appendix D.1 for additional results). For each
input photo and illumination map we show the final relighted image, and
the reconstructed shading and residual terms.
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Model L1 (x100) L2 (x100) PSNR

Ours 1.12 0.08 31.46

Kanamori and Endo 2.14 0.20 28.38

Without E 2.64 0.29 26.24

Without PRT decomposition 2.55 0.30 26.66

Without Llog 2.31 0.25 26.85

With N = 2 2.08 0.18 27.76

With T∗
1.75 0.14 29.43

Lambertian materials 1.82 0.18 29.15

Table 7.2: Quantitative results of our model and Kanamori and Endo [148] using
real photographs, measured with three metrics: L1 and L2 distances, and
PSNR. Note that the L1 and L2 metrics have been scaled by a factor of 100.
Boldface highlights the best result in each case.

7.6.1 Ablation Studies

We evaluate the contribution of our design choices with a series of ablation ex-
periments performed on both the synthetic images and the real photographs.
In particular, we first compare the performance of our model (Ours) with-
out the residual generator predicting E (Without E) and without including
the PRT decomposition in the architecture of the generators (Without PRT
decomposition). Then, we evaluate the impact of the logarithmic loss Llog in
the prediction of T and L (Without Llog), as well as the performance of our
model when using only nine coefficients (With N = 2). To avoid using a
constant albedo in Equation 7.6, we combine the different terms that define
reflectance (With T∗) into a single vector T∗ = (ρ ∗ T + E). Last, to show-
case the benefit of our reflectance, we have trained a model using purely
Lambertian materials in our data (Lambertian materials).

Tables 7.1 and 7.2 show the results (including albedo and shading for
synthetic images) for the L1, L2, and PSNR metrics for all the ablation
studies. All options yield significantly inferior results when compared with
our full model. Figure 7.10 further illustrates this on an example using a
real photograph. One could think that the model With T∗ would obtain
better performance since it does not need to assume a constant albedo ρ
in the reflectance. However, T∗ requires estimating 25 different RGB maps
(with N = 4), leading to additional complexity that hinders convergence and
produces higher errors.

7.7 discussion

We have presented a model for human relighting that requires a single image
as input. We lift the assumption on Lambertian materials and include a better
approximation of material reflectance in our transport function. Moreover,
we introduce an additional residual term which further mitigates errors in the
PRT-based final reconstruction. This additional term becomes increasingly
relevant for challenging illuminations, such as backlighting, where the overall
dark appearance of the image does not allow for an accurate estimation of
the PRT terms. The resulting errors are absorbed by our residual, helping
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Input Ours [KE18] Input [KE18]Ours

2.29 5.17 1.40 2.15L1 (x100) L1 (x100)
L2 (x100) 0.19 0.72 0.10 0.19L2 (x100)

PSNR 27.27 21.41 29.83 27.27PSNR

Figure 7.9: Image reconstructions obtained by our model, and the model provided by
Kanamori and Endo [148]. We can see how our model outperforms them
in the three metrics (see also Table 7.2). Note that the L1 and L2 metrics
have been scaled by a factor of 100. In addition, our model better captures
skin and cloth albedo, and the directionality of the illumination.

Figure 7.10: Reconstruction results obtained on the different ablation experiments.
We can clearly observe how our full model better captures the appearance
of the input photograph.

to produce good final reconstructions. Overall our results show compelling
estimations of albedo and shading (transport and illumination), leading
to accurate relighting reconstructions for both synthetic images and real
photographs.

Nevertheless, our work is not free of limitations. Figure 7.11 shows a
difficult case with a real photograph as input. While our reconstruction is
still plausible, the strong presence of stray light (especially on top) leads to
an excessively flat, milky estimation of the albedo in the head and shoulders
area. Also, our shading reconstruction carries traces of texture details in the
T-shirt, which remains an open problem in intrinsic images decomposition.

Human relighting poses many challenges not fully investigated in this
chapter. Besides making the model more robust to poorly lit input images,
being able to take into account other lighting effects such as subsurface
scattering [143], anisotropy in cloth materials [7], or more complex reflectance
models, remain interesting open problems. Moreover, one implicit problem of
SH-based lighting is the need for a large number of coefficients to reconstruct
high-frequency details. While we mitigate this problem by introducing the
residual term, complex high-frequency effects are still an open challenge.
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Input Ours Albedo Shading

Figure 7.11: Example of the limitations of our model. The strong presence of stray
light in the input image leads to an excessively flat albedo, seen especially
in the head and shoulders area, while some texture details appear in the
shading image.

Another exciting avenue of future work is to extend the potential of our
approach, for instance by using contrastive loss functions, or proposing self-
supervised schemes that would avoid having to generate additional synthetic
data.
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Figure 7.12: Relighting results for two different illuminations (ennis, and pisa) and five
different input images. Last two columns feature the same illumination
and two different rotations. In each case, we show the relighted image,
and the reconstructed shading and residual terms. Our model is capable
of producing a compelling relighting result for a varied set of input
images and illuminations, including both indoors and outdoors cases.
The residual term has been scaled by a factor of 10 for visualization
purposes.
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8I N T U I T I V E M AT E R I A L E D I T I N G

Single-image appearance editing is a challenging task traditionally requiring the esti-
mation of additional scene properties such as geometry or illumination. Moreover, the
exact interaction of light, shape, and material reflectance that elicits a given perceptual
impression is still not well understood. This chapter presents an image-based editing
framework that allows to modify the material appearance of an object by increasing
or decreasing high-level perceptual attributes, using a single image as input. Our
framework relies on a two-step generative network, where the first step drives the
change in appearance and the second produces an image with high-frequency details.
For training, we augment an existing material appearance dataset with perceptual
judgements of high-level attributes, collected through crowdsourced experiments,
and build upon training strategies that circumvent the cumbersome need for original-
edited image pairs. We demonstrate the editing capabilities of our framework on a
variety of inputs, both synthetic and real, using two common perceptual attributes
(Glossy and Metallic), and validate the perception of appearance in our edited images
through a user study.

After a first reviewing cycle, this work was referred to the Computer Graphics Forum
(CGF) [56]. While I was not the lead author of this line of work; I collaborated by
rendering the database used to train the models, and by taking part in the technical
decisions and ideas regarding the novel generative neural network architecture.

J. Delanoy, M. Lagunas, J. Condor, B. Masia, & D. Gutierrez
A Generative Framework for Image-based Editing of Material Appearance using Perceptual

Attributes
Computer Graphics Forum (CGF), major revisions, 2021

8.1 introduction

Material appearance is one of the most important properties that determine
how we perceive an object. The visual impression that it elicits, whether it
appears metallic, glossy, or matte, strongly impacts how we manipulate such
objects and expect them to behave. This appearance does not only depend on
the intrinsic properties of the material itself, but also on external factors such
as the geometry or the illumination of the scene. Editing material appearance
based on a single image is therefore a very challenging task. A common
approach is to estimate illumination, geometry, and reflectance properties
(inverse rendering), and modify the latter. This approach faces two problems.
First, inaccuracies in the estimation of any of those scene properties can
strongly impact the final result. Second, even if they are correctly estimated,
modifying the reflectance parameters to obtain a certain visual impression of
the material is not a trivial task, since the exact interaction of light, shape,
and material reflectance that elicits a given perception of appearance is still
not well understood.

We present an image-based method for appearance editing that does not
rely on any physically-based rendering of the image, but instead modifies
directly the image cues that drive the perception of the material. It takes
a single image of an object as input and modifies its appearance based
on varying the intensity of high-level perceptual attributes (see Figure 8.1).
However, since the image cues that drive the perception of such attributes
can not be captured in a few image statistics [89, 295], we rely on generative
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Metallic Metallic Metallic Metallic Glossy Glossy Glossy Glossy
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Figure 8.1: Given a single photograph as input (top row), our framework allows
to edit the appearance of objects using high-level perceptual attributes.
It produces realistic edits (bottom row) for a variety of input images
depicting objects with different material appearance, illumination, and
geometry. Note how illumination conditions are preserved in the edited
results even though they were not explicitly modeled in the framework.
Arrows indicate a high (pointing up) or low (pointing down) value of the
target perceptual attribute.

neural networks to learn their relationship with appearance, and generate
novel images with the edited material. Our networks additionally take as
input a normal map that helps preserve the high-frequency details of the
input geometry in the reconstructed images. Since normal maps are not
available in photographs, we provide a normal map predictor that extends
the applicability of our method to real input images.

