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ABSTRACT “In order to integrate zeolite membranes in micro devices, zeolite micro 

membranes were prepared on silicon grids to obtain self-supported membranes. The 

substrate was modified with PDDA, boehmite and different silanes to anchor the 

zeolite seeds for microwave secondary synthesis. The quality of the membranes was 

characterized by SEM to observe the effect of surface modification and synthesis 

parameters”. 
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1. OBJECTIVE OF THE PROJECT 
                                                            The goal of this Final Master Project is to integrate zeolite 

membranes in micro devices. The zeolite micro membrane will be prepared in a silicon grid to 

obtain a self-supported membrane explained in figure 1. Alternatively zeolite layers on silicon 

wafers could be patterned for integration in a micro device as shown in figure 2. 

 
         Figure 1: free standing membrane on silicon grid,                       Figure 2: patterned membrane on silicon oxide wafer 

 

                                  To obtain the zeolite membrane; the secondary growth method that consists 

of two steps; seeding and hydrothermal synthesis will be applied. This method is well established 

for the synthesis of zeolite membranes and layers on porous supports such as alumina, stainless 

steel or cordierite. The goal is to develop a protocol for the secondary growth on silicon wafers. 

There are two main challenges, first compared to the traditional supports mentioned before, 

silicon wafers are flat surfaces, where the anchoring of the seeds will be difficult, and in this 

sense a proper surface modification to anchor the seeds will be necessary. Secondly silicon could 

be etched under the high alkalinity of the zeolite synthesis gel, to avoid this silicon oxide layers 

will be deposited and fast synthesis methods such as microwave heating will be employed.  

The main objective is to combine a practical seeding approach with microwave synthesis. To 

achieve this; following tasks will be done (explained in figure 3). 

 Synthesis of zeolite A nanocrystals 

 Surface modification of silicon oxide surface  

 Homogeneous seeding of modified surface 

 Microwave synthesis of zeolite A layer 
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Figure 3: steps for fabricating free standing membrane on silicon grids 
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2. INTRODUCTION TO ZEOLITE MEMBRANES 

2.1 Zeolite 

                      Zeolites can be defined as “a porous crystal typically consisting of Si, Al, and O 

atoms”(1) also it can be defined as “a crystalline aluminosilicate with a three-dimensional 

framework structure that forms uniformly sized pores of molecular dimensions”(2). More 

detailed basic information on zeolites is in the appendix. Figure 4 explains the structure of zeolite 

A that will be used in this research.  

 

Figure 4:: Zeolite A formation from tetrahedron(a), Sodalite cage (b), secondary building unit(c), zeolite A crystal(d,e) (3)                               

2.2 Applications of zeolite membrane 
                     Zeolites have been applied in many different industrial applications because of 

many advantages that owes to its unique structure. The inorganic materials have more durability 

in terms of high temperature resistance, high chemical resistance and higher strength compared 

to organic materials. Some of the applications based on the unique structure of zeolite are their 

use as ion exchangers and adsorbents because of the cation that balances the charge of the 

framework. So the higher the aluminum ratios in the framework the more cation are present to 

balance the charge and hence increasing the cation exchange capacity. Zeolites are also used as 

catalysts because the cation can be exchanged with acidic or basic ions. The catalytic property 

combined with well defined pore size ensures that selective catalysis takes place (2, 3). Other 

major applications use selective removal of molecules based on the pore size and the nature of 

the zeolite example dewatering of alcohol/water mixtures from azeotropic mixtures. Also one of 

the main application research areas for zeolites is green chemical processes, zeolites are being 

researched to improve the reaction by selective catalysis and removal of byproducts (1). The 

important research areas for zeolite in membrane applications include gas and separation, 

selective catalysis, reverse osmosis and chemical sensors. Recently the major disadvantage of 

zeolite application is high cost due to processing limitations(4). 
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2.3 Zeolite membrane synthesis 
                             Zeolite membrane can be synthesized either by primary growth in which in-

situ nucleation, crystallization and growth of zeolite membrane all takes place on the substrate as 

explained in figure 5. The substrate is placed in the zeolite synthesis solution and heated to 

desired temperature. The nucleation starts to take place on the surface and zeolite crystal growth 

takes place on the substrate till a membrane is formed(5). Nucleation is an important factor in 

this type of primary growth as many conditions needs to be precisely controlled so other zeolite 

structures or amorphous growth does not occur on the surface and cause defects in the 

membrane. The benefit of seeding free synthesis is that it requires less number of steps for 

membrane preparation but the limitation lies in slower processing and higher defects due to the 

possibility of amorphous and other morphology growth.  

 
Figure 5: Synthesis routes for zeolite membranes(6) 

                         The second method is called seeding method or secondary synthesis of zeolite 

membrane, where first zeolite nanoparticles of desired zeolite is deposited on the surface and 

then the seeded substrate is placed into the zeolite synthesis solution, this removes the need for 

nucleation process and zeolite growth directly takes place due to epitaxial growth because of 

zeolite nano crystals present on the surface of the substrate(7, 8).We choose the seeding method 

to reduce the synthesis time as seeding-free synthesis would require more time which would 

cause excessive etching on our silicon substrate. So we use seeding synthesis method for our 

membrane synthesis. 

                     The most common method of synthesis of zeolite A nanoparticles is by using 

structure directing agents or templating agents which provide the structural shape for the 

nutrients to grow on, trapping the SDA inside the growing zeolite particles(9).  For synthesizing 

zeolite particles, the two main components of the synthesis gel are the silica and aluminum 
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sources which provide the nutrients. Proper selection of the precursors is important to obtain the 

required morphology of the nano particles.  A study by Okubo(10) and his colleagues studied the 

effect of different silicon sources, they studied TEOS, Ludox AS30, TMA silicate. They 

concluded that there were differences in the initial particle size formed during the ageing 

process. They observed that with TEOS they obtained more rounded zeolites while Ludox AS30 

provided more cubic structure and TMA silicate had more definitions in its micro structure. So in 

our synthesis we used colloidal silica Ludox AS-30 as our silica source as we want to synthesize 

cubic nano particles of zeolite A.  Work by Round(11) showed that by using Aluminum 

isopropoxide instead of other aluminum sources like aluminum hydroxide and aluminum foil, 

they were able to get more well defined cubic crystals. Hence we use aluminum isopropoxide as 

our aluminum source in the synthesis solution. The structure directing agent for zeolite LTA and 

FAU crystals is Tetra-methyl-ammonium hydroxide, hence conditions need to be optimized to 

obtain one from the other during synthesis. The optimization of zeolite A crystal synthesis was 

performed based on various published articles which discuss, the ageing time, the temperature, 

sodium concentration on the yield, morphology and type of zeolite obtained by the hydrothermal 

synthesis. The solution is aged at room temperature to increase the nucleation in the solution, but 

research has shown that longer ageing of the synthesis solution of zeolite LTA leads to formation 

of FAU, so longer ageing will favor FAU growth(12). Our ageing time for the synthesis was 24 

hours, although we can increase the ageing to increase nucleation in the solution, excessive 

ageing can cause FAU crystal formation in the solution along with zeolite A crystals. Mintova 

(12) in her experiments showed that Na+ favors formation of LTA instead of FAU, so we add 

NaOH solution to promote the LTA crystallization. Generally temperature increases the 

nucleation and the growth rate of crystals, but growth has more exponential growth with increase 

in temperature, hence higher temperature would yield bigger crystals, so in order to obtain 

smaller crystals we synthesized our solution at 80C-90C to get smaller crystals with sufficient 

yield. A very detailed study on synthesis parameters for FAU and LTA phase selection has been 

carried out by Fan and his colleagues(13). 

