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In this paper we study Sigma-invariants of even Artin groups of FC-type, extending 
some known results for right-angled Artin groups. In particular, we define a 
condition that we call the strong n-link condition for a graph Γ and prove that 
it gives a sufficient condition for a character χ : AΓ → Z to satisfy [χ] ∈ Σn(AΓ, Z). 
This implies that the kernel Aχ

Γ = kerχ is of type FPn. We prove the homotopical 
version of this result as well and discuss partial results on the converse. We also 
provide a general formula for the free part of Hn(Aχ

Γ; F) as an F [t±1]-module with 
the natural action induced by χ. This gives a characterization of when Hn(Aχ

Γ; F)
is a finite dimensional vector space over F .

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Sigma-invariants of a group G are certain sets Σn(G, Z), Σn(G) of equivalence classes of characters 
χ : G → R that provide information about the cohomological – in the case of Σn(G, Z) – and homotopical 
– for Σn(G) – finiteness conditions of subgroups lying over the commutator of G. The first version of these 
invariants was defined by Bieri and Strebel in [10] and the theory was later developed by Bieri-Neumann-
Strebel [8], Bieri-Renz [9], and Renz [23]. Usually, it is extremely difficult to compute these invariants 
explicitly but there are some remarkable cases in which a full computation is available.

One of those cases occurs when G is a right-angled Artin group (RAAG for short). These groups are 
defined from a given finite graph Γ which will be assumed here to be simple, i.e., without loops or multiple 
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edges between vertices. Associated to Γ one can describe the RAAG, denoted by AΓ, as the group generated 
by the vertices of Γ with relators of the form [v, w] = 1 for any edge {v, w} of Γ. This is a remarkable family 
of groups that range between finitely generated free abelian groups (corresponding to complete graphs) 
and finitely generated free groups (associated with graphs with no edges). Many properties of RAAGs can 
be determined in terms of the combinatorial properties of the graph. This is precisely the case for their 
Sigma-invariants, which were computed by Meier-Meinert-VanWyk in [19]. To describe their computation 
we will need to introduce some terminology.

We recall the concept of link in our context as follows. Fix a simple finite graph Γ as before and denote 
by VΓ (resp. EΓ) its set of vertices (resp. edges). If Γ1 ⊆ Γ is a subgraph and v ∈ VΓ, then the link lkΓ1(v)
of v in Γ1 is defined as the full subgraph induced by VΓ1(v) := {w ∈ VΓ1 | {v, w} ∈ EΓ}.

We extend this definition for subsets Δ ⊆ Γ by setting

lkΓ1(Δ) = ∩v∈Δ lkΓ1(v).

By convention we allow Δ to be empty, then lkΓ1(Δ) = Γ1.
We also recall the concept of the flag complex associated with Γ. This the simplicial complex, denoted as 

Γ̂, resulting after attaching a (k− 1)-simplex to each k-clique, i.e., to each complete subgraph of k vertices. 
We use the same notation for arbitrary graphs. Note that, if Δ ⊆ Γ is a clique and Γ1 ⊆ Γ a subgraph, 
then l̂kΓ1(Δ) is the intersection with Γ̂1 of the ordinary simplicial link of the cell σ associated to Δ, i.e., the 
subcomplex of Γ̂1 consisting of those simplices τ such that τ ∪ σ is also a simplex of Γ̂1.

Now, let χ : AΓ → R be a character and n ≥ 0 an integer. Consider the full subgraph Lχ
0 induced by the 

vertices v of Γ with χ(v) �= 0. Following Meier-Meinert-VanWyk [19], we call Lχ
0 the living subgraph of Γ

and say that vertices not in Lχ
0 are dead. Dead vertices are also called resonant in [11]. We will say that the 

character χ satisfies the n-link condition if for any clique Δ ⊆ Γ \ Lχ
0 ,

l̂kLχ
0
(Δ) is (n− 1 − |Δ|)-acyclic.

Then Meier-Meinert-VanWyk proved (see Subsection 3.1) that χ ∈ Σn(G, Z) if and only if χ satisfies the 
n-link condition. In fact, they also proved the homotopical version of this result that characterizes Σn(G) in 
terms of a homotopical n-link condition (with “being (n −1 −|Δ|)-connected” instead of “being (n −1 −|Δ|)-
acyclic”).