A possible approach to training our framework would be to collect pairs
of (original, edited) images, where the edited exemplars were manually
produced given a target high-level attribute value. This is not only cumber-
some, but could also lead to high variability that could hamper the learning
process. Instead, and taking inspiration from existing works on face edit-
ing [174, 46, 191, 166], we train our system using perceptual judgements
of the attributes of a large set of training images, that we collect through
crowdsourced experiments. While these works benefit from a fixed camera
location and exploit the fact that faces share similar geometry and features,
we deal with a more unconstrained and varied set of potential input images.
We thus devise a two-step framework, where the first step drives the change
in appearance, while the second produces an image with high-frequency
details.

To demonstrate the editing capabilities of our framework on a varied set of
synthetic and real images, we focus on two attributes that are both common
and easy to understand by participants: Metallic and Glossy. Without loss
of generality, this allows us to collect robust human judgements of such
attributes, while additionally assessing the perception of the appearance
in our edited images through a user study. We validate our framework
qualitatively, and by means of the aforementioned user study, as well as
ablating each of its components. We will make our dataset of perceptual
judgements publicly available to foster further research.

8.2 our framework

8.2.1 Goal and Overview

The goal of our method is to take as input an image I of an object, whose
material appearance we wish to edit, and a target value bA ∈ [−1, 1] for a
high-level perceptual attribute A (e.g., Glossy, or Metallic), and from them
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Figure 8.2: Overview of the different components of our framework. The two net-
works G1 and G2 both take as input the image I , its normal map n, and the
target attribute value b. The image first goes through G1, whose decoder
features are forwarded to the decoder of G2 (green arrows). G2 is in charge
of producing the final output image Îb. The three auxiliary networks
(LD1,LD2 and C/D), shown in gray, are used at training time to guide
the networks towards correctly interpreting the target attribute value b.

produce a new image Îb that exhibits the same content as I , but features
a change in appearance according to the desired value of the perceptual
attribute, bA (hereafter, we drop the subindex A for clarity). Our method
thus needs to extract or disambiguate the information of such attribute from
the input image, and allow its subsequent manipulation to generate the final
one. We leverage the success of generative neural networks on image-based
editing tasks, and propose a framework based on them.

Producing a representation of I in which the information of the attribute
has been disambiguated requires a deep model that can produce a compact
latent code; however, such a model typically encompasses the loss of high-
frequency details from the input image, hindering the reconstruction of the
final image. We therefore propose a framework based on two generative
networks, G1 and G2. G1 is a deeper network that aims at producing a
compact latent code of I that is easy to control, and can be used to produce
the final target appearance. Meanwhile, G2 is a shallower model that has
the task of reconstructing the final image with high-frequency details, guided
by the intermediate features of G1 that encode the relevant information on
the final target appearance. An overview of our framework is shown in
Figure 8.2, while the remainder of this section provides the details on the
architecture, loss functions and training scheme used.

8.2.2 Model Architecture

Both networks, G1 and G2, are based on an encoder-decoder architecture, in
which the target attribute value b is concatenated at the bottleneck of each
network (see Figure 8.2). Each encoder consists of a series of convolutional
blocks that downscale the image by a factor of two, followed by a series of
residual blocks. The output of these residual blocks is the latent code zi
(i ∈ {1, 2}), which we train to encode a representation of the input image I
that does not contain information about the perceptual attribute. In particular,
we have six convolutional blocks for G1, and three for G2. Each decoder
consists of a series of convolutional blocks followed by bilinear upsampling
that restore the original resolution of the image. The complete description of
the architecture of each network can be found in the supplementary material.

113



intuitive material editing

One of the main drawbacks of encoder-decoder architectures such as ours
is the loss of high-frequency information when reconstructing the image from
the latent code zi. A popular strategy to recover the missing information is
to use skip connections, that forward feature maps between the encoder and
the decoder, explicitly allowing to generate high frequencies. In our case,
however, this strategy cannot be applied: our latent space is trained to be
invariant to the attribute, so that the decoder can reconstruct the image with
the target attribute value; adding skip connections would hamper this by
forwarding information from the encoder to the decoder. We alleviate this
problem by providing high-frequency information to the decoder through a
normal map n of the object. This normal map is concatenated to the feature
maps of the decoder at different scales (illustrated in red in Figure 8.2),
allowing it to incorporate high-frequency information into the reconstruction
of the target image. In the case of real images, where the normal map is
not directly available, it can be obtained through a normal map predictor
network (see Section 8.4).

Even with the use of normal map information, a single network such as G1
can succeed in obtaining an attribute-invariant latent code z1, but struggles
when generating a detailed reconstructed image: image Îb,1 in Figure 8.2
has the desired appearance, but lacks fine detail. We therefore use G1 not to
produce the final result, but as a means to generate a series of feature maps
that encode a representation of the edited image with the target appearance.
These feature maps will be used by the second network, G2, a shallow
network capable of reconstructing high-frequency details. More precisely,
we use the three last feature maps from G1, which include information at
multiple scales, and concatenate them to the feature maps of G2 (as illustrated
by the green vertical arrows in Figure 8.2). In this way, G2 is able to provide
the output image Îb,2 = Îb, which features the desired appearance specified
by the target attribute value b while preserving the relevant high-frequency
information of the input. As we will show in Section 8.4.1, the latent space
of G2 alone has too much information from the input image I to allow for
manipulation of the desired attribute.

As explained, we need to train the latent spaces from G1 and G2 to be
invariant to the attribute of interest, while learning to generate a realistic
target image Îb. To do this, during training, we use three auxiliary networks.
Two latent discriminators (LDi in Figure 8.2) push the latent spaces zi to
not contain information on the attribute, while an attribute predictor and
discriminator C/D, trained in an adversarial manner, guides the network
towards generating a realistic image with the target attribute value b. The
next subsection explains the training process and objectives.

8.2.3 Loss Functions and Training Scheme

image reconstruction loss The first goal of each encoder-decoder
network Gi (for clarity, we will use G instead of Gi hereafter) is to reconstruct
the input image I when given the groundtruth perceptual attribute value a,
and the normal map n. We use the L1 loss between pixels as a measure of
error, and define the reconstruction loss as:

Lrec(G) = ∥I − G(I , n, a)∥1 . (8.1)

attribute-invariant latent space loss In order to force the de-
coder to exploit the target attribute b, we draw inspiration from Fader-
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Net [174], and push the encoder to produce a latent space that does not
contain information about the attribute. This is achieved with an adversarial
training on the latent space, for which a latent discriminator LD is intro-
duced. The goal of LD is to predict the groundtruth attribute value a from
the latent code z,

Llat(LD) = ∥a −LD(z)∥1 , (8.2)

while the goal of G is to prevent LD from being able to predict a from z:

Llat(G) = −∥a −LD(z)∥1 . (8.3)

This adversarial training effectively pushes the encoder to generate an
attribute-invariant latent space z, thus forcing the decoder to use the groundtruth
attribute a to reach a good reconstruction.

attribute predictor and discriminator losses Until this point,
the model has no feedback on its ability to edit images, since the target
attribute is the groundtruth attribute value of the input image, b = a (recall
that the training data lacks original-edited image pairs). Therefore, in order
to provide additional feedback to the model regarding the edited image, we
introduce an attribute predictor C. This predictor is trained to predict the
attribute value of an image, using the following loss:

Lattr(C) = ∥a − C(I)∥1 . (8.4)

Meanwhile, the network G is trained so that the attribute value of the edited
image is correctly predicted by C, using:

Lattr(G) = ∥b − C(G(I , n, b))∥1 . (8.5)

However, trying to satisfy the attribute predictor can lead G to the generation
of unrealistic artifacts in the reconstructed image. Thus, to additionally
push the network to generate images that feature the same distribution as
the original input data, we introduce a GAN loss together with an image
discriminator D. In particular, we use the losses from WGAN-GP [112] on
both networks G and D, Ladv(G) and Ladv(D) (the complete formulation can
be found in the supplementary material).

final loss functions G1 is trained jointly with its latent discriminator
LD1, by using the losses Llat(G1) and Lrec(G1). We do not include the
attribute predictor and discriminator module because G1 is intended to
create a compact and editable latent space, rather than a high-quality output
image. The resulting loss functions are:

L(G1) = λG
recLrec(G1) + λG

latLlat(G1), (8.6)

L(LD1) = λLD
lat Llat(LD1). (8.7)

G2 is trained jointly with its latent discriminator LD2, as well as the attribute
predictor and discriminator module C/D. The resulting loss functions are:

L(G2) = λG
recLrec(G2) + λG

latLlat(G2) + λG
advLadv(G2) + λG

attrLattr(G2)
(8.8)

L(LD2) = λLD
lat Llat(LD2) (8.9)

L(C/D) = λD
advLadv(D) + λC

attrLattr(C). (8.10)

In practice, C and D share the same convolutions and are trained as a
unique network, thus the joint loss in Equation 8.10.
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training details We optimize all losses using the Adam optimizer [163]
with β1 = 0.9 and β2 = 0.999. To train the generators, we use a learning
rate of 10−4. G1 is trained with the following loss weights: λG

rec = 1, λG
lat = 5,

while G2 is trained with λG
rec = 1, λG

lat = 2.5, λG
adv = 0.02 and λG

attr = 2. Both
latent discriminators are optimized with a learning rate of 2.5 · 10−5 for 12

iterations for every iteration on the generator. C/D is optimized with a
learning rate of 10−4 for seven iterations for every iteration on the generator
with loss weights λD

adv = 1 and λC
attr = 3. Our model is trained individually

for each attribute. We first train G1 for 300 epochs, then train G2 for 50

epochs, freezing parameters for G1. We implemented our models using the
Pytorch framework [244] and trained them using a Nvidia 2080Ti GPU. In
total, training our framework took two days per attribute.