2.3.1 Microwave synthesis 

                                                         Microwaves are electromagnetic waves with wavelength 

between 0.01m and 1m and frequency of 0.3 to 30Ghz. For industrial microwave equipments the 

frequency used is around 915 and 2450 Mhz and energy absorption of these waves by water is 



  

 Page 14 
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), 

the European Membrane House (EMH), and a large international network of industrial companies, research centres and 

universities;  www.em3e.eu 

maximum at this frequency. The interaction of dielectric material with microwaves is what leads 

to the dielectric heating, under the electric field of the microwaves the dielectric molecules try to 

orient themselves constantly under the changing field, but their movement is opposed by intra-

molecular friction and attraction causing the heating. Generally the materials can be classified 

into 3 groups based on how they interact with microwaves. 1. Which reflect the microwave most 

alloys and metals, 2. Materials which are transparent to microwaves like Teflon, quartz, glass, 

ceramic, 3. Materials which absorb microwaves like aqueous, polar solvents. There are many 

advantages of using microwaves faster heating, more efficient, heat can be introduced from an 

external source, selective heating, less gradient and instantaneous heating are some of the 

advantages of using microwave synthesis(14).  

                                   Microwave synthesis has been researched for use in batch and continuous 

synthesis for reactions to reduce energy wastage by selective heating of the chemicals instead of 

heating the whole system. Similarly microwave synthesis has been applied to zeolite membrane 

synthesis to reduce the synthesis generally which ranges from 10-20 hours to only a few hours or 

less by using microwave synthesis. Yang(14) has done a very detailed review of microwave 

synthesis used in zeolite membrane synthesis, they have covered a very broad review of 

application of microwaves for zeolite synthesis that can be seen in table 1, most of the synthesis 

is in the range of  10 min to 45mins at 90C.Tomsett(15, 16) conducted a very detailed review of 

microwave synthesis of nano porous materials which also includes zeolites, He also conducted a 

review later in which he describes detailed synthesis of zeolite with microwaves. Li(17) 

performed a seeding free zeolite a synthesis with microwaves on porous alumina support. 

Looking at these procedures we use 90c for all our microwave synthesis. 
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Table 1: List of substrates used for zeolite A membrane synthesis(14) 

Substrate 

Synthesis 

strategy synthesis composition Preparation procedure 

    Na2O:Al2O3:SiO2:H2O   

Copper 

and 

silicon 

wafer In situ 3:1:2:200  

120°C for 1 min followed by 100°C for 240 

min 

Alumina Seeded 3:1:2:200   Heated to 90 Â°C in 1 min; held for 40 min 

Al2O3 

modifie

d Seeded 3:1:2:200 Heated to 90 °C in 1 min; held for  45 min 

Al2O3 sol gel 50:1:5:1000    

Alumina Seeded 6:1:2:150 Fluxed at 90 °C for 25 min 

Alumina Seeded 3:1:2:150  Fluxed at 90 °C for 25 min 

Alumina In situ 3:1:0.85:200 

Synthesis in microwave oven at 250 W for 20 

min; dried in microwave oven at 120 W for 10 

min 

Alumina In situ 50:1:5:1000 

Aging at 50 °C for 7 h in air oven and then 

microwave synthesis at 90 °C for 25 min 

Alumina In situ 50:1:5:1000 

Aging at 50 °C for 7 h in oven and then 

microwave synthesis at 90 °C for 35 min 

Alumina In situ 50:1:5:1000 

MH: aging at 50 °C for 7 h in oven and then 

microwave synthesis at 90 °C for 25 min; CH: 

aging at 50 C for 7 h in oven and then 

conventional synthesis at 90°C for 3 h 

Alumina Seeded 50:1:5:1000 Heated to 90 °C in 60 s; held for 15 min 

Alumina Seeded 50:1:5:1000 Heated to 90 °C in 60 s; held for 15 min 

Alumina Seeded 50:1:5:1000 Heated to 90 °C in 60 s; held for 15 min 
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2.4 Zeolite membranes in Microscale applications 
                                                    Apart from conventional large scale separation and synthesis a 

lot of focus is also based on micro scale applications ranging from sensors to micro reactors 

which utilize zeolite membrane in the micro scale for detection, catalysis, separation and 

adsorption. Previously our group from Institute of Nanotechnology of Aragon  published a very 

detailed review on micro scale applications of zeolite membranes(18) and detail of some 

application is given in figure 6. 

 
Figure 6: Applications of zeolite films in micro scale applications (21) 

Sensors 

                 Zeolites have been applied in sensing devices to increase sensitivity and selectivity 

of detection of various molecules. There are many application reported in literature based on 

different mechanism from modification of traditional electrodes in liquid detection to 

modified cantilever in gas sensing. Some of the reasons for their functionality and use in 

sensors are based on its adsorption, high surface area, porosity, presence of mobile ions, 
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catalytic activity (19, 20). also a filter based on zeolite membrane have been previously 

proposed to act as a gas pre-filter(21). Zeolites have also been applied to improve 

conventional electrode sensors and are used to improve selectivity and sensitivity by 

modifying electrodes, they have been used in humidity sensors, ethanol sensors, NO, SO2, 

water sensing applications. They have also been used in cantilever based sensors where the 

cantilever acts as microbalance and can detect adsorption of specific components and hence 

has been applied to detect humidity based on this mechanism.(22) also gas sensors for 

explosive detection have been reported in literature based on zeolite material coating(23). 

More detailed information on zeolite based sensors are reported in the following sources 

which explain in detail the mechanism, fabrication and functionality of gas sensors based on 

Zeolites.(24, 25). 

      Micro reactors 

                  Process intensification and miniaturization is increasing for the goal to achieve 

more efficient reactions, to achieve higher conversion of reactants and to reduce the quantity 

of by products and to improve quality of the products. Zeolite membranes have been used as 

catalysts as a well as selective barriers for removal of products or harmful by products(18). In 

most cases the combined effect of selectivity and catalysis has improved many reactions of 

fine chemicals where selective catalysis is required to improve conversion and to reduce 

unwanted byproduct formation(4, 26).  Other micro scale applications include use of zeolite 

membranes to remove volatile organic compounds from air and water and to recover 

catalysts from reactions(22). A detailed review of zeolite membrane reactors is described in 

the following publication by Kapteijn(27). 

 
Figure 7: The Knoevenagel condensation reaction between benzaldehyde and ethyl acetoacetate(28) 

Yeung and his colleagues have carried out extensive research in Knoevenagel reactions 

where 2 different layers of zeolite membranes are used in micro reactors for Knoevenagel 

reactions; one of the reactions is explained in figure 7. The first layer is used to remove water 
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which is the by product in the reaction and the 2nd layer acts as a selective catalyst only 

catalyzing the reactants as they are smaller in size to reach to the catalysts exchanged 

membranes as shown in figure 7 and 8. They etched different substrates silicon, stainless 

steel to design the micro channels and then using mercapto-3-propyltrimethoxysilane 50mM 

in ethanol for modifying the silicon substrate. Then they deposited the zeolite seeds using 

vacuum on the modified silicon, alumina or stainless steel substrate. 

 

Figure 8: Yeung`s work zeolite A membrane deposited in micro channels on silicon substrate(27) 

Figure 9: SEM images of zeolite membrane on micro reactor walls (27) 

                 Yeung used zeolite A as the water removing membrane layer and zsm-5 exchanged 

with catalyst to perform the catalysis of the Knoevenagel reaction as explained in figure 9.  
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2.5 Zeolite membrane synthesis on silicon substrates 
                                                  Many research has been published on zeolite membrane growth 

on various supports, most of the work is conducted on porous supports which provide structural 

support to the seeds and for the membrane to grow like porous alumina, porous stainless steel, 

porous ceramic supports and polymeric supports(29-33).Yang did an extensive review of 

microwave synthesis of zeolite and the table of supports used in microwave synthesis of zeolite 

LTA is listed in table 1. Our focus is to grow zeolite LTA membranes on flat nonporous support, 

previous works performed on flat surfaces include work by Frontera(34) where they modified 

silicon wafer with polyelectrolyte as mention in previous method by Decher(35), details of the 

modification were not published.  Other work which included MFI zeolite  membrane growth on 

silicon wafer is work by Mintova(36) where they tested the effect of different binders silica, 

TEOS and colloidal alumina as binder additives and different solvents and their effect on MFI 

membrane growth on silicon wafers. Yeung(37) applied zeolite A membrane for micro reactor 

application on silicon wafer with etched channels by using mercapto silane as the binder. 