Here, we want to extend this result for another remarkable family: even Artin groups of FC-type. Given a 
finite simple graph Γ as above, one can consider an even labeling on the edges, that is, for any edge e = {u, v}, 
its label �(e) is an even number. Any such even graph Γ defines an even Artin group AΓ generated by the 
vertices of Γ and whose relators have the form (uv)k = (vu)k, where �(e) = 2k. These special Artin groups 
were first considered in detail in [12] and [13]. Note that any subgraph X ⊂ Γ of an even graph Γ generates 
an even Artin group AX . In addition, an even Artin group is said to have FC-type if AX is of finite type 
for each clique X ⊂ Γ: this means that the standard parabolic Coxeter group WX , i.e., the quotient of AX

by the normal subgroup generated by 〈u2; u ∈ VX〉 is finite.
For a character χ on an even Artin group we consider a generalization of the living subgraph as follows 

(see [20]). Denote mv = χ(v), v ∈ VΓ and me = mv + mw, e = {v, w} ∈ EΓ. We say that an edge is dead
if e has label �(e) > 2 and me = 0. We will consider the subgraph Lχ obtained from Γ after removing all 
dead vertices and the interior of all dead edges. Note that if all the edges have label precisely 2, i.e., for a 
RAAG, then Lχ

0 = Lχ.
To state our first main result, we also need to introduce the clique poset, that is the poset of subgroups 

of AΓ which are generated by cliques of Γ:

P = {AΔ | Δ ⊆ Γ clique}.
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Note that the poset structure of P is the poset structure of the poset of cliques of Γ. Also, we allow Δ to be 
empty, in that case A∅ = {1}. So the geometric realization of the clique poset is the cone of the barycentric 
subdivision of the flag complex where the vertex of the cone corresponds to the empty clique.

A special role is played by the subset Bχ ⊂ P of those subgroups AΔ where Δ ⊆ Γ is a clique such that 
for each vertex v in Δ either v is dead or v ∈ e for e a dead edge in Δ. Observe that 1 = A∅ ∈ Bχ. We will 
see that this is equivalent to asking that the center of AΔ lies in the kernel of χ, that is, χ(Z(AΔ)) = 0.

Definition 1.1. Let Bχ ⊂ P be as above. Assume that for any AΔ ∈ Bχ with |Δ| ≤ n the link l̂kLχ(Δ) is 
(n − 1 − |Δ|)-acyclic. Then we say that χ satisfies the strong n-link condition.

We also define a homotopical strong n-link condition in a similar way just changing (n − 1 − |Δ|)-acyclic 
by (n − 1 − |Δ|)-connected.

Note that the homotopical strong n-link condition implies the strong n-link condition.

Theorem 1.2. Let G = AΓ be an even Artin group of FC-type, and 0 �= χ : G → R a character such that the 
strong n-link condition holds for χ. Then [χ] ∈ Σn(G, Z).

In the case n = 1, it is known for several types of Artin groups (see Theorem 3.6) that [χ] ∈ Σn(G, Z)
if and only if Lχ is connected and dominant. This is equivalent to saying that χ satisfies the strong n-link 
condition (see Subsection 3.1).

We do not know whether the converse of Theorem 1.2 is true in general, but in Section 5 we prove a 
partial converse. To do that, we use some of the techniques of [11] to perform computations on the homology 
groups Hn(Aχ

Γ, F) where F is a field, χ : AΓ → Z is assumed to be discrete and Aχ
Γ = kerχ. More precisely, 

we show that these homology groups are finite dimensional as F -vector spaces if and only if certain p-local 
version of the strong n-link condition holds. Recall that a consequence of the well-known properties of the 
Sigma-invariants (see Section 2) is that if for a discrete character χ we have [χ] ∈ Σn(G, Z), then Aχ

Γ is of 
type FPn and therefore the homology groups with coefficients over any field must be finite dimensional. As 
a by-product, an explicit computation of independent interest is provided in Theorem 5.5 for the free part 
of Hn(Aχ

Γ, F) when seen, via χ, as a module over the principal ideal domain F [t±1].
Moreover, section 6 is devoted to stating and proving a partial homotopic analogue of Theorem 1.2 in 

Theorem 6.1.

2. Sigma-invariants

Let G be a finitely generated group. In this section we will consider arbitrary non-trivial characters 
χ : G → R. We say that two characters χ1, χ2 are equivalent if one is a positive scalar multiple of the other, 
i.e., if χ1 = tχ2 for some t > 0. We denote by [χ] the equivalence class of the character χ and by S(G) the 
set of equivalence classes of characters. Note that if G/G′ has finite torsion and free rank r then S(G) can 
be identified with the sphere Sr−1. The homological Σ-invariants of G are certain subsets

Σ∞(G,Z) ⊆ · · · ⊆ Σn(G,Z) ⊆ · · · ⊆ Σ2(G,Z) ⊆ Σ1(G,Z) ⊆ Σ0(G,Z) = S(G)

which are very useful to understand the cohomological finiteness properties of subgroups of G containing 
the commutator G′.

For a formal definition, consider χ : G → R a character and Gχ the monoid Gχ = {g ∈ G | χ(g) ≥ 0}. 
Then

Σn(G,Z) = {[χ] ∈ S(G) | ZGχ is of type FPn}.
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There is also a homotopical version

Σ∞(G) ⊆ · · · ⊆ Σn(G) ⊆ · · · ⊆ Σ2(G) ⊆ Σ1(G) ⊆ Σ0(G) = S(G).

We can sketch the definition as follows (see [19]). Let G be a group of type Fn. We can choose a CW -model 
X for the classifying space for G with a single 0-cell and finite n-skeleton. Let Y be the universal cover of 
X. Then we may identify G with a subset of