8.3 training dataset

Training our model to edit a certain attribute of material appearance requires
images with realistic depictions of materials, on objects with different shapes
and a variety of illuminations. For each of these images, we require the
corresponding value for the attribute of interest. Since we are targeting
high-level perceptual attributes of material appearance, this value needs to
be obtained from subjective data gathered through subject responses. These
image-attribute (I , a) pairs are used to train our network towards correctly
interpreting such attributes.

image data We leverage the recent dataset by Lagunas et al. [171], de-
signed specifically for learning tasks related to material appearance. It is
composed of realistic renderings of 13 geometries of varied complexity (with
two additional viewpoints, leading to 15 different scenes), illuminated with
six captured environment maps [53]. The objects are rendered with 100

measured BRDFs from the MERL dataset [211], using the physically-based
renderer Mitsuba [139]. The dataset comprises a total of 9,000 renderings, of
which representative samples are shown in Figure 8.3.

subjective attributes The image dataset we use [171] includes as-
sociated subjective data, but in the form of similarity judgements between
pairs of images, unsuitable for our goal. Other datasets include subjective
measures of high-level perceptual attributes of material appearance for the
materials in the MERL dataset, but for a single shape and illumination [276].
Since shape and illumination play an important role in the perception of
material appearance [172, 320, 227], we set out to gather our own subjective
data of high-level perceptual attributes for the Lagunas et al. image dataset.

To do so, we follow the same methodology as Serrano et al. [276]: we carry
out a perceptual experiment in which, for each image in the Lagunas et al.
dataset, participants had to rate a number of high-level attributes on a Likert-
type, 1-to-5 scale. To further increase the robustness of the obtained ratings,
we augment Lagunas et al.’s dataset by creating, for each combination of
material × shape × illumination, five different images with slight variations
in the viewpoint (randomly sampled within a 45 degrees cone around the
original viewpoint). Examples of such images for the bunny shape are shown
in Figure 8.4. Similar to previous large-scale studies, we relied on Amazon
Mechanical Turk to collect the ratings
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Figure 8.3: Representative samples of the image dataset used for training. The images
show each of the 15 scenes in the dataset (13 distinct geometries, two of
them with two different viewpoints, for a total of 15 scenes), featuring
different materials and illuminations.

Figure 8.4: Example of the five viewpoints used in the perceptual study on the bunny
shape rendered with the Uffizi illumination and alum-bronze material.

training of participants Participants of our perceptual study first
had to go through a training session in which they were shown with a text
description and a few example images depicting materials with low and high
score values for each attribute. We then show them the same screen as in the
study and ask them to answer the attributes for two easy examples (shown
in Figure 8.6, left). If answers of the participants were not the expected ones,
we instructed them to look again at the image and check the description of
the attributes.

control questions In addition to the 15 stimuli, we added four control
images in order to detect lazy users. These images contains materials with
clear expected answers (shown in Figure 8.6 right). We rejected participants
answering wrongly to more than one of these questions and rejected 20% of
the participants based on this criteria.

A total of 2,600 paid subjects participated in the study, each of them seeing
15 different random images. Figure 8.5 shows a screenshot of the perceptual
study, as seen by the participants. The stimuli is shown on the left part of the
screen while the list of attributes to score are shown on the right. Through
our perceptual study we gather, for each attribute, 39,000 ratings (13 shapes
× 6 illuminations × 100 materials × 5 viewpoints), leading to that number
of image-attribute pairs. It is important to note that, due to the vast size of
our dataset, we only gather one response per condition (per combination of
material× shape× illumination× viewpoint), which can lead to variability
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Figure 8.5: Screenshot of the perceptual study as seen by participants. Stimuli is
shown on the left, the participant have to select a score for the two
attributes shown on the right.

in the data that may hinder the convergence of the training. In order to
reduce it, we pool the perceptual ratings over viewpoint and shape by means
of the median, more robust to outliers than the mean.

8.4 results and evaluation

In this section, we start by introducing our evaluation dataset, and showing
results of our framework by applying it to two perceptual attributes: Glossy
and Metallic. We then validate our design choices through a series of ablation
studies (Section 8.4.1), and analyze the consistency of our editing across
controlled geometry, illumination, and material variations (Section 8.4.2).
Finally, we perform an additional user study to assess whether our edits of
the attributes do correlate with human perception (Section 8.4.3).

evaluation data Our evaluation data is composed of both synthetic
images and real photographs. The synthetic images evaluation dataset is
composed of images never seen during training by our framework. They
are rendered using eight shapes collected from free online sources, four
illuminations obtained from HDRIHaven [121], and eight materials coming
from Dupuy and Jakob’s database [70]. A representative subset is shown in
Figure 8.7.

We collected real images for our evaluation dataset by browsing online
catalogues of decorative items, as well as photographing objects ourselves
in uncontrolled setups. Within each image, we masked the object of interest
using an online API [147]. Since our framework requires a normal map,
which is not directly available when using real photographs, we obtain the
normal maps for these objects by using a normal map predictor. Inspired
by image-to-image generative networks, we trained a new model to infer
normal maps directly from the single-view RGB images. Our normal map
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Training Controls

Figure 8.6: Left: the two images used in our training session. Right: the four images
used as controls.

Figure 8.7: Representative images of our synthetic evaluation dataset, showing the
eight shapes and materials used in it. Each column is rendered with one
of the four illuminations used.

predictor consists of a modified Pix2Pix network[138]. We carefully designed
our architecture and losses to minimize convolution artifacts, high variance
noise in the resulting normals, and maintain as much geometrical detail
from the original images as possible, while reducing the influence of varying
reflectance and illumination conditions. The model was trained on synthetic
data coupled with groundtruth normal maps. Additional details about the
architecture and losses used to train the normal predictor can be found in
the supplementary material. Representative examples of our real evaluation
dataset, together with their predicted normal maps, can be seen in Figure 8.8.

results Figure 8.1 shows editing results for a variety of real-world objects
photographed in uncontrolled setups under different conditions, for our two
attributes Glossy and Metallic. They include indoor and outdoor scenarios,
varied shape complexity, and different types of materials, yet our framework
can handle them gracefully, producing compelling edits by just changing the
high-level perceptual attribute. It is interesting to observe how, even though
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Figure 8.8: Representative examples of our real images evaluation dataset, comprised
of photos from online catalogues (top), and casually photographed objects
(bottom). For each image, we also show its normal map, as obtained by
our normal map predictor.

the illumination is not explicitly modeled during training, the edits seem
to plausibly capture the lighting in the scene. Additionally, our framework
is trained so that the attribute of interest can be sampled along its range,
producing consistent results. This is shown in Figure 8.9 for two real images,
where both attributes exhibit a coherent variation (see the supplementary
material for additional results). Figures 8.1 and 8.9 also show that our normal
map predictor is capable of yielding a normal map that allows for realistic
editing of photographs.