Tsapatsis(38) tried different surface, seeding, zeolite modification and deposition on silicon 

wafers for zeolite A membranes he concluded that dip coating provided more close packing 

compared to spin coating, but spin coating provided more surface coverage, Tsapatsis also 

concluded that the electrostatic deposition did not create well intergrown membrane because the 

seed packing was too dense for the nutrients to go in the deposited seed. Ozburk and Akata(39) 

used e-beam lithography to pattern zeolite A nanoparticles on silicon wafers, they used IPA, 

toluene as solvents and they used ultrasound aided dip coating method, spin coating and direct 

attachment method previously reported by Yoon(40) and they concluded that Yoon`s method 

provided better result for making nano patterns of zeolite A nano crystals.  

 

Figure 10: micro channel fabrication on silicon substrate(37) 
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              Most of Yeung`s work on micro reactor are on porous stainless steel or porous alumina 

substrates which are pre-etched with micro channels and then zeolite seeds are deposited 

followed by zeolite synthesis. Only one of his publication reports using silicon substrate of micro 

reactor application with zeolite membrane as shown in figure 10. He etched the channel pattern 

on the silicon using photolithography process; the silicon wafer was coated with a silicon nitride 

layer. KOH was used to etch the pattern. Silicalite seeding was performed using mercapto silanes 

and grown by traditional oven method for 110C at 24 hours. 

2.6 Surface modification of silicon oxide substrate 
                           Silicon oxide surface after cleaning has OH- groups on the surface making it 

hydrophilic and the OH- groups give the surface a negative charge. The zeolite A seed 

suspension have a negative charge in the solution, the similar charges cause repulsion and non-

uniform seeding of zeolite crystals on silicon oxide surface. Different modifications were 

performed to attach zeolite seeds onto the silicon oxide surface. The important parameter for all 

coating is to ensure that the residual water is evaporated from the silicon surface by heating it 

above 100C; our samples were heated at 150C for more than 1 hour to remove water from the 

surface and to improve adhesion of modification and seeds. 

2.6.1 Polydiallyldimethylammonium-chloride (PDDA) 

                                                                                     Polydiallyldimethylammonium-chloride 

(polyDADMAC/PDDA) is a cationic polymer with a positive charge. It has been previously 

used to modify surfaces through self assembly of polymer to form monolayer and multilayer of 

opposite charge polymers. Caro used PDDA to modify porous alumina support to perform 

seeding free synthesis of zeolite A membrane, the positive charge attracted the nutrients onto 

the alumina surface modified by PDDA and was able to get better gas separation compared to 

untreated surface(41). Many other works of self assembly of PDDA on surfaces have been 

reported previously by Decher and also by Yang.(35, 42-44). Structure and attachment on 

silicon oxide surface is explained in figure 11. 



  

 Page 21 
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), 

the European Membrane House (EMH), and a large international network of industrial companies, research centres and 

universities;  www.em3e.eu 

 
Figure 11: PDDA Molecule, schematic representation of PDDA layer on silicon oxide surface 

 

2.6.2 Boehmite (aluminum oxide hydroxide / γ-AlO(OH) 

                                                                                    Boehmite is an aluminum oxide hydroxide 

ore and the reason to use Boehmite is to act as a aluminum source to feed the zeolite growth and 

also it has a low coefficient of thermal expansion, which helps reduce stress during processing 

and hence reducing cracks and defects during synthesis. Boehmite solution was spin coated 8 

times because coverage was difficult during one spin coating process caused by repulsion 

between OH groups in Boehmite and silicon oxide layers. Preparation procedure for boehmite 

solution is reported in the annex. The structure of Boehmite is explained in figure 12. 

 
Figure 12: left Boehmite structure, Right schematic representation of Boehmite layer on silicon oxide 

2.6.3 Silanization 

                                      Organo-silanes are molecules which contain a backbone of Si-C and have 

more than one functional group as shown in figure 13. Generally organo-functional alkoxy-silane 

are the most commonly used organo silanes as they alkoxy group reacts with hydroxyl (OH) 

groups on substrate and form covalent bond. There is another functional group for example 
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amine, ethoxy, halogen; alkyl group reacts with a different material. In this way the silanes are 

used as coupling agents to bind different materials like organic and inorganic materials, they are 

also used to modify surface characteristics, reducing agents, to functionalize surfaces and many 

other applications. It is widely used in rubber, glass fiber, composites, paints, inks, adhesives. 

(45-49) 

 
Figure 13: schematic of function of organo silane, (53) 

             In literature organo silanes have been used for improving metal adhesion on silicon 

substrate(50), modification of silica particles using different silanes(51), patterning of silicon 

oxide over silicon and using silane for gold patterning(52), modification of pores of porous silica 

membranes(53),nano patterning on silicon using silanes(54), using silane to apply dicarboxylic 

group on silicon surface(55). Below in figure 14 is a simple explanation of APTES and how it 

can interact with a silicon oxide surface. 

 
Figure 14: left structure of trialkoxy-silanes, right APTES attachment on silicon oxide surface 

Literature on silanization of surfaces 

                                                                       Up to date many works have been published to study 

the structure and reaction of organosilanes on silicon and silicon oxide surface. Some of the 

works include Vandenberg`s study on the structure of APTES on silicon oxide(56) where he did 

extensive study on effect of solvent, heat, tome and different curing conditions, Manifar(57) 

studied in detail the effect on solvent on deposition Octadecyltrichlorosilane(OTS) on silicon 
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wafers, Hu(58) studied in detail the structure of MPTMS on silicon oxide and effect of water, 

concentration of silane and the surface of SiO
2
. Petri(59) studied the assembly of APTES on 

silicon oxide by different characterization and then used the monolayer of silane to improve 

adhesion of Gold without using chromium which is used in conventional coating of silicon oxide 

with gold, Howarter(60) studied the deposition of APTES on silicon wafers and studied the 

effect of temperature. Zhang(61) studied the chemical vapor deposition of 3 different silanes 

including APTES and used a dye adsorption to test the density of amines and concluded that 

vapor phase deposition provides better monolayer coverage. Pasternack(62) studied the effect of 

solution temperature on APTES deposition on silicon oxide surfaces. Kim(63) studied the effect 

of post curing conditions on the structure and the stability of APTES on silicon oxide layers and 

found that curing does not have any significant effect on the silane structure. Zhu(64) performed 

a detailed literature review and experiments to obtain the best reproducibility and stability of 

different silanes on silicon wafers, and concluded the vapor phase deposition is more 

reproducible and ethoxy silanes are less effected by water concentration compared to methoxy 

silanes and hence are more reproducible. Gu(65) studied the deposition of APTES on silicon 

wafers and tested the effect of wear by friction on the APTES layer. Graf(66) experimented with 

the optimization of cleaning procedure for silicon wafers to be used for modification by silanes. 

Li(54) deposited APTES on silicon wafer using micro printing to form micro patterns by 

silanization. Kim(67) studied the effect of solvent Toluene and water on APTES deposited on 

silicon wafers by different characterization and concluded that Toluene deposition of APTES has 

more reactive surface amino groups compared to aqueous deposition. Wang(68) studied the 

effect of different vapor and liquid deposition technique on the formation of APTES silanization 

on glass slides. 

 

Figure 15: left and right, complex mechanism of APTES orientation on silicon oxide 



  

 Page 24 
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), 

the European Membrane House (EMH), and a large international network of industrial companies, research centres and 

universities;  www.em3e.eu 

         All the work agrees on the fact that amount of water is the important parameter in 

silanization as excess water can cause self-polymerization of silanes while lack of water can 

cause poor coverage of the substrate. Other parameters include temperature; increase in 

temperature increases reactivity of the silanes and faster deposition of silane takes place at higher 

temperature. Another important parameter is silanization time, as with time the thickness and 

roughness of silane layer increases. So our main focus was to control water content by drying the 

silane system, and the substrate properly and uniformly to ensure reproducibility of the 

experiment. 

