000111644 001__ 111644
000111644 005__ 20240104111818.0
000111644 0247_ $$2doi$$a10.1016/j.ifset.2021.102838
000111644 0248_ $$2sideral$$a126022
000111644 037__ $$aART-2021-126022
000111644 041__ $$aeng
000111644 100__ $$0(orcid)0000-0003-1979-363X$$aFreire, V.$$uUniversidad de Zaragoza
000111644 245__ $$aComponent release after exposure of Staphylococcus aureus cells to pulsed electric fields
000111644 260__ $$c2021
000111644 5060_ $$aAccess copy available to the general public$$fUnrestricted
000111644 5203_ $$aThe objective of this work was to get further insights on the mechanism of inactivation of bacterial cells by pulsed electric fields (PEF) through the study of the release of intracellular components after exposing Staphylococcus aureus cells in McIvlaine buffer (pH 7.0, 2 mS/cm) to PEF treatments of different intensity (18 and 25 kV/cm) and treatment times (from 20 to 400 mu s). Release of most compounds, except proteins, was almost immediate after the treatment, but the relative amount released depended on the molecule studied. A good correlation between the release of the smallest components studied (particularly ions) and membrane permeabilization (as measured by NaCl sensitization and PI entry) was observed. On the other hand, results obtained suggested that S. aureus inactivation by PEF would be related to the exit of cytoplasmic proteins of a molecular weight higher than 6 kDa. Results obtained in this work indicated that increasing PEF treatment time would reduce the capability of S. aureus cells to repair the electropores formed and suggested that this might be due to the formation of pores of a larger size, which S. aureus cells would be unable to reseal in a situation of homeostasis loss. Industrial relevance: Results reported here can help to design more effective treatments for microbial inactivation using PEF on food, and therefore facilitate its industrial implementation.
000111644 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000111644 590__ $$a7.104$$b2021
000111644 592__ $$a1.148$$b2021
000111644 594__ $$a9.7$$b2021
000111644 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b15 / 144 = 0.104$$c2021$$dQ1$$eT1
000111644 593__ $$aFood Science$$c2021$$dQ1
000111644 593__ $$aChemistry (miscellaneous)$$c2021$$dQ1
000111644 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000111644 700__ $$aLattanzio, G.
000111644 700__ $$aOrera, I.$$uUniversidad de Zaragoza
000111644 700__ $$0(orcid)0000-0002-7971-4828$$aMañas, P.$$uUniversidad de Zaragoza
000111644 700__ $$0(orcid)0000-0002-5049-3646$$aCebrián, G.$$uUniversidad de Zaragoza
000111644 7102_ $$11001$$2420$$aUniversidad de Zaragoza$$bDpto. Anatom.,Embri.Genét.Ani.$$cÁrea Genética
000111644 7102_ $$12008$$2780$$aUniversidad de Zaragoza$$bDpto. Produc.Animal Cienc.Ali.$$cÁrea Tecnología de Alimentos
000111644 773__ $$g74 (2021), 102838 [13 pp.]$$pInnov. food sci. emerg. technol.$$tINNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES$$x1466-8564
000111644 8564_ $$s2411461$$uhttps://zaguan.unizar.es/record/111644/files/texto_completo.pdf$$yVersión publicada
000111644 8564_ $$s2643552$$uhttps://zaguan.unizar.es/record/111644/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000111644 909CO $$ooai:zaguan.unizar.es:111644$$particulos$$pdriver
000111644 951__ $$a2024-01-04-11:07:06
000111644 980__ $$aARTICLE