8.4.1 Ablation Studies

We evaluate the utility of each of the components of our method through a
series of ablation studies where the Metallic attribute is used. We generate
five ablated versions of our framework, for which we show an illustrative
result in Figure 8.10. First, the effect of the individual generative networks
is shown in Only G1 and Only G2. When using only G1, the resulting image
features the desired edit, but lacks high-frequency details. Meanwhile, G2
alone is able to reconstruct the fine detail of the input image, but cannot
convincingly edit the appearance towards the target increased metallicity.
We then investigate the effect of the auxiliary networks. When the latent
discriminator LD2 is removed (W/o LD2), the generated image struggles to
convey the appearance required by the target edit. Additionally, without
the attribute predictor and discriminator (W/o C/D), the framework is only
slightly able to improve the edited result from the first network G1. Finally,
we investigate the effect of the normal map information by removing them
from the training (W/o normals). Without this information, the framework
cannot reconstruct the geometry, leading to unrealistic results.
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Glossy +-

Metallic +-Input

Figure 8.9: Editing results by varying the perceptual attributes Metallic and Glossy.
First column is the input image, following ones show the edited image
when sampling the attribute as [−1, 0, 0.5, 0.75, 1] for Metallic and
[−1, −0.25, 0, 0.25, 1] for Glossy. Our method produces a realistic
editing of the input over the whole range.

Figure 8.10: Ablation studies where we trained and tested out each of the individual
components of our framework. The leftmost image shows the input pho-
tograph, followed by the target attribute (Metallic +1). Then, from left to
right: the resulting edited image using our method, only the G1 network,
only the G2 network, training without the latent discriminator LD2 and
its associated loss function, training without the attribute predictor and
discriminator C/D and its associated loss function, and training without
using the normal map information of the input image. Our method
qualitatively yields superior performance and allows for the creation of
sharp highlights and realistic images.

8.4.2 Consistency of the Edits

We use our synthetic evaluation dataset to assess the consistency of our edits
under different conditions. Figure 8.11 (a) shows edits performed when
both material and geometry are the same in the input image, and only the
illumination changes. Our material edits are perceptually consistent, while
illumination properties are preserved within the edits. Figure 8.11 (b) shows
results when only the geometry changes in the input images. Our edits yield
consistent results across geometries, appearing to be all made of a similar
material (within each row). Last, in Figure 8.11 (c) we evaluate the consistency
of our edits using two different materials with similar reflectance properties,
namely acrylic-felt-orange and acrylic-felt-green. Again our framework yields
consistent, plausible results for both attributes.

8.4.3 User Study

We run an additional user study to assess the perception of the appearance
in our edited images. In the study, participants were asked to rate the
perceptual attribute in generated images in which such attribute had been
edited with our framework. The layout of the user study is the same as the
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Figure 8.11: Example results illustrating the consistency of our editing framework.
(a) Same object and material, but different illuminations in the input
image; (b) Same illumination and material, but different geometry ; (c)
same geometry and illumination, but different materials with similar re-
flectance properties. Our framework is capable of producing compelling
and consistent edits in all cases. Arrows pointing up correspond to a
target attribute value of +1, while arrows pointing down correspond to
a value of −1.

one used in the perceptual study (Figure 8.5) except that participants were
asked to rate one attribute at a time.

stimuli We selected three images for each attribute (Glossy and Metallic),
varied in shape, illumination and material, and edited them with our method
by setting the target attribute value to −1, 0 and +1. This lead to two sets
(one per attribute) of nine edited images. We also incorporated, for each
attribute, nine other images from the training dataset, chosen such that they
covered the whole range of attribute values; we will term them training
images. Note that these images are unedited, and for each we have the
“groundtruth” attribute value gathered through our perceptual study that
was used to train our framework (Section 8.3). In Figure 8.12, we show the
stimuli from the "edited images" set that we used in the validation user study.
For each attribute, the top part shows the input images (synthetic) that we
selected, covering different shapes, illuminations and reflectance properties.
The bottom part shows the three edited images that we show in the study
for each input (low attribute value, middle value and high attribute value),
resulting in nine stimuli.

procedure The stimuli were shown to participants in two separate blocks,
one per attribute. Each block thus consists of 18 images, for which the partic-
ipants had to rate the attribute on a Likert-type 1-to-5 scale. 15 participants
took part in the study, leading to 15 ratings for each image and attribute.

results For each image, we average the participants’ ratings to obtain
a perceived attribute value (to which we will refer here as collected value).
Table 8.1 shows the results of the Pearson correlation between the collected
and the expected attribute values. Note that the expected attribute value
is the target attribute value for the edited images, and the “groundtruth”
attribute value for the training images. For both, edited and training images,
there is a strong (and significant) correlation between the collected and the
expected attribute values. While for the Metallic attribute, the correlations
for edited images are on par with the ones for training images (0.90 and 0.92
respectively), correlations for the Glossy attribute are lower for the edited
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Figure 8.12: Input images and edited stimuli used in our user-study. Top: input
images to our framework. Bottom: The edited images with three target
attributes, leading to nine stimuli for each attribute.

Images Metallic Glossy

Edited 0.90, p < 0.001 0.86, p = 0.003

Training 0.92, p < 0.001 0.96, p < 0.001

Table 8.1: Pearson correlation coefficients (along with their p-value) between the
expected attribute of the images shown in the user study, and the answers
of the participants (collected attribute).

images than for the training images (0.86 and 0.96 respectively). This can be
due to the fact that our edited images do not cover the full range of glossiness,
with the most glossy images (with a target attribute set to +1) being scored
between 3 and 3.7 (on a scale of 1 to 5). However, the correlations for the
edited images remain high, showing that our edited images are globally well
perceived.

In Figure 8.13, we show the answers that we collected for both attribute
Metallic and Glossy and for the two sets of images. The blue dots show all
the 15 ratings that we collected for each images, where the density of the
color indicates the number of answer, while the red crosses indicates the
average answer for each stimuli. While the answers for both sets of images
appear to be strongly correlated, the answers collected on our edited images
do not reach the full scale of the attribute, with a maximum score of 3.7 for
the Glossy attribute, and 4 for the Metallic attribute. The average variances in
the answers was higher for edited images than for training ones (0.42 and
0.62 respectively for Glossy, 0.5 and 0.84 respectively for Metallic).

8.5 discussion and limitations

We have presented an image-based framework to edit materials through the
manipulation of high-level perceptual attributes. Our framework is based
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Figure 8.13: Answers collected in our validation study for both attribute Metallic
and Glossy and for the two sets of images. The blue dots show all the
15 ratings that we collected for each images, where the density of the
color indicates the number of answer, while the red crosses indicates the
average answer for each stimuli.

on two generative networks aiming at providing an editable latent space,
and reconstructing high-frequency details, respectively. We have shown
the editing capabilities of our method on a variety of input images, both
synthetic and real, and validated the results through a user study.

Our framework is not free of limitations, which open up several possibili-
ties for future work. Since no normal maps are provided for real pictures,
we have introduced a normal map predictor; inaccuracies in its output may
lead to distortions in the edited objects, especially visible around highlights,
as shown in Figure 8.14 (a); our framework would thus benefit from better
models to infer normals. Besides, since our architecture does not allow
for the use of skip-connections, high-frequency illumination details such
as mirror-like reflections may also not be recovered properly when trying
to reach high glossiness values, as shown in Figure 8.14 (b). Similarly, our
framework can only create fuzzy highlights when presented with an input
image depicting a diffuse material that conveys only limited information
about the illumination. It would be interesting to combine our approach
with recent neural rendering techniques which can create such information
about the illumination [306, 187].

Our framework was trained using the dataset by Lagunas et al. [171]
which contains synthetic data using the isotropic BRDFs from MERL [211].
However, MERL materials are biased in terms of albedo and reflectance.
To mitigate this, we have augmented our input data with changes in hue
before feeding it to our framework (see the Appendix E.1). Nevertheless,
designing a dataset beyond isotropic BRDFs could allow the framework to
edit a wider range of appearances. Moreover, since our dataset contains
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(b)(a)

GlossyMetallicInput Normals Input

Figure 8.14: Limitations of our framework: (a) Noise in the prediction of the normals
may lead to unpredicted editing results (left: input image, center: inferred
normal map, right: edited image with Metallic +1); (b) Due to the lack of
skip-connections, almost mirror-like reflections in the input image (left)
are hard to model during editing when trying to reach high glossiness
(right: edited image with Glossy +1).

single-color objects, we currently cannot edit spatially-varying reflectance
(such as the duck’s beak in Figure 8.9).