 
Figure 16: an ideal mechanism of APTES attachment on silicon oxide 

Silanization of substrates for zeolite membranes 

                                Organo silanes have been previously used to modify substrates to attract 

zeolite nutrients from the synthesis solution to promote nucleation and growth and they have also 

been used to modify surface for seeding of Zeolites. Tsapatsis has modified zeolite seeds with 

APTES(38), Caro also extensively studied silanization of substrates for membrane growth which 

include APTES modified porous alumina support to grow zeolite FAU membrane without 

seeding(69), the seeding free synthesis of zeolite A membrane on porous alumina support using 
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CPTMS(70), Multilayer zeolite A synthesis on porous alumina support using APTES as 

interlayer(71), using APTES for seeding free zeolite A growth(72).Yoon has done extensive 

study of glass modification with silanes to bind zeolite seeds; he also explains various possible 

silanization processes to bind zeolites on substrates with hydroxyl groups one of them is 

explained in figure 17 (40), Zhang used silanes to attach zeolite catalysts on the stainless steel 

micro reactor channels(73). Yeung used 3-Mercapto-alkylmethoxysilane to attach zeolite A 

seeds on silicon, alumina and stainless steel substrates(37). 

 
Figure 17: Different modification of substrates for zeolite attachment(74) 
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3 EXPERIMENTAL 

3.1 Materials 

                  The following chemicals 98% APTES(3-aminopropyltriethoxysilane), 98% 

APTMS(3-aminopropyltrimethoxysilane), 97% CPTMS(3-Chloro-tripropylmethoxysilane), 98% 

CPTES (3-Chlorotriethoxysilane), 95% IPTMS (3-IodoPropyltrimethoxysilane), 97% BPTMS 

(3-Bromotrimethoxysilane), HNO3(67%), H2O2 (30%), H2SO4 (97%), Ethanol 99.7% 

(ANHYDROUS), Sodium silicate solution, Aluminum hydroxide, 98% Aluminum Isopropoxide, 

Acetone 99.9%, LUDOX AS-30 30% wt in H2O, Sodium hydroxide Pellets 97%, Toluene 

Anhydrous 99.8% , Aluminum tri-sec-butoxide 97% , Poly DADMAC 20% wt in water,  were 

purchased from sigma Aldrich. Silicon wafers and grids P type (100) with silicon oxide layer of 

295nm were obtained from the institute of nanotechnology Aragon, Spain. 

3.2 Silicon substrates 
                                                   Silicon substrates with silicon oxide coating was chosen as the 

material support because of the well established silicon manufacturing technology in the 

semiconductor industry and silicon oxide layer to protect the silicon from etching from highly 

basic synthesis solution for the membrane synthesis 

3.2.1   Silicon wafers 

                                           The silicon wafers with silicon oxide layer used for the experiments 

were obtained from Institute of nanotechnology Aragon, Zaragoza, Spain with the specifications: 

P type (100) silicon wafers with silicon oxide layer of 285nm on top of 400 micron silicon wafer. 

The wafers were cut into squares of 15mm x 15mm shown in figure 18. 

 
Figure 18: left silicon oxide layer on silicon wafers; 4 inch wafer cut into small squares for synthesis 
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3.2.2    Silicon grids 

                           Silicon grids were also used in the experiment to study the effect of grid 

supports in order to fabricate free standing zeolite membranes on the silicon oxide grid. The grid 

size was 10mmX 10mm with different grid thicknesses. The grid size is explained in figure 19. 

 
Figure 19: grid sizes description (a grid 1000_100) 

 

The grid were fabricated by Mesa institute for Nanotechnology, University of Twente by a 

procedure detailed in annex 5. Figure20 explains the cross section of our grids with 2micron 

layer of silicon oxide on the top part of grid while the on back side of the grid the silicon oxide 

layer is etched down to 285nm.  

 
Figure 20: Cross section of silicon grid  
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3.2.3     Cleaning of silicon substrate 

                  The cleaning procedure was prepared after reviewing many articles which used 

silicon and silicon oxide wafer for similar applications. Many publications have emphasized on 

the importance of cleaning to remove organic contaminants, metal particles, residues and to 

hydrolyze the surface with OH groups on the silicon oxide surface(75-88). Also a detailed study 

on Surface cleaning procedures for silanization gives a good comparison of different cleaning 

formulations(66). Based on these finding in the literature we developed our cleaning procedure 

explained in table2. The importance of cleaning can clearly be observed by testing two different 

samples, especially the Piranha solution which improves the wet ability of the silicon oxide 

surface by forming OH groups. 

                                                     Table 2: cleaning procedure for silicon oxide substrates 

 

3.3 Preparation of zeolite A nanoparticles for seeding 
 

                                 The synthesis composition ratio was 13.4 (TMA)2O: 0.3 Na2O:1.8 Al2O3: 

11.25 SiO2:700 H2O. The silica source was prepared from mixing 12.8 g of Ludox AS30 and 

11.36g distilled water. The aluminum source was prepared by mixing 39.76g water, 3.4 g of 1M 

sodium hydroxide, 28.4 g of TMAOH tetra-methyl-ammonium-hydroxide templating agent and 

  

Silicon oxide cleaning 
procedure     

  Process time(min) Purpose 

1 sonication in acetone 15min remove protect films used during wafer cutting 

2 sonication in ethanol 15min remove organics and acetone residue 

3 sonication in water 15min remove water soluble residues 

4 immersion in HNO3 67% 60min to remove organics and metal contaminants  

5 H2O wash   remove HNO3 residue 

6 nitrogen blow dry   dry water 

7 immersion in piranha solution 60min to hydroxylate the surface (OH groups formation) 

          Ratio 7:3 H2SO4:H2O2   
heated to 60-80 C when solution cools after 
30mins 

8 H2O wash    remove any residue of piranha solution 

9 nitrogen blow dry     

10 dried on hot plate 150C   to remove moisture from substrate 
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4.26g aluminum isopropoxide. The aluminum and silica solutions were mixed separately for 2 

hours and then mixed slowly drop by drop, adding aluminum source in the silica source, then left 

for ageing with stirring under room temperature for 24 hours. The aged solution was then put in a 

flask and synthesis was performed in a Rota vapor at 80C for 15 hours. After the synthesis was 

completed the solution was centrifuged at 10,000 rpm for 30minutes and the supernatant was 

used again in the hydrothermal synthesis to recycle the solution to obtain from zeolite A nano 

crystals. The settled particles during the centrifuge were re-dispersed in water and sonicated to 

wash the solution to remove chemical material from the seed solution and centrifuged again at 

10000 rpm for 30 minutes. This step was repeated 5 times and then the seed solution was finally 

dispersed again in water and sonicated to obtain zeolite A seed suspension in water. Synthesis 

conditions 

3.4 Surface modification by PDDA solution 
                       The poly-DADMAC solution was prepared by mixing 19.97 ml of water, 

0.587gram of NaCl and 0.1 gram of PDDA 20wt% solution in water. The solution was filtered 

with a 0.5 micron syringe filter to remove any contaminants. Laurell WS400bz spin coater was 

used to spin coat PDDA solution on the silicon wafers. Dip coating device as shown in figure 21 

was used to test dip coating of PDDA solution on the substrates. 

 
Figure 21: dip coating device 

            The normal  spin coating condition used were the one reported by Castro(6)c 170rpm 1.5 

minutes and 4000 rpm 1min, following the PDDA deposition the zeolite seeds in 2% wt 

suspension in water was spin coated at 100rpm 1 min and 3000 rpm 0.5 min.  The observation 

was large depositions in some areas compared to other due to electrostatic forces because of the 
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surface modification which is similar to the finding of Tsapatsis as explained in section 2.5. So in 

order to improve seeding on this modified substrate we tried to use high speed spin coating of 

seeds at around 6000 RPM and also by introducing the seed solution drop by drop during the 

spinning process showing improved seeding.  Apart from the spin coating process; we also tried 

dip coating method in order to try to improve the uniformity of the seeding process. Using dip 

coating device we coated  PDDA layer and seeds on the substrate. We observed that the seeding 

was more packed and aligned in the dip coating process but the drawback was slower speed of 

the process. 

