000111634 001__ 111634
000111634 005__ 20231023123341.0
000111634 0247_ $$2doi$$a10.1016/j.cej.2020.124775
000111634 0248_ $$2sideral$$a117141
000111634 037__ $$aART-2020-117141
000111634 041__ $$aeng
000111634 100__ $$0(orcid)0000-0003-0516-2036$$aZambrano, D.
000111634 245__ $$aConventional and improved fluidized bed reactors for dry reforming of methane: Mathematical models
000111634 260__ $$c2020
000111634 5060_ $$aAccess copy available to the general public$$fUnrestricted
000111634 5203_ $$aDry reforming of methane is a potentially useful reaction, but has some drawbacks: catalyst deactivation by coke and yield limited by thermodynamic equilibrium. New improved fluidized bed reactors may compensate these disadvantages. Mathematical models for the dry reforming of methane in three types of fluidized bed reactors have been developed. These reactors include: a) conventional fluidized bed reactor, b) two zone fluidized bed reactor, which provides simultaneous reaction and catalyst regeneration in a single fluidized bed, and c) two-zone fluidized bed reactor with hydrogen selective membranes, which in addition to the previous one provides increased yield to hydrogen, because the selective removal of hydrogen through the membrane. The situations where these reactors counteract the two main drawbacks of dry reforming of methane are shown. Comparison with previous experimental results shows that the models predict well the effect of operating conditions.
000111634 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-76533-R
000111634 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000111634 590__ $$a13.273$$b2020
000111634 591__ $$aENGINEERING, ENVIRONMENTAL$$b2 / 53 = 0.038$$c2020$$dQ1$$eT1
000111634 591__ $$aENGINEERING, CHEMICAL$$b4 / 143 = 0.028$$c2020$$dQ1$$eT1
000111634 592__ $$a2.528$$b2020
000111634 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000111634 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000111634 593__ $$aEnvironmental Chemistry$$c2020$$dQ1
000111634 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000111634 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000111634 700__ $$0(orcid)0000-0001-9022-2835$$aSoler, J.$$uUniversidad de Zaragoza
000111634 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000111634 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, M.$$uUniversidad de Zaragoza
000111634 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000111634 773__ $$g393 (2020), 124775 [18 pp.]$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000111634 8564_ $$s1200752$$uhttps://zaguan.unizar.es/record/111634/files/texto_completo.pdf$$yPostprint
000111634 8564_ $$s308173$$uhttps://zaguan.unizar.es/record/111634/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000111634 909CO $$ooai:zaguan.unizar.es:111634$$particulos$$pdriver
000111634 951__ $$a2023-10-23-12:20:46
000111634 980__ $$aARTICLE