We hope that our work inspires additional research and novel perceptually-
based applications. We will make our data and code available for further
experimentation, in order to facilitate the exploration of these possibilities.
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9C O N C L U S I O N A N D F U T U R E W O R K

In this thesis we have presented contributions in three core aspects of visual
appearance: how to measure appearance similarity by taking into account
the subjective nature of human perception, what is the effect of confounding
factors in material appearance and how they affect our perception, and, last,
how to develop intuitive applications for human relighting and material
editing.

measuring appearance similarity In this first part we have dis-
cussed two different lines of work. In the first one (Chapter 3), we have
focused on the long-standing problem of measuring material similarity using
single images and in such a way that it agrees with human judgements.
We have presented a new dataset with carefully chosen stimuli, which are
generated using physically-based rendering. From there, we have relied on
the dataset to launch a set of crowdsourced experiments to collect human
judgements on material appearance similarity. Then, we leveraged both the
dataset and human judgements to propose a deep learning-based framework
with a custom loss function capable to accurately measure material appear-
ance similarity from images. We have validated our method, showing how
it outperforms previous work, and also have proposed several applications
that are enabled by our metric. However, many different potential avenues
for future work remain open. For instance, we collected perceptual data
by sampling a single geometry and illumination in our user studies; one
could potentially extend the experiments to account for such factors, which
in turn should yield a more robust metric. Besides, we rely on a synthetic
dataset and, while we have carefully sampled the different variables (geome-
try, material, and illumination), collecting and using a dataset directly from
controlled photographs would provide statistics to the neural network that
better match the real world.

In the second part (Chapter 4), we have focused on measuring similarity
for iconography, a non-photorealistic domain where the style or identity
given by the artists are crucial to convey icon’s information and message.
We have relied on a dataset automatically collected from online databases
where each icon is additionally paired with semantic information. We have
used such semantic information and labels associated with each icon image
to train a deep learning-based similarity measure, with a siamese neural
network. However, the semantic information of each icon is manually added
by the artists and, thus, it may be noisy. While this have allowed us to obtain
plausible subjective comparisons using our metric, we had to additionally
collect human judgements to validate our model. Last, we have shown
several applications using our metric such as database visualizations, icon
retrievals, or icon sets proposals. By means of future work, one direct
approach would be to additionally curate the semantic data obtained from
the dataset which would allow for better convergence of the model. In
addition, we implicitly learn the separation between style and identity in
the deep neural network. One could try to learn such separation explicitly,
by modeling it directly through the deep learning model, using additional
perceptual data, or by assuming that icons identity is directly linked with
shape and using traditional computer vision techniques to disambiguate
between shape (visual identity) and style.
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confounding factors in material perception In this part, we
have focused on how our perception of materials changes when varying the
physical parameters that govern the interaction between light and matter.
First (Chapter 5), we have presented a comprehensive study on the joint
effects of geometry and illumination on our performance for material recogni-
tion tasks. We have used a synthetic dataset to launch a set of crowdsourced
experiments where users had to recognize materials given a reference and
a set of candidate samples. From there, we have observed that users better
recognize the visual appearance of materials when those are represented in
a geometry and an illumination covering a wide frequency spectrum, and
we have also observed significant first-order interactions between geometry
and illumination. We additionally validated our findings by connecting
them to the rendering equation through its Fourier transform. Last, we have
proposed an analysis of simple statistics and complex models, such as neural
networks, where we find that the latter may share similar high-level factors
to humans when recognizing materials. This study represents an additional
step towards understanding how such confounding factors affect human
perception. As such, many potential lines of future work open up. We have
done a preliminary study on human perception and deep neural networks.
Given the current trends and potential exciting outcomes of such models,
a more in-depth analysis explaining how deep networks work, and their
relationship with human perception, remains to be done. For instance, one
could continue analyzing unsupervised training schemes [295], or studying
other network architectures such as transformers [321]. Besides, here we
have focused on geometry and illumination for the particular case of material
recognition. Observing how those affect other aspects of perception such as
visual appearance similarity, or how those influence our perception on a set
of material attributes is an exciting potential avenue of future work.

In the second half (Chapter 6), we have presented another user study
where we analyzed the effect of motion in our perception of a set of attributes
describing different aspects of material appearance. First, we have rendered
a set of stimuli using different degrees of motion. Then, we have used
those realistic stimuli to launch a crowdsourced experiment where users
had to rate the material attributes. From there, we found that particular
attributes defining how the material reflects light (e.g., glossiness, or sharpness
of reflections) yield lower values as the degree of motion increases. Besides,
we have launched a second user study where we analyzed the impact of
the brightness attribute under different degrees of motion. From the results
we have built brightness maps that characterized the impact of motion in our
perception of the brightness attribute. By means of future work, we could
extend our study to additional geometries and illuminations. In addition,
other types of motion could also be explored.

intuitive applications for appearance editing The last part
has dealt with developing intuitive applications whose main goal was the
editing of visual appearance. We have started by introducing a framework for
full-body human relighting working just on single RGB images (Chapter 7).
We have generated a synthetic dataset containing more than 500 different
combinations of posed humans were we explicitly modeled the visual appear-
ance of materials with an Oren-Nayar microfacet model for the diffuse and a
microfacet model with GGX distribution for the specular. We have leveraged
precomputed radiance transfer and spherical harmonics to introduce our
image reconstruction formulation, where we have additionally introduced
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a residual term aiming to overcome problems in the reconstruction. With
these, we train a deep neural network capable to relight images given just a
photograph with a human in it, and the target illumination to perform the
relighting. We showed how our model numerically outperforms previous
approaches, and showcased relighted results in various scenarios. However,
spherical harmonics basis are known for struggling in the reconstruction of
high-frequency information. Exploring other bases could be an interesting
line of future work. Besides, we modeled the material appearance directly in
our data and implicitly learned their properties using the neural network.
One could learn the computational model of material appearance explicitly
in the neural network, to obtain better performance.

Finally, we have also presented a framework for intuitive editing of material
appearance just from RGB images (Chapter 8). We have first created a dataset
consisting of a diverse set of stimuli with different materials, geometries,
illuminations, and viewpoints. Using this dataset, we have launched several
crowdsourced experiments where we aimed at collecting information on
several high-level attributes describing material appearance. We relied on
the images in the dataset, the ratings on the material attributes, and on
generative neural networks to propose an intuitive framework for material
editing, where the user just needs an input RGB image together with a value
representing the desired change in appearance. We have demonstrated the
applicability of our method with an additional user study. Last, we have also
shown how our framework works on a diverse set of inputs, including also
real photographs. However, our framework relies on a latent discriminator to
remove all the information from the attribute in the generative part of the
network; this way, since all information about the attribute was removed,
we are forcing the user to provide a new attribute value thus allowing for
the editing. Unfortunately, this method does not allow to use the traditional
skip connections in the architecture. This, in turn, removes high-frequency
information from the final edited image. To alleviate this problem we
additionally relied on a normal map estimation module. One potential
avenue of future work could be to explore more complex architectures:
Instead of having a single latent discriminator for the whole architecture,
the use of smaller, individual latent discriminators for each layer could be
a potential solution to adding skip connections. Moreover, this has two
benefits: First, it would allow us to remove the normal estimation module
(and therefore one potential source of bias in the reconstruction); and second,
it would allow to better reconstruct high-frequency information in the final
edited image.

personal conclusions I would also like to add a personal note here. I
started this thesis just after graduating with a Master in applied mathematics.
My expertise was, mostly, in the fields of machine learning and deep learning.
During the thesis, I have been working on many different projects that span
also different fields. This has allowed me to learn new concepts and ideas
from other domains such as perception, physically-based rendering, and
online rendering; and also expand my knowledge regarding deep learning
methods. Broadening my technical expertise has been both, a challenging
but at the same time rewarding experience.

Throughout this thesis, I have not only broadened my technical expertise.
Some projects involved international collaborations, sometimes I had to
present our work, or I had to give an invited talk explaining some of the
projects contained in this PhD thesis. This has also allowed me to develop a
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range of soft skills regarding how to approach a technical conversation with
people with other expertise, how to collaborate in different environments,
how to work when there is a nine hour gap between collaborators, how to
better manage my time, or on how to give a talk. I believe these soft skills are
also key in the future that lies ahead, and sometimes it is something hard to
learn unless you see yourself in a situation that allows for it. Luckily, during
the thesis, there have been plenty of these moments where I had to challenge
myself, go out of the comfort zone, and learn something new, not necessarily
technical.

I also have to mention the students I have supervised, either because they
were doing their final degree project or because they were interns in our
group. Supervising people is a task that made me be "on the other side".
Now, I could better understand my supervisors since I saw my own mistakes
reflected on the students I was supervising. This is also an enlightening
experience that adds extra value and weight to what my supervisors have
tried to explain and taught to me during these years. I definitely learned a
lot from my supervisors and from each of the students. I tried to understand
the way they were thinking, and try to put myself in their situation. I tried
my best to teach them everything I knew, and also tried my best to teach
them not to make the same mistakes I could be doing when I was in their
place.

