000111656 001__ 111656
000111656 005__ 20230519145527.0
000111656 0247_ $$2doi$$a10.3390/app11125618
000111656 0248_ $$2sideral$$a127394
000111656 037__ $$aART-2021-127394
000111656 041__ $$aeng
000111656 100__ $$0(orcid)0000-0002-9508-7078$$aRamos Lorente, P.$$uUniversidad de Zaragoza
000111656 245__ $$aAn Alternative Approach to Obtain a New Gain in Step-Size of LMS Filters Dealing with Periodic Signals
000111656 260__ $$c2021
000111656 5060_ $$aAccess copy available to the general public$$fUnrestricted
000111656 5203_ $$aPartial updates (PU) of adaptive filters have been successfully applied in different contexts to lower the computational costs of many control systems. In a PU adaptive algorithm, only a fraction of the coefficients is updated per iteration. Particularly, this idea has been proved as a valid strategy in the active control of periodic noise consisting of a sum of harmonics. The convergence analysis carried out here is based on the periodic nature of the input signal, which makes it possible to formulate the adaptive process with a matrix-based approach, the periodic least-mean-square (P-LMS) algorithm In this paper, we obtain the upper bound that limits the step-size parameter of the sequential PU P-LMS algorithm and compare it to the bound of the full-update P-LMS algorithm. Thus, the limiting value for the step-size parameter is expressed in terms of the step-size gain of the PU algorithm. This gain in step-size is the quotient between the upper bounds ensuring convergence in the following two scenarios: first, when PU are carried out and, second, when every coefficient is updated during every cycle. This step-size gain gives the factor by which the step-size can be multiplied so as to compensate for the convergence speed reduction of the sequential PU algorithm, which is an inherently slower strategy. Results are compared with previous results based on the standard sequential PU LMS formulation. Frequency-dependent notches in the step-size gain are not present with the matrix-based formulation of the P-LMS. Simulated results confirm the expected behavior.
000111656 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000111656 590__ $$a2.838$$b2021
000111656 592__ $$a0.507$$b2021
000111656 594__ $$a3.7$$b2021
000111656 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b39 / 92 = 0.424$$c2021$$dQ2$$eT2
000111656 591__ $$aPHYSICS, APPLIED$$b76 / 161 = 0.472$$c2021$$dQ2$$eT2
000111656 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b218 / 345 = 0.632$$c2021$$dQ3$$eT2
000111656 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b100 / 180 = 0.556$$c2021$$dQ3$$eT2
000111656 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000111656 593__ $$aComputer Science Applications$$c2021$$dQ2
000111656 593__ $$aProcess Chemistry and Technology$$c2021$$dQ2
000111656 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000111656 593__ $$aFluid Flow and Transfer Processes$$c2021$$dQ2
000111656 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000111656 700__ $$aMartín Ferrer, R.$$uUniversidad de Zaragoza
000111656 700__ $$aArranz Martinez, F.
000111656 700__ $$0(orcid)0000-0002-9408-1280$$aPalacios-Navarro, G.$$uUniversidad de Zaragoza
000111656 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000111656 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000111656 773__ $$g11, 12 (2021), 5618 [19 pp.]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000111656 8564_ $$s7666500$$uhttps://zaguan.unizar.es/record/111656/files/texto_completo.pdf$$yVersión publicada
000111656 8564_ $$s2773492$$uhttps://zaguan.unizar.es/record/111656/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000111656 909CO $$ooai:zaguan.unizar.es:111656$$particulos$$pdriver
000111656 951__ $$a2023-05-18-15:27:41
000111656 980__ $$aARTICLE