000111688 001__ 111688
000111688 005__ 20230519145615.0
000111688 0247_ $$2doi$$a10.1093/jxb/erab376
000111688 0248_ $$2sideral$$a127465
000111688 037__ $$aART-2021-127465
000111688 041__ $$aeng
000111688 100__ $$aVillar, I.
000111688 245__ $$aThree classes of hemoglobins are required for optimal vegetative and reproductive growth of Lotus japonicus: Genetic and biochemical characterization of LjGlb2-1
000111688 260__ $$c2021
000111688 5060_ $$aAccess copy available to the general public$$fUnrestricted
000111688 5203_ $$aLegumes express two major types of hemoglobins, namely symbiotic (leghemoglobins) and non-symbiotic (phytoglobins), with the latter being categorized into three classes according to phylogeny and biochemistry. Using knockout mutants, we show that all three phytoglobin classes are required for optimal vegetative and reproductive development of Lotus japonicus. The mutants of two class 1 phytoglobins showed different phenotypes: Ljglb1-1 plants were smaller and had relatively more pods, whereas Ljglb1-2 plants had no distinctive vegetative phenotype and produced relatively fewer pods. Non-nodulated plants lacking LjGlb2-1 showed delayed growth and alterations in the leaf metabolome linked to amino acid processing, fermentative and respiratory pathways, and hormonal balance. The leaves of mutant plants accumulated salicylic acid and contained relatively less methyl jasmonic acid, suggesting crosstalk between LjGlb2-1 and the signaling pathways of both hormones. Based on the expression of LjGlb2-1 in leaves, the alterations of flowering and fruiting of nodulated Ljglb2-1 plants, the developmental and biochemical phenotypes of the mutant fed on ammonium nitrate, and the heme coordination and reactivity of the protein toward nitric oxide, we conclude that LjGlb2-1 is not a leghemoglobin but an unusual class 2 phytoglobin. For comparison, we have also characterized a close relative of LjGlb2-1 in Medicago truncatula, MtLb3, and conclude that this is an atypical leghemoglobin. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
000111688 536__ $$9info:eu-repo/grantAgreement/ES/DGA/A09-20R$$9info:eu-repo/grantAgreement/ES/MCIU/RYC2018-023867-I$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-113985GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2017-85775--R$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2015-073059$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-094623-B-C22
000111688 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000111688 590__ $$a7.378$$b2021
000111688 592__ $$a1.913$$b2021
000111688 594__ $$a10.9$$b2021
000111688 591__ $$aPLANT SCIENCES$$b15 / 240 = 0.062$$c2021$$dQ1$$eT1
000111688 593__ $$aPlant Science$$c2021$$dQ1
000111688 593__ $$aPhysiology$$c2021$$dQ1
000111688 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000111688 700__ $$aRubio, M.C.
000111688 700__ $$0(orcid)0000-0001-5327-4046$$aCalvo-Begueria, L.
000111688 700__ $$aPérez-Rontomé, C.
000111688 700__ $$aLarrainzar, E.
000111688 700__ $$aWilson, M.T.
000111688 700__ $$aSandal, N.
000111688 700__ $$aMur, L.A.
000111688 700__ $$aWang, L.
000111688 700__ $$aReeder, B.
000111688 700__ $$aDuanmu, D.
000111688 700__ $$aUchiumi, T.
000111688 700__ $$aStougaard, J.
000111688 700__ $$aBecana, M.
000111688 773__ $$g72, 22 (2021), 7778-7791$$pJ. Exp. Bot.$$tJournal of Experimental Botany$$x0022-0957
000111688 8564_ $$s2011953$$uhttps://zaguan.unizar.es/record/111688/files/texto_completo.pdf$$yVersión publicada
000111688 8564_ $$s2807823$$uhttps://zaguan.unizar.es/record/111688/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000111688 909CO $$ooai:zaguan.unizar.es:111688$$particulos$$pdriver
000111688 951__ $$a2023-05-18-16:10:29
000111688 980__ $$aARTICLE