Also, I want to add a personal note about the research internships. I
believe this has also been one of the most rewarding experiences of the thesis.
You travel abroad, you see a new culture, have a new temporary supervisor,
and have to adapt to the rhythm and pace of an industry which could differ
from what happens back at home. My two research internships have also
taught me a lot of technical and soft skills. There you have to talk with
people from many different backgrounds, you have a new supervisor with
different workflows than what you are used to, and you have a different
environment. This teaches you to be flexible, adapt, and to be reactive. You
are in a new situation and you need to learn fast in order to collaborate and
support your new colleagues.

We say here, in Spain, that if you work in what you like, you never have to
work again. I think this is a good summary of the thesis. I was working on
projects I like, learning new technical skills, developing soft skills, expanding
my knowledge, and also expanding the network of people I know. I want
to say thanks again to my supervisors, Belén and Diego, for giving me this
huge opportunity. This years have been a challenging experience, but the
more challenging it is, the more rewarding it becomes once it is done.
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AM AT E R I A L A P P E A R A N C E S I M I L A R I T Y : A D D I T I O N A L
R E S U LT S

a.1 additional loss terms

We describe here the two additional loss terms that we evaluate in our
ablation study (refer to Part III, Section 3.5 for details).

a.1.1 Cross-entropy Term LCE

This term accounts for the soft-label cross entropy [302]. It aims at learning a
soft classification task by penalizing samples which do not belong to the same
class. In our case, each material represented in the dataset can constitute a
class, and the set of classes in the dataset is K. Given an image r included in
a training batch B, the probability of r belonging to a certain class k ∈ K is
given by pk(r). The cross-entropy loss term is given by:

LCE =
1
|B| ∑

r∈B
s(r) (A.1)

s(r) = − ∑
k∈K

[
(1 − ϵ) log pk(r)lk(r) + ϵ log pk(r)u(k)

]
(A.2)

where l(r) is the one-hot encoding of the groundtruth label, and lk(r) is
the value of the vector for label k (note that our training image data can be
labeled, since it comes from the materials dataset presented in Section 3.2).
The value of ϵ is set to 0.1, and we use the uniform distribution u(k) = 1

|K| .
Both ϵ and u(k) work as regularization parameters so that a wrong prediction
does not penalize the cost function aggressively, while preventing overfitting.

a.1.2 Batch-mining Triplet Loss Term LBTL

In learned models for classification or recognition, a batch-mining triplet loss
has been proposed in combination with a soft-label cross entropy term such
as the one we use to improve the model’s generalization capabilities and
accuracy [93]. It is modeled as:

LBTL =
1
|B| ∑

r∈B

[
argmax

x+i

(
|| f (r)− f (x+i )||22

)
− argmin

x−i

(
|| f (r)− f (x−i )||22

)
+ µ

]
+

(A.3)

where x+i designates images of the training batch B belonging to the same
class as r, and x−i images belonging to a different class than r. Intuitively,
this loss mines and takes into consideration the hardest examples within
each batch, improving the learning process.

a.2 queries and agreement with humans

We show queries to our method and agreement with humans’ majority
response in Figures A.1 and A.2. For each reference material (left) we show
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two candidate materials. The number below each candidate indicates the
number of human votes it received. Numbers in green indicate that the
candidate judged by our model as closer to a given reference agrees with
humans majority response, while numbers in red represent cases where
our model does not agree with humans’ majority response. As reported in
Section 3.5 our model agrees with humans around 80% of the time.

a.3 material suggestion examples

In Figures A.3 and A.4 we show additional material suggestions. Queries
(left) and results for the closest materials in the Extended MERL dataset [276].
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5 0 5 0

3 2 5 0

5 0 5 0

5 0 3 2

5 0 4 1

4 1 5 0

5 0 5 0

Figure A.1: Queries to our method and agreement with humans’ majority response
(I).
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5 0 5 0

5 0 5 0
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5 0 5 0

4 1 4 1

5 0 3 2

Figure A.2: Queries to our method and agreement with humans’ majority response
(II).
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Figure A.3: Queries using our measure for materials in the Extended MERL dataset
(I).
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Figure A.4: Queries using our measure for materials in the Extended MERL dataset
(II).
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P E R C E P T I O N : A D D I T I O N A L D E TA I L S

b.1 additional details on image statistics

To measure the correlation between image statistics and users’ performance
we employ a Pearson P and Spearman S correlation test with a significance
value (p-value) of 0.05. The value Pn represents the Pearson correlation for
the nth statistical moment (same applies for the Spearman Sn correlation).
Please, also refer to Part IV, Section 5.3.

luminance We analyze if the moments of the luminance of each material
image have a direct influence on users’ performance. We found that the
moments of the luminance are not correlated with users’ performance: P1 =
−0.14 (p = 0.17), S1 = −0.15 (p = 0.15), P2 = 0.02 (p = 0.83), S2 = −0.03
(p = 0.78), P3 = 0.03 (p = 0.77), S3 = 0.03 (p = 0.78), P4 = 0.01 (p = 0.94),
S4 = 0.05 (p = 0.65).

rgb image We analyze if the moments of the joint RGB intensity of each
material image have a direct influence on users’ performance. We found
that the moments of the joint RGB intensity have little to no correlation
with users’ performance except for the standard deviation: P1 = −0.02
(p = 0.79), S1 = −0.06 (p = 0.51), P2 = 0.43 (p < 0.001), S2 = 0.50
(p < 0.001), P3 = 0.16 (p = 0.09), S3 = 0.22 (p = 0.02), P4 = −0.1
(p = 0.30), S4 = −0.06 (p = 0.52).

We also tested out the correlation for each channel and found out that
for all the channels there is no correlation for any of the first 4 statistical
moments.

red channel On the red channel there seems to be a slight positive linear
correlation between the fourth moment (kurtosis) and users’ performance.
All the other statistics show no significant correlation: P1 = −0.10 (p = 0.29),
S1 = −0.08 (p = 0.42), P2 = 0.03 (p = 0.60), S2 = −0.02 (p = 0.87),
P3 = 0.07 (p = 0.46), S3 = 0.07 (p = 0.51), P4 = 0.20 (p = 0.04), S4 = 0.15
(p = 0.13).

green channel There is no correlation between any statistics on the
green channel: P1 = −0.04 (p = 0.66), S1 = −0.0. (p = 0.74), P2 = 0.03
(p = 0.55), S2 = 0.04 (p = 0.67), P3 = 0.05 (p = 0.64), S3 = 0.06 (p = 0.53),
P4 = 0.05 (p = 0.63), S4 = 0.01 (p = 0.94).

blue channel Similar to the green channel, the blue does not show
any correlation for the first 4 statistical moments: P1 = 0.03 (p = 0.72),
S1 = −0.004 (p = 0.93), P2 = 0.06 (p = 0.52), S2 = 0.01 (p = 0.95),
P3 = 0.13 (p = 0.19), S3 = 0.10 (p = 0.30), P4 = 0.16 (p = 0.11), S4 = −0.05
(p = 0.61).
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c.1 stimuli used in the first experiment

We choose a set of 72 different realistic materials, that span six different
material categories, and three degrees of motion: 0, 45, and 95 with a
significant difference between them in order to provide a notable change in
the appearance of the stimuli. Here, we provide all the rendering stimuli in
the first experiment, for different motion degrees and materials; including
glass materials (see Figure C.1), metallic materials (see Figure C.2), paint
materials (see Figure C.3), plastic materials (see Figure C.4), rubber materials
(see Figure C.5), and stone materials (see Figure C.6).

Figure C.1: Stimuli rendered with a glass material.
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Figure C.2: Stimuli rendered with a metallic material.
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Figure C.3: Stimuli rendered with a paint material
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Figure C.4: Stimuli rendered with a plastic material.
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Figure C.5: Stimuli rendered with a rubber material.
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Figure C.6: Stimuli rendered with a stone material.

c.2 stimuli used in the second experiment

Here, we provide all the rendering stimuli, for the different motion degrees
used for the second experiment, and rendered with a plastic (see Figure C.7)
and rubber (see Figure C.8) material.
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c .2 stimuli used in the second experiment

Figure C.7: Stimuli rendered with a plastic material.
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Figure C.8: Stimuli rendered with a rubber material.

c.3 attribute plots for the first experiment

Figures C.10 and C.9 show the trends of participants’ ratings for each of the
six perceptual properties and motion degrees. All the 14 material attributes
are included here.

c.4 tables for the statistical tests

In Table C.1 we show a summary with all the p-values for each rated attribute
and material category can be found here. The last 3 columns are the results
of Nemenyi post hoc test.
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Figure C.9: Participants’ ratings for each attribute (I).