During our experiments we observed that the viscosity of the seed solution and PDDA solution 

was low causing uneven wetting during the spin coating process. So in order to improve the 

distribution of seeds and PDDA on the substrate we tried to incorporate PDDA solution in the 

seeding solution, which increased the viscosity of the solution and also our objective was to 

suspend the zeolite seeds within the long chain polymers of PDDA. Different concentrations of 

PDDA were added in the seed solution 2%, 5% and 10% by volume of 20% PDDA solution in 

water and spin coated. The list of experiments performed for PDDA is listed in table 4. 

3.5 Surface modification by Boehmite solution 
                                                                             Boehmite is used as an aluminum nutrient source 

to help speed up the zeolite growth and also to provide a reduced stress layer with a low co-

efficient of thermal expansion in order to reduce stress and crack formation; in table 5 are some 

thermal expansion coefficients of some materials. Also in figure 21 are some thermal expansion 

coefficients of zeolites. Since the difference of thermal expansion coefficient of  the substrate 

and zeolite is high, it causes excessive stress during heating and cooling causing cracking. So 

Boehmite acts as a material whose thermal expansion coefficient lies in between the range of 

silicon wafer and zeolite, this helps reduce the thermal stress on the growing membrane.  We 

used both spin coating and dip coating methods as previously studied by Castro(6) to optimize 

the deposition of Boehmite for zeolite A synthesis. The optimized parameters studied by Castro 

using spin coating is 100RPM 60 seconds and 3000RPM for 30 seconds and repeated 8 times to 

get uniform coating of Boehmite. Then the sample was dried at 200C for 2 hours, followed by 

seeding by 2% for 5 times at 100 RPM 30 seconds and 3000RPM 60 seconds. Then the sample 

was dried at 150C for 24 hour before synthesis. The drying is important to ensure that the 
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boehmite layer attaches to the silicon oxide layer. We also used the dip coating procedure 

reported by Castro which is dip coating 5 times of Boehmite, 2hr 200C heat treatment followed 

by, 5 times dip coating in zeolite suspension in water. In order to reduce the number of steps and 

reduce multiple spin coating and dip coating steps; we tried to incorporate Zeolite seeds in 

Boehmite solution and spin coated it once. 

Table 3: Thermal expansion coefficient values 

thermal expansion coefficient α(10-6 m/m K) 

    

silicon nitride 3.3 

alumina 5.4 

aluminum 22.2 

diamond 1.18 

glass pyrex 4 

silicon   3 

silicon carbide 2.77 

zeolite A wet -40 to 50 

zeolite A dry -7 to 10 
 

 
Figure 22: thermal expansion co-efficient of some zeolites(89) 
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3.6 Surface modification by silanes                                                                      
                                   For the preparation of silanization process, we dried the reflux chamber, the 

flasks and all other glassware in the oven at 150C over night to ensure no moisture is available 

on the surface. When the experiment is run, the glassware is taken out from the oven and the 

wafer on holder from the hot plate which is dried at 150C overnight is introduced into the hot 

reflux chamber and sealed with nitrogen flow. The chamber is purged for 30minutes before we 

introduce any solvents. Toluene is injected into the chamber using the syringe, and heated to the 

required reflux temperature. Finally the silane is added to the system. The solution is refluxed to 

the desired time, then solution is drained with the help of a syringe in the nitrogen environment, 

fresh toluene is added to wash the substrate, then drained, then for ethanol seeding procedure 

fresh absolute ethanol is added to clean the system twice and then finally zeolite seed suspension 

in ethanol is added and refluxed at 85C. Seeding is performed both under reflux of the solvent, 

sonication or a combination of both can be used. After seeding the sample, it is dried on a hot 

plate at 100-110C overnight to remove solvent. Table 7 explains the whole general process of 

silanization. 

Table 4: silanization process 

  Silanization process Reason Description 

1 Complete drying of reflux sysmem To remove any moisture 150C dried overnight 

2 silicon substrate drying to remove moisture from surface 110-150c Hotplate 

3 
Substrate placed on a teflon 
holder  placed vertically in chamber  put nitrogen flow 

4 venting  to remove atmosphere from chamber N2 flow for 30minutes 

5 Toluene added in the system solvent fixed amount (50ml) 

6 System heated to reflux 110C heat to increase reaction temperature over stirrer/hot plate 

7 Silane added required conc and type silane added silane addition 

8 reflux solution refluxed for required time   

9 draining solution silane sol removed from chamber   

10 fresh toluene wash to remove unreacted silane wash 

11 fresh ethanol wash X2 only for ethanol seeding wash 

12 addition of seed solution reflux or sonication or combination to attach seed to silane 

13 wash 
in the same solvent ( as used in 
seeding)   

14 dried 110c remove solvent and cure   
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                       Different silanes were used for the surface modification of silicon oxide wafers 

and grids. APTES was tested in great detail because of its stability and wide application in 

different silicon oxide modifications to attach different types of functional groups. We also used 

more reactive silanes capable of making covalent linkages as previously explained in the 

introduction section on silanes. We used Halogen based silanes to modify substrates and try to 

form covalent bonds between the modified substrate and our zeolite nano particles in order to try 

to improve anchoring of the zeolite seeds. In order to ensure reproducibility we used fixed 

volume of solvent for all experiments which was 50ml this is to ensure that the water content in 

the solvent is the same and we prepared samples in batches of two samples for each run.  

 

 
Figure 23: Experimental setup for silanization process Left for small wafer, right for 3inch wafers. 

3.7 Preparing microwave synthesis solution 
                                                The gel composition for microwave synthesis has the molar ratio 

1:1.8:7.2:108 Al2O3: SiO2: NaOH: H2O.  First the sodium silicate solution 30gm is mixed with 

60gm of water and stirred. For aluminum source 17gm sodium hydroxide pellets and 17gm of 

water is stirred and heated between 50-70c and then 11.4 gram of aluminum hydroxide is added 

and stirred for 30minutes till it is dissolved into a transparent solution then 43.6 gm of water is 

added and stirred for at least 1 hour. Then drop by drop aluminum solution is added to silica 

solution under stirring. During the addition the PH of the silica solution becomes more basic 
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going to gelation of the solution we need to ensure the stirring is increased to make sure we 

prevent large aggregates. After the solution is completely mixed it is aged for at least 3 hours 

before use for microwave secondary synthesis of zeolite A membrane. In order to prevent the 

aggregates to get into the microwave synthesis solution, the aged solution was extruded through 

a syringe with a needle which breaks any large aggregates in the solution. The synthesis was 

carried out in a CEM microwave system using a fiber optic thermocouple to measure the reaction 

temperature and the maximum power setting used was 140watts. A Teflon autoclave was used 

for the synthesis to hold the sample and synthesis solution with a stirrer and the synthesis was 

carried out at 90C.(90, 91) 
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4 RESULTS AND DISCUSSION 

4.1 Characterization of zeolite seeds 

                                             The characterization for the zeolite A seeds were conducted using 

the following equipment; the pH was tested using a pH meter EUTECH instruments model cyber 

scan pH2100, the particle size was analyzed using a DLS size analyzer Brookhaven instruments 

corporation 90Plus particle size analyzer and by using scanning electron microscope FEI 

instruments. The concentration of the zeolite A crystals was measured by using a microbalance 

Radwag Mya5/2Y. The zeolite seed data is give in table 5(molar mass of zeolite A-Na 

2190g/mol). 

