000111646 001__ 111646
000111646 005__ 20220921131144.0
000111646 0247_ $$2doi$$a10.1016/j.energy.2021.120375
000111646 0248_ $$2sideral$$a123611
000111646 037__ $$aART-2021-123611
000111646 041__ $$aeng
000111646 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000111646 245__ $$aLab-scale experimental tests of Power to Gas-Oxycombustion hybridization: system design and preliminary results
000111646 260__ $$c2021
000111646 5060_ $$aAccess copy available to the general public$$fUnrestricted
000111646 5203_ $$aPower-to-Gas (PtG) represents one of the most promising energy storage technologies. PtG converts electricity surplus into synthetic natural gas by combining water electrolysis and CO2 methanation. This technology valorises captured CO2 to produce a ‘carbon neutral’ natural gas, while allowing temporal displacement of renewable energy. PtG-Oxycombustion hybridization is proposed to integrate mass and energy flows of the global system. Oxygen, comburent under oxy-fuel combustion, is commonly produced in an air separation unit. This unit can be replaced by an electrolyser which by-produces O2 reducing the electrical consumption and the energy penalty of the carbon separation process. The aim of this work is to present the design, construction and testing of a methanation reactor at laboratory scale to increase the knowledge of the key component of this system. Experimental data are used to validate the theoretical kinetic model at different operating temperatures implemented in Aspen Plus. CO2 conversions about 60-80% are found for catalyst temperature between 350 and 550 ºC. These values agree well with expected theoretical conversions from the kinetic model.
000111646 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-76850-R
000111646 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000111646 590__ $$a8.857$$b2021
000111646 592__ $$a2.041$$b2021
000111646 594__ $$a13.4$$b2021
000111646 591__ $$aTHERMODYNAMICS$$b3 / 63 = 0.048$$c2021$$dQ1$$eT1
000111646 593__ $$aBuilding and Construction$$c2021$$dQ1
000111646 591__ $$aENERGY & FUELS$$b24 / 119 = 0.202$$c2021$$dQ1$$eT1
000111646 593__ $$aCivil and Structural Engineering$$c2021$$dQ1
000111646 593__ $$aEnergy (miscellaneous)$$c2021$$dQ1
000111646 593__ $$aEnergy Engineering and Power Technology$$c2021$$dQ1
000111646 593__ $$aRenewable Energy, Sustainability and the Environment$$c2021$$dQ1
000111646 593__ $$aManagement, Monitoring, Policy and Law$$c2021$$dQ1
000111646 593__ $$aMechanical Engineering$$c2021$$dQ1
000111646 593__ $$aModeling and Simulation$$c2021$$dQ1
000111646 593__ $$aFuel Technology$$c2021$$dQ1
000111646 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000111646 700__ $$0(orcid)0000-0001-9967-5806$$aBegoña, Peña$$uUniversidad de Zaragoza
000111646 700__ $$aLisbona, Pilar
000111646 700__ $$aMarín, Julián
000111646 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000111646 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000111646 773__ $$g226, 120375  (2021), [10 p.]$$pEnergy$$tEnergy$$x0360-5442
000111646 8564_ $$s2023312$$uhttps://zaguan.unizar.es/record/111646/files/texto_completo.pdf$$yVersión publicada
000111646 8564_ $$s2753256$$uhttps://zaguan.unizar.es/record/111646/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000111646 909CO $$ooai:zaguan.unizar.es:111646$$particulos$$pdriver
000111646 951__ $$a2022-09-21-11:30:06
000111646 980__ $$aARTICLE