Attribute Material df χ2 p-value Motion Degree 1 - Motion Degree 2

0-45 0-95 45-95

Brightness Glass 2 62.026906 0 0 0 0.987653

Brightness Metal 2 52.210877 0 1.9e-05 0 0.648557

Brightness Paint 2 71.273543 0 0 0 0.644612

Brightness Plastic 2 70.490219 0 2e-06 0 0.380282

Brightness Rubber 2 59.049369 0 5e-06 0 0.782593

Brightness Stone 2 72.239824 0 0 0 0.94575

Ceramic-like Glass 2 9.140673 0.010354 0.475144 0.101555 0.651724

Ceramic-like Metal 2 21.307143 2.4e-05 0.05292 0.001302 0.459785

Ceramic-like Paint 2 18.231847 0.00011 0.071882 0.006437 0.66809

Ceramic-like Plastic 2 18.100125 0.000117 0.056734 0.005347 0.693741

Ceramic-like Rubber 2 21.055416 2.7e-05 0.091045 0.002296 0.417871

Ceramic-like Stone 2 37.925481 0 0.000496 4.6e-05 0.840614

Fabric-like Glass 2 2.886894 0.236112 0.568434 0.710349 0.972435

Fabric-like Metal 2 2.739726 0.254142 0.494135 0.838124 0.838124

Fabric-like Paint 2 0.904832 0.63609 0.993151 0.812427 0.870146
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Fabric-like Plastic 2 3.536547 0.170627 0.916398 0.670046 0.423228

Fabric-like Rubber 2 0.28752 0.866096 0.999811 0.946764 0.952696

Fabric-like Stone 2 4.293578 0.116859 0.570232 0.368992 0.939384

Glossiness Glass 2 52.165517 0 0.00038 0 0.20944

Glossiness Metal 2 19.079951 7.2e-05 0.268817 0.002579 0.178387

Glossiness Paint 2 29.109813 0 0.017141 0.000136 0.373076

Glossiness Plastic 2 24.957811 4e-06 0.004147 8e-04 0.892242

Glossiness Rubber 2 19.648216 5.4e-05 0.07028 0.00339 0.552995

Glossiness Stone 2 64.044543 0 2e-06 0 0.665083

Hard Glass 2 26.414634 2e-06 0.003813 0.003813 1

Hard Metal 2 23.213582 9e-06 0.235903 0.000322 0.063757

Hard Paint 2 6.218859 0.044626 0.515371 0.133948 0.691377

Hard Plastic 2 12.37123 0.002059 0.795545 0.021732 0.110017

Hard Rubber 2 14.349603 0.000766 0.051119 0.017717 0.919921

Hard Stone 2 17.769406 0.000138 0.023907 0.006472 0.902958

Matte Glass 2 0.832642 0.659469 0.976786 0.902439 0.799138

Matte Metal 2 13.941793 0.000939 0.103199 0.012899 0.707589

Matte Paint 2 10.033413 0.006626 0.278732 0.045366 0.66809

Matte Plastic 2 0.301337 0.860133 0.908633 0.987406 0.961934

Matte Rubber 2 2.897714 0.234839 0.912467 0.417871 0.670312

Matte Stone 2 1.23991 0.537969 0.700157 0.995186 0.756951

Metallic-like Glass 2 17.558333 0.000154 0.08209 0.011406 0.744577

Metallic-like Metal 2 6.260749 0.043701 0.505754 0.178387 0.786393

Metallic-like Paint 2 7.007215 0.030089 0.526955 0.161849 0.737057

Metallic-like Plastic 2 12.434659 0.001995 0.202993 0.038501 0.740177

Metallic-like Rubber 2 6.317841 0.042472 0.308387 0.299321 0.999811

Metallic-like Stone 2 18.854111 8.1e-05 0.039767 0.008738 0.859626

Plastic-like Glass 2 6.132203 0.046602 0.463817 0.281493 0.939053

Plastic-like Metal 2 21.538275 2.1e-05 0.126544 0.001131 0.243873

Plastic-like Paint 2 14.7925 0.000614 0.144638 0.013738 0.621018

Plastic-like Plastic 2 10.920943 0.004252 0.175771 0.062276 0.883633

Plastic-like Rubber 2 16.758801 0.00023 0.386356 0.008506 0.225067

Plastic-like Stone 2 10.328733 0.005717 0.711709 0.048253 0.257891

Roughness Glass 2 2.233487 0.327344 0.687084 0.995159 0.627958

Roughness Metal 2 1.769022 0.412916 0.984223 0.636611 0.742081

Roughness Paint 2 1.327128 0.515013 0.822556 0.977167 0.702924

Roughness Plastic 2 2.923754 0.231801 0.502798 0.622119 0.980393

Roughness Rubber 2 0.002567 0.998717 0.999243 0.999811 0.999811

Roughness Stone 2 1.347339 0.509834 0.962876 0.85023 0.700157

Rubber-like Glass 2 1.832787 0.399959 0.766827 0.687084 0.990533

Rubber-like Metal 2 3.742087 0.153963 0.564794 0.304457 0.893111

Rubber-like Paint 2 3.308789 0.191208 0.362965 0.621018 0.903979

Rubber-like Plastic 2 0.160305 0.922975 0.998219 0.956428 0.971889

Rubber-like Rubber 2 6.883663 0.032006 0.290414 0.158344 0.940514

Rubber-like Stone 2 2.132231 0.344343 0.500008 0.868791 0.81054

Sharpness Glass 2 101.799789 0 0 0 0.592216

Sharpness Metal 2 51.283286 0 0.003144 2e-06 0.191732

Sharpness Paint 2 38.978552 0 0.001787 7.1e-05 0.702924

Sharpness Plastic 2 45.868047 0 0.000238 8e-06 0.728714

Sharpness Rubber 2 34.242595 0 0.005591 0.000341 0.727691

Sharpness Stone 2 48.995227 0 2.7e-05 4e-06 0.918417

Soft Glass 2 2.915209 0.232793 0.639853 0.463817 0.957268

Soft Metal 2 1.564286 0.457425 0.917082 0.600677 0.838124

Soft Paint 2 1.993103 0.36915 0.609202 1 0.609202
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Soft Plastic 2 0.832524 0.659507 0.923864 0.944387 0.762746

Soft Rubber 2 0.212865 0.899036 0.987957 0.977353 0.933952

Soft Stone 2 5.212337 0.073817 0.218616 0.932702 0.389632

Strength Glass 2 66.824201 0 6e-06 0 0.356824

Strength Metal 2 42.993498 0 0.013656 4e-06 0.107576

Strength Paint 2 18.884768 7.9e-05 0.029072 0.011595 0.946334

Strength Plastic 2 41.848293 0 0.003415 5e-06 0.274439

Strength Rubber 2 14.235911 0.00081 0.056087 0.040289 0.990766

Strength Stone 2 29.444317 0 0.003038 0.000215 0.767967

Tint Glass 2 33.292627 0 0.021045 2.2e-05 0.162949

Tint Metal 2 27.795756 1e-06 0.069825 0.000348 0.228108

Tint Paint 2 17.913259 0.000129 0.022423 0.012988 0.981092

Tint Plastic 2 32.998658 0 0.000925 0.000691 0.996836

Tint Rubber 2 22.810596 1.1e-05 0.027021 0.00318 0.771872

Tint Stone 2 41.545562 0 0.000199 1.6e-05 0.840614

Table C.1: All p-values for each attribute and material category. The last 3 columns
are the results of the Nemenyi post hoc test.
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Figure C.10: Participants’ ratings for each attribute (II).
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DF U L L - B O D Y H U M A N R E L I G H T I N G : A D D I T I O N A L
R E S U LT S

d.1 additional results

In this section we show additional results for the real photographs in the
test dataset. Figure D.1 show a variety of relighting results under different
illuminations. For each input photo and illumination map we show the
final relighted image, and the reconstructed shading and residual terms.
We observe how our model is capable of faithfully relighting the input
photographs.
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full-body human relighting : additional results

Figure D.1: Relighted results using real photographs for two different illuminations
(ennis, and pisa) and five different input images. In each case, we show
the relighted image, and the reconstructed shading and residual terms
scaled for visualization purposes. Last column shows the results under
two rotations of the same illumination.
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EI N T U I T I V E M AT E R I A L E D I T I N G : A D D I T I O N A L D E TA I L S
A N D R E S U LT S

e.1 additional details on the framework

Our framework is composed of two encoder-decoder networks G1 and G2, the
auxiliary latent discriminator networks LD1, LD2 and the auxiliary attribute
predictor and discriminator C/D only used by means of a loss function
during training.

generative network Both generative networks G1 and G2 are com-
posed of an encoder made of a series of convolutional blocks that reduce the
spatial dimensions of the input by a factor of two, a set of residual blocks
that transform the bottleneck features, and a decoder made of a series of
convolutional blocks followed by bilinear upsampling layers. The target
perceptual attribute is spatially replicated to match the size of the latent code
and concatenated to it at the beginning of the decoder.

