000112060 001__ 112060 000112060 005__ 20240319080953.0 000112060 0247_ $$2doi$$a10.1016/j.jpaa.2021.106984 000112060 0248_ $$2sideral$$a127913 000112060 037__ $$aART-2022-127913 000112060 041__ $$aeng 000112060 100__ $$0(orcid)0000-0002-5143-5675$$aBlasco García, Rubén 000112060 245__ $$aOn the Sigma-invariants of even Artin groups of FC-type 000112060 260__ $$c2022 000112060 5060_ $$aAccess copy available to the general public$$fUnrestricted 000112060 5203_ $$aIn this paper we study Sigma-invariants of even Artin groups of FC-type, extending some known results for right-angled Artin groups. In particular, we define a condition that we call the strong n-link condition for a graph Gamma and prove that it gives a sufficient condition for a character chi : A(Gamma) -> Z to satisfy chi] is an element of Sigma(n)(A(Gamma), Z). This implies that the kernel A(Gamma)(chi) = ker chi is of type FPn. We prove the homotopical version of this result as well and discuss partial results on the converse. We also provide a general formula for the free part of H-n(A(Gamma)(chi); F) as an Ft(+/- 1)]-module with the natural action induced by chi. This gives a characterization of when H-n(A(Gamma)(chi); F) is a finite dimensional vector space over F. 000112060 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-101179-B$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033 000112060 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000112060 590__ $$a0.8$$b2022 000112060 592__ $$a0.887$$b2022 000112060 591__ $$aMATHEMATICS$$b170 / 329 = 0.517$$c2022$$dQ3$$eT2 000112060 593__ $$aAlgebra and Number Theory$$c2022$$dQ1 000112060 591__ $$aMATHEMATICS, APPLIED$$b210 / 267 = 0.787$$c2022$$dQ4$$eT3 000112060 594__ $$a1.6$$b2022 000112060 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000112060 700__ $$0(orcid)0000-0003-1820-6755$$aCogolludo Agustín, José Ignacio$$uUniversidad de Zaragoza 000112060 700__ $$0(orcid)0000-0001-9147-1745$$aMartínez Pérez, Conchita$$uUniversidad de Zaragoza 000112060 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000112060 7102_ $$12006$$2005$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Algebra 000112060 773__ $$g226, 7 (2022), 106984 [7 pp]$$pJ. pure appl. algebra$$tJOURNAL OF PURE AND APPLIED ALGEBRA$$x0022-4049 000112060 8564_ $$s491980$$uhttps://zaguan.unizar.es/record/112060/files/texto_completo.pdf$$yVersión publicada 000112060 8564_ $$s1963450$$uhttps://zaguan.unizar.es/record/112060/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000112060 909CO $$ooai:zaguan.unizar.es:112060$$particulos$$pdriver 000112060 951__ $$a2024-03-18-13:17:43 000112060 980__ $$aARTICLE