Table 5: zeolite seeds size data 

BATCH AGEING  SYNTHESIS SYNTHESIS DLS POLYDISPERSITY SEM ZETA PH mass    

  TIME TEMPERATURE TIME SIZE   SIZE POTEN   in yield 

  HOURS C HOURS Nm   nm Mv   grams  % 

1 90 100 15 199.5±23 0.104 186±17.9 -37 10.2 1.896 86.5 

                      

2 20 95 15 129.5±19.5 0.036 127±21.3 -29 9.9 1.529 69.8 

                      

3 48 100 15 119.6±24.1 0.124 112±21.7 -33 10.4 1.78 81.2 

                      

4 30 90 22 95.3±6.2 0.048 97±9.1 -43 11.4 1.341 61.2 

                      

5 24 80 48 79±8.4 0.034 77.5±6.3 -49 9.9 0.978 44.6 

                      

 

                        We observed during our synthesis that ageing time significantly increases the 

yield. But at the same time it increases the size of the zeolite crystals. Also we observe that when 

the synthesis temperature is reduced we are able to obtain smaller crystal size but with lower 

yield. Hence to obtain smaller crystals with higher yield; we can age the solution longer, and 

synthesize at lower temperature to obtain the smallest size of zeolite A seeds with a suitable 

yield. We also observe good agreement between the DLS and SEM results for the zeolite particle 

sizing. 
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Figure 24: TOP SEM image sizing data and Bottom DLS results for zeolite 4 

4.2 Seeding and synthesis on bare silicon oxide wafers 
                             The zeolite seeds were spin coated at 100rpm 1 min and 3000 rpm 0.5 min.    

The seeding of bare silicon oxide wafers were performed at different seed concentrations and we 

can clearly see from the SEM images Figure 25 and 26 that the number of zeolite seeds increase 

with increasing concentration of seed solution, but due to similar charges and repulsion the 

coverage by the zeolite seeds was incomplete. Also this is further obvious after synthesis that 

most of the zeolite seeds on the surface are displaced during synthesis and do not take part in the 

membrane growth. Because of this we need to modify the surface to attract and possibly find 

ways to improve the membrane growth and attachment on the surface of silicon oxide wafers.  
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Figure 25: Silicon oxide without modification: seed concentration 1%,2% AND 3% SEM images of seeding left, right after 30 

minute microwave synthesis 
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Figure 26: Silicon oxide without modification :seed concentration 3%,4% AND 5% SEM images of seeding left, right after 30 
minute microwave synthesis 
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4.3 PDDA modified surface and synthesis 

                                                              From the seeding images from figure 27 and 28 it is 

observed that the positively charged PDDA layer is attracting more zeolite seeds as seen in the 

SEM images. The insets in figure 27 and 28 show the zoomed out images for the synthesis 

sample. This increases the probability to attach seeds electrostatically to the substrate during 

synthesis. It is also observed that during synthesis we have well defined morphology which 

could be due to the fact that the PDDA attracts nutrients from the microwave synthesis solution. 

Seed concentration was varied from 1% to 6% using the spin conditions specified by Castro. We 

can clearly see that the thickness of seed deposition can be controlled by seed concentration, 

instead of multiple spin coating procedures.  

Table 6: list of PDDA experiments 

 

 

  
PDDA 

experiments Conditions Results 

      Figure 

        

1 
Effect of seed 
concentration 

170rpm 1.5 minutes; 4000 rpm 1min PDDA; zeolite seeds in water at 

100rpm 1 min and 3000 rpm 0.5 min  27, 28 

    Seed concentration 1-6%.(optimum 2%)   

        

2 

Effect of spin 
coating 
conditions 

Normal condition: 170rpm 1.5 minutes; 4000 rpm 1min PDDA; zeolite 

seeds in water at 100rpm 1 min and 3000 rpm 0.5 min   

    6000 rpm drop by drop PDDA; 6000 rpm drop by drop seed 2%  29 

    normal PDDA; 6000rpm seeds drop by drop   

        

3 

Effect of 
PDDA in seed 
solution 300rpm 30 seconds ; 3000 rpm 1min  30 

    
concentration of PDDA (2%, 5%, 10% by vol of PDDA 20% solution ) in 2% seed 
solution   

        

4 
Comparison 
of dip coating dip coating 6 times PDDA solution; seed solution 2% 4 times  31 

  
and spin 
coating     
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From the figure 27 and 28 we can observe that higher concentration of seeds causes more layers 

of seed deposition, after synthesis we observe that excessive seed deposition causes poor 

adhesion of the synthesized layer. This can be due to the fact that the top layer of deposited seed 

starts growing into the membrane blocking nutrients to the seed layer close to the substrate 

surface causing inadequate growth of zeolite seeds, which causes poor adhesion. According to 

the seed deposition effect we observed the best results for PDDA modified surface was obtained 

by using 2% seed concentration.  

Another important observation was the uneven distribution of the zeolite seeds because of the 

electrostatic attraction of the zeolite seeds to the PDDA layer, as previously mentioned by 

Tsapatsis(38). The normal seeding conditions was 100rpm 1 min and 3000 rpm 0.5 min, this 

gives the zeolite seeds enough time to deposit on the substrate in multi layers and also unevenly. 

In order to provide better seeding we tried to deposit the seed at high revolutions and by 

dropping the seed solution on the spinning substrate, we called this process “drop by drop” 

process. As seen in figure 29. The spinning speed was 6000rpm for 1 minute and during the first 

30 seconds 1ml of seed solution was deposited drop by drop on the spinning substrate. We also 

tried the same procedure for PDDA solution which is figure 29 a  in which PDDA solution and 

seed solution were deposited by the drop by drop method and we can see that it did not have 

significant difference from figure 29 b which is only seeding with this procedure. So we 

conclude that the PDDA deposition is homogeneous during the normal spin coating process but 

the seeds due to electrostatic interaction deposit in many layers hence a high speed spin coat for 

seed solution is essential to deposit uniform seed layer. 

Another approach was to reduce the number of spin coating steps and to improve the wet ability 

of the samples and to increase viscosity of the spin coated solution; we decided to incorporate 

PDDA solution in the seeding solution. The idea was to help incorporate the zeolite seeds within 

the polymer network that would help suspend the particles, increase the solution viscosity and 

also help improve the adhesion of the membrane by eliminating a boundary layer of PDDA 

between the silicon oxide and the membrane layer. From our results in figure 30, we observe 

some aggregates of zeolite seeds but the sample was fully covered with the PDDA seed solution. 

The main limitation that we see is during microwave synthesis, is that the PDDA coats the 



  

 Page 41 
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), 

the European Membrane House (EMH), and a large international network of industrial companies, research centres and 

universities;  www.em3e.eu 

zeolite seeds and prevents the nutrients from reaching them, causing slow and more rounded 

crystal growth. 

Dip coating was also used to compare spin coating with other methods, we observed that dip 

coating (figure 31) had better packing density of the zeolite seeds. However the membrane after 

synthesis showed poor adhesion to the substrate. The observed average thickness of membrane 

growth on PDDA modified surface was around 1.5 microns for 30 minutes microwave synthesis, 

as seen in figure 31, we can see the different seeding techniques for the zeolite seeds, spin 

coating and dip coating and membrane after synthesis and washing procedure, we observe that 

spin coated samples had better membrane adhesion to the substrate compared to dip coated 

samples. Calcination was also used to remove excess PDDA from the surface and try to sinter 

the particles on the silicon oxide surface a similar technique is used by Aguado (92) to modify 

surface only by PDDA on a porous substrate. 
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Figure 27: seeding and synthesis of PDDA modified surface using spin coating  1%, 2% and 3% seed concentration 
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Figure 28: seeding and synthesis of PDDA modified surface using spin coating 4%, 5% and 6% seed concentration 
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Figure 29: Effect of spin coating conditions 
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Figure 30: effect of PDDA solution mixed with zeolite seeds in water and spin coated 
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 Figure 31: Dip coating of seeds on PDDA modified substrate 
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4.4 Boehmite surface modification and synthesis  

                                                            We used spin coating and dip coating to modify flat silicon 

surfaces with a Boehmite layer. Modification of flat silicon oxide surface with Boehmite 

produced fully covered membrane on the substrate but during the washing and cleaning process 

we observed the peeling of the membrane because of poor adhesion in some areas. The cleaning 

procedure consists of washing the substrate with distilled water followed by sonication for 15 

second in distilled water.  

                        In order to improve the adhesion and support the membrane we use silicon grids 

to provide the structural support. We observed that spin coating on grids caused variation in 

deposition of boehmite and seeding layer, causing more thickness on the edges as seen in figure 

35, the edges of the windows have more deposition causing adhesion problems of the membrane 

after synthesis causing lift off during washing process. The layer of boehmite of the edges can 

clearly be observed in figure 32.  

 

   The observed thickness of 1 hour microwave synthesis on spin coated boehmite modified 

support was close to 1.5 ±0.4 microns, compared to 1.97 micron obtained after 14 hour oven 

synthesis of similar samples in the traditional oven synthesis technique (figure 32 and 36), where 

traditional oven synthesis utilizes a heated oven and the samples is heated by conventional 

heating in an autoclave. 

Table 7: Boehmite experiments 

  

Boehmite 

modification Experiment Substrate Figure 

1 Effect of dip coat dip coating 6 times, dry 200C 2hr, seeding 4 times Wafer 30  

          

2 Effect of spin coat spin coat 8 times,200C 2hr dry,  seeding 5 times Wafer   

    

100RPM 60 sec; 3000RPM 30 sec; seconds and 3000RPM 60 

seconds.   31  

    8 times dried  200C for 2 hours seeding 2%  5 times at 100 RPM 30      

          

3 Boehmite in seed solution 50% Boehmite solution by vol(9% conc) in  seed solution 5% Wafer 34  

          

4 Synthesis on grid spin coat 8 times, seeding 5 times Grid   

  different synthesis time 30, 45 and 60 minutes microwave synthesis    30,31 
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Figure 32: top Cross section of Boehmite and membrane layer, bottom microwave synthesis growth with time 

 
Figure 33: Dip coating of Boehmite and zeolite seeds, seeding and synthesis 

0 

0.5 

1 

1.5 

2 

0 20 40 60 80 

th
ic

kn
e

ss
 (

m
ic

ro
n

s)
 

time (minutes) 

Boehmite microwave synthesis (growth 
with time) 



  

 Page 49 
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), 

the European Membrane House (EMH), and a large international network of industrial companies, research centres and 

universities;  www.em3e.eu 

 
Figure 34: Spin coating of Boehmite and zeolite seeds. Followed by 30 minute synthesis 

 

Figure 35: SEM images of seeded Boehmite modified grids 
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Figure 36: SEM images of Boehmite modified grids, evolution with time 
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Figure 37: Boehmite 9% solution mixed with zeolite seeds 5% solution (1:1 ratio) spin coated 

 

                    In order to incorporate the seeds and the Boehmite in one single step to cover the 

substrate and try to prevent the layer of remaining boehmite as seen in figure 32 to cause 

adhesion problems, we incorporated Boehmite and zeolite seeds in one solution. We 

observed increase in viscosity because of the change in pH, the boehmite solution has a pH 

of 3.5 while the seed solution has a pH of around 9-10. This pH changes causes either 

aggregation of zeolite seeds or the particles in the Boehmite solution causing the increase in 

viscosity. Due to the high viscosity the solution was spin coated at around 6000rpm for 1 min 

to help spread and reduce the deposited layer. After synthesis we observe good morphology 

but in some areas attachment was poor. Suggesting that uniform boehmite deposition is 

essential to obtain a defect free membrane using boehmite modification.  
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4.5 Silanization surface modification and synthesis  

                                                        Toluene was chosen as the solvent for silanization process as 

it has been reported in almost all of the silanization process using APTES as explained in section 

2.6.3. Also experiments by Manifar(57) discuss various solvents and good results are observed 

from toluene as a solvent. In order to select the right conditions to test the effect of silane 

concentration, first we tested different seeding techniques using 120mM APTES. Figure 38 

shows the results for different seeding solvent and different techniques for seeding including 

reflux, spin coating and dip coating on APTES modified support. Also a detailed comparison 

between spin and dip coated seeds on APTES modified surface is report in figure 43. We 

observed that since the seeds are more stable in ethanol suspension they seed the surface 

uniformly compared to toluene as in toluene we observe aggregates due to the drying process 

used to change the solvents. Although toluene is the solvent of choice, the seed stability is the 

problem that could be improved to improve seeding in toluene suspension. Because of these 

results we choose ethanol seed suspension as our seeding suspension to test the APTES 

concentration effect on seeding. Test for different APTES concentration on seeding was 

observed at 1,6, 30, 50, 90, 120 mM solution and the results are shown in figure 39 and 40. Since 

no major differences were observed we choose 120mM as our standard for all further 

experiments.  

Grids were used to provide the structural support to try to fabricate a free standing defect free 

membrane. Variation of synthesis time was observed as seen in figure 42.  And we can clearly 

observe the evolution of the membrane growth with time, it can also be seen that 30min is 

required to completely cover and obtain a defect free membrane. During our experiments we 

observed that reproducibility of the samples was a major limitation in silanization, as the 

variation in seeding and hence growth of the membrane was observed. To observe the 

reproducibility several samples on silicon oxide wafer and grid samples were conducted and are 

shown in figure 44. Our explanation for variation in the synthesis is that the moisture content is 

varying during silanization process, causing variation in the deposition of the silane layer causing 

changes in seeding. In order to further improve silanization and to obtain reproducibility we need 

to control the reaction and sample handling environment in a climate controlled glove box where 

humidity, temperature and atmosphere conditions can be reproduced. 
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Table 8: experiments performed for silanes 

  SILANIZATION       

  experiment   Description figure 

1 effect of seeding solvent   seeds in ethanol,   

  APTES   toluene, APTES modified 36 

    substrate 
seeds in toluene, 

120mM APTES 
  

2 effect of spin coating of seeds       

  
effect of dip coating of seeds 

 
wafer 

APTES 120mM, reflux 
110c, 2 hour, spin coat 
250rpm 30 sec, 2500 

rpm 1min  

36 

  On APTES modified substrate       

3 effect of APTES concentration   seeding in ethanol   

    grid 1,6,30,50,90,120 mM  37,38 

      concentration   

4 effect of microwave       

  synthesis time wafer 10,20,30 minutes 39 

  APTES   cross sections 40 

          

5 COVALENT LINKAGE       

    grid 

120mM GPDMS 
substrate, 120mM 

APTES seeds in toluene 
and ethanol  

  

  EPOXY+APTES     45 

          

6 effect of sonication    spin coat 250rpm, 30 sec   

  effect of relux wafer 
2500rpm 1min, 

sonication 5-30minutes 
41 
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                           Figure 38: different seeding solvents and seeding conditions on APTES modified support 
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                        Figure 39: different concentration of APTES in toluene during surface modification 1mM, 6mM, 30mM 
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Figure 40: different concentration of APTES in toluene during surface modification 50mM, 90mM, 120mM 
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Figure 41: Evolution of thickness of membrane on APTES modified substrate 

 

Figure 42: Growth of membrane with synthesis time, ethanol seeded substrate 
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Figure 43: Spin coating and dip coating sample on APTES modified substrates 
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Figure 44: Samples for APTES modified substrates, tested under same conditions for reproducibility test 
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Covalent Linkage 

Covalent linkage was also used to bond the zeolites to the substrate with covalent bonds; hence 

theoretically it should increase anchoring of the membrane during and after synthesis. Halogen 

based silanes were used and tested under the same conditions as used for APTES silanization and 

the results are in figure 46. Another covalent linking method is to modify the substrate with 

epoxy silanes and react it with amine group to form covalent links. We use GPDMS silane to 

modify our substrate and APTES  to modify our zeolite seeds as seen in figure 45. 
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Figure 45:Covalent linkage (epoxy-Amine) 
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Figure 46: Covalent linkage using Halogen propyl -oxy silanes 
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5 Conclusion and future work suggestions 
                                            In this work the seeding conditions on flat or grids silicon oxide surfaces 

has been optimized using different strategies. 

PDDA surface modification 

The best way to deposit homogeneously PDDA aqueous solution on the silicon oxide surface 

is to use sping coating at high speed, 6000rpm, adding the solution drop by drop. These 

conditions and a 2%wt of zeolite seeds are also optimum for deposition of zeolite seeds on 

the modified surface. 

Boehmite deposition 

Although the boehmite layer helps to grow zeolite A membrane, the deposition of the 

boehmite solution, negatively charge, on the silicon oxide surface was difficult and the spin 

coating or dip coating should be repeated many times, 6 to 8 to get a good coverage. 

Furthermore the spin coating in the grids was uneven because to accumulation of material on 

the corners.  

Surface silanization by APTES 

The silanization of the surface by covalent linkage using APTES solution in toluene was 

successful as previously reported. The second step, that comprises seeding of the modified 

APTES surface, could not be performed using high hydrophilic zeolite A and toluene 

solution. The seeding was successful using ZA seeds in ethanol solution under reflux and 

sonication getting a uniform distribution of the seeds on the surface. 

The synthesis of seeded supports under microwave heating was highly reproducible and does not 

depend on the seeding strategy followed. The thickness of the layer could be controlled between 

0.5 to 1.5 microns varying synthesis time from 10 to 60 minutes.  

The main problem observed in this work is related to the detachment of the zeolite layer after the 

synthesis. The best results after sonication were observed in the case of the aptes modified 

surface layer where almost the whole membrane, 1 x 1cm remains. However there is still lack of 

reproducibility. 
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Future work is needed to improve adhesion of zeolite layer to the surface and reproducibility, 

several strategies are proposed: 

 The main limitation of all silanization process reproducibility could be due to change 

in moisture conditions. The silane handling and and the sample handling should be 

performed under strictly controlled environment free of water. Also vapor phase 

deposition of silanes could be studied.  

 Further studies in covalent linkage of zeolites to silane modified surface. For future 

work we suggest work on other silanes like ….. 1,2-Bis(triethoxysilyl)ethane which 

can bes used as a linker between the silicon oxide surface an zeolite because of the 

presence of ethoxy groups at both ends of the silane. 

 Increase the initial roughness of the surface. 
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Appendix 
1. Zeolites 

Zeolites can be defined as Inorganic crystalline frameworks that consist of Silica (SiO2) and 

depending on the type of zeolite some Silicon(Si4+) atoms are replaced by Aluminum ions 

(Al3+) in the framework giving the framework a negative overall charge which is balanced by a 

cation that is stay inside the porous cavity by electrostatic attraction to balance the charge, hence 

neutralizing and balancing the overall charge(2). 

2. Applications of zeolites 

2.1 Gas separation 

                         Gas separation is one of the largest researched areas for zeolite membrane 

application because of its potential to reduce separation and purification costs and is termed as 

green separation as the focus is to reduce energy and cost of separation and purification of gases. 

Some of the applications of Zeolites in gas separation are to remove water from gas streams, to 

remove trace amounts of impurity gases, to separate different bulk gases. The gas separation 

through zeolite membrane is based on 3 main mechanism, size exclusion, thermodynamic 

selectivity which is the preferential adsorption of some components over the other and kinetic 

selectivity which is the ability of some components to diffuse through pores(25)Hydrogen 

purification is also one of the major growth areas for future application of zeolite as much 

research is now focusing on renewable energy sources and significant research is being 

conducted on hydrogen fueled vehicles which will increase the need for hydrogen production 

and also improving the efficiency of the process. One of major hydrogen production is by steam 

reforming of light hydrocarbons and carbon dioxide is the major impurity in the hydrogen 

produced by this method. So improving CO2 removal by membranes is also an important area of 

research for gas separation(4). and selective oxidation of CO simulated in the hydrogen 

production from steam reforming process using zeolite/pt catalysts have been reported(93). 
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2.2 Liquid separation 

                                           Zeolite membranes are used for a wide variety of liquid/liquid 

separation, some of the main reasons for application of zeolite for liquid separation is lower 

energy requirements and hence lower cost and higher separation factors. One of the major areas 

of application and research is dehydration/drying using zeolite membranes to remove water from 

important industrial solvents like ethanol from their azeotropic mixtures and also from various 

other organic liquids. Another major area is of separating hydrocarbons from their isomers or 

byproducts, some examples are Isoprene which is used in artificial rubber production, isoprene 

needs to be purified from other similar hydrocarbons especially isoprene`s azeotropic mixture 

with n-pentane. Another important industrial separation is p-xylene which is used in synthetic 

plastic manufacturing and needs to be purified from its isomers (p-xylene, 0-xylene, m-xylene 

and ethlybenzene) and is an expensive purification process, Zeolites are being researched to 

reduce cost of purification. (4) Other applications in liquid separation include water removal 

from acid solutions requiring a stable membrane in highly acidic conditions which is fulfilled by 

zeolite membranes. Also organic pollutants can be removed from water using zeolite 

membranes. Another important organic separation is of methyl-tert-butyl ether, which is a fuel 

additive and needs to be purified from methanol impurities. [(26)] Detailed information on 

organic production and separation based on zeolites is described by Herman.(94, 95). 

3. Zeolite LTA/ Zeolite A  

                         Zeolite A is a low Si/Al ratio zeolite structure; it was first discovered by union 

carbide in 1950. The framework code for Zeolite A given by the International Zeolite 

Association is LTA (Linde Type A). Linde was division of the Union Carbide company that 

discovered this Zeolite. Si/Al ratio for zeolite A is around 1 to 1.5 and they are hydrophilic in 

nature. The general formula for Zeolite A is Na2O/Al2O3/SiO2/H2O. The Zeolite A structure is 

a 4-4 structure of secondary building unit of sodalite or beta cage which is formed by the primary 

building block the tetrahedron which is combined in 4-4 oxygen ring pattern. This structure gives 

the highest cation exchange concentration to zeolite A and the optimum adsorption properties in 

terms of capacity and pore size.  

                                    It can be used to remove water from organic rich mixtures and also as 

catalyst. 70% of the total zeolite produced is Zeolite A and its main application is in detergents 
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where is acts as ion exchanger.(96) There have been many lab scale application of zeolite A 

micro membranes for sensor, liquid separation, gas separation applications in micro reactors, 

membranes and other applications. The only known industrial application of zeolite A membrane 

is in Ethanol dehydration to purify ethanol from the azeotropic mixture of ethanol and water. 

Mitsui engineering were the first to commercialize zeolite A membranes for industrial 

application in ethanol dehydration and other manufacturers are listed by Bowen in his 

publication(97). Another important application of zeolite A is in micro reactors where it is used 

as a selective barrier to remove water from reactions, micro reactor walls are lined with zeolite A 

where it can remove water or adsorb and desorbs water in closed system, a lot of micro reactors 

lined with zeolite A membrane has been done by Yeung and his team.(28, 37, 73, 98, 99) . A 

detailed list of organic synthesis were Zeolites are used are listed in the following publications 

with numerous applications where zeolite A are used as water absorbers or catalysts and these 

can be further used in form of zeolite membranes in micro reactors for these chemical 

reactions(94). 

4. Boehmite solution preparation 

                                                 Boehmite preparation previously reported by Yoldas(100) was 

performed to obtain the required Boehmite solution.  100ml of distilled water is heated at 80C in 

a beaker with stirring closed from air with nitrogen purge to prevent moisture from air, 25ml of 

Aluminum-tri-sec-butoxide (Al[OCH(CH3)C2H5]3, 97 wt% Aldrich) is added from the nitrogen 

environment to prevent polymerization. After drop by drop addition of aluminum-tri-sec-

butoxide is completed, the solution is stirred for 1 hour and the alcohol smell disappears 

indicating the hydrolysis of aluminum-tri-sec-butoxide is completed. Then temperature is raised 

to 90C and then 7ml of HNO3 of 1 MOLAR concentration added drop by drop. Then solution 

was transferred to Rota vapor equipment to age the sample at 90c for 24 hours and to prevent 

water evaporation during that time. The temperature was set to 90C at 80RPM. After the ageing 

of the solution is completed a 9% concentration of Boehmite solution is obtained. (after the 

synthesis the solution can be centrifuged at 3000rpm for 10 minutes to remove any big particles 

or it can be filtered). 
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5. Preparation of silicon grids

 

Figure 47: GRID PREPARATION 