Let Ck denote a 4 × 4 Convolution layer with k filters and stride 2, then
followed by a Rectified Linear Unit (ReLU), Rk denotes a residual block that
contains two 3 × 3 convolution with k filters. Dk denotes a convolutional
block (3 × 3 convolution with k filters - leaky Rectified Linear Unit [336])
followed by a bilinear upsampling layer. Reflection padding is used in all
convolutions.
G1 takes input images at the resolutions 128 × 128 and contains six layers

both in the encoder and decoder and two residual blocks, resulting in the
following architecture:

Encoder: C32-C64-C128-C256-C512-C512-

Bottleneck: -R512-R512-

Decoder: -(b)D512-D256-(n)D128-(n)D64-(n)D32-(n)D8

where (b) indicates the concatenation of the target attribute and (n)

indicates the concatenation of the normal map.
G2 takes as input images at the resolution 256 × 256 and contains four

layers in the encoder, three in the decoder and three residual blocks, resulting
in the following architecture:

Encoder: C32s1k7-C64-C128-C256-

Bottleneck: -R256-R256-R256-

Decoder: -(b)(n)D128-(n)D64-(n)D8

where C32s1k7 indicates a 7 × 7 Convolution-ReLU layer with 32 filters
and stride 1. This first convolution allows us to reduce the number of spatial
resolution of the image while keeping the same receptive field.

Each network ends with a last convolutional block with stride 1 and
8 filters followed by a single convolutional layer with three output filters
(corresponding to the RGB channels) and a hyperbolic tangent function (tanh)
to bring the values into the range [−1,+1].

latent discriminator The latent discriminators, LD1 and LD2 take
the features in the bottleneck of G1 and G2, respectively, and use them to
predict the attribute a of the input image. The architecture of the latent
discriminators LD1 is as follows:
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LD1: Cd512-FC256-FC1

LD2: Cd512-Cd512-Cd512-Cd512-pool-FC256-FC1

where Cdk represent a convolutional block ( 4 × 4 convolution, leakyReLU,
and dropout with probability 0.3), FCk refers to a fully connected layer with
k features, and pool represent an average pooling operation. At the end, the
output of the latent discriminators goes through a tanh layer that outputs
the attribute prediction â in the range [−1,+1].

attribute predictor and discriminator The attribute predictor
and discriminator C/D take the image as input and outputs an attribute
prediction b̂. The image goes first through an encoder. The features from
such encoder then go to the discriminator, and the attribute predictor. The
architecture is as follows:

Encoder: C32-C64-C128-C256-C512-

Discriminator: -C1

Attribute predictor: -pool-FC256-FC1

wgan-gp loss formulation Generative Adversarial Networks (GANs)
are complex to train. This is partially due to the instability of the loss
function proposed in the original formulation [109]. WGAN-GP [112] aims
to alleviate such problems by introducing a new loss function that relies on
the Wasserstein distance between distributions and a gradient penalty term
LGP.

Intuitively, the discriminator is trained to give a high score to real images
and a low score to generated ones, aiming at disambiguate them:

Ladv(D) = −∥D(I)∥2 + ∥D(G(I , n, b))∥2 + LGP (E.1)

while the generator is trained such that the the discriminator believe that
generated images are actually real (giving them a high score):

Ladv(G) = −∥D(G(I , n, b))∥2 (E.2)

We refer the reader to the original manuscript for additional informa-
tion [112].

data augmentation To have a more diverse set of input images and
help the model generalize better, we perform a set of random data augmen-
tation routines. First, input images are scaled to have size 512 × 512 px and
we perform random flips, 90-degree rotations, and a random crop with size
480 × 480 px. Then, to account for the bias in the BRDFs from the training
dataset, we perform random changes in the saturation and the hue. Finally,
the image is scaled to 256 × 256 and fed to the networks.

e.2 additional details on the normal prediction

Our normal map prediction module uses as input single-views of RGBA
images. The architecture is based on the Pix2Pix network [138], which has
been shown to perform reasonably well in normal prediction tasks [261,
220, 92]. Our goal is to maintain as much geometrical detail as possible,
while making the normal predictions invariant to changes in material and
illumination conditions in the input images.
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e.2.1 Architecture

Our network takes RGBA images as input (RGB + background mask), and
follows an encoder-decoder architecture, with 4 downsampling blocks in
the encoder and 4 upsampling blocks in the decoder. In each block we
repeat twice the following structure: Convolution with kernel 4 × 4, a batch-
normalization layer, and a leakyReLU [336]. This is done in order to reduce
the impact of specular reflections in the final predictions, putting more space
between the skip connection and the final output of the network. We also
included residual connections within each block, as proposed by ResNet[124].
Residual connections stabilizes the network and reduces the amount of high
variance noise present in the predictions. In contrast to Pix2Pix, which uses
transposed convolutions, we use bilinear upsampling in order to reduce the
risk of checkerboard artifacts. The final architecture is the following one:

Encoder: R64-ER64-ER128-ER256-ER512-

Bottleneck: -R512-

Decoder: -DR512-DR256-DR128-DR64-R64

where ER indicates an encoder block (downsampler) with residual con-
nections, DR a decoder block (upsampler) with residual connections, and R

a convolutional block with residual connections. The number that follows
them indicates the number of filters used in the convolutions. The output
uses a hyperbolic tangent function (tanh), bounding the results of the predic-
tions to [−1, 1], which are then scaled to have unit length, and normalized
to the range [0, 1]. The network’s weights are initialized with a zero-mean
normal distribution and a standard deviation of 0.02.

e.2.2 Losses

Our loss function is described in Equation E.3 and it is composed of three
different losses: an adversarial loss Ladv, a perceptual loss Lvgg, and a
reconstruction loss Lrec.

adversarial loss To infer normal maps similar to their groundtruth
distribution we rely on an adversarial loss Ladv with a binary cross entropy
(BCE) function. We rely on the same discriminator model as the one proposed
in Pix2Pix [138].

perceptual loss To keep high-frequency details in the inferred normals
we include a perceptual loss [144] Lvgg. To extract image features we employ
the VGG16 [289] model pretrained on ImageNet [61] and compute feature
differences with an L1 loss.

reconstruction loss To directly supervise the prediction of each
normal we rely on a Mean Squared Error (MSE) function Lrec. Since normal
vectors have unit-norm, the MSE is equivalent to a cosine distance, which
has additional geometric properties.

To obtain our final loss we set the different weights to λadv = 0.25, λrec =
10, and λvgg = 1. Our final loss function is:

L = λadvLadv + λrecLrec + λvggLvgg. (E.3)
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e.2.3 Training

The model was trained on synthetic data with paired groundtruth normal
maps. The synthetic dataset was composed of 12 different geometries, with
5 different viewpoints, 6 different illumination conditions, and 100 different
materials each; accounting for a total of 42000 images of size 128 × 128 px.
We implemented several data augmentation techniques, including random 90

degree rotations, flips, and random gamma, hue, saturation, and brightness
changes. Adam optimizer [163] is used with an initial learning rate of 0.0007,
β1 = 0.9 and β2 = 0.999. Our network is implemented using Pytorch [244]
and Pytorch Lightning [73] as our frameworks. The model was trained until
evaluation losses plateaued for more than 10 epochs, which usually occurred
after around 70 epochs. Overall, training took 7 hours in a single NVIDIA
RTX 3080 and an AMD Ryzen 9 5900x.

e.3 additional results

In Figure E.1 and E.2, we show results when editing real or synthetic images
with the attribute Metallic and Glossy respectively, sampling the attributes at
different values along their range.
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e .3 additional results

Input Metallic +-

Figure E.1: Editing results by varying the perceptual attributes Metallic. First column
is the input image, following ones show the edited image when sampling
the attribute as [−1, 0, 0.25, 0.5, 1].

161



intuitive material editing : additional details and results

-0.5
Input Glossy +-

Figure E.2: Editing results by varying the perceptual attributes Glossy. First column
is the input image, following ones show the edited image when sampling
the attribute as [−1, −0.25, 0, 0.5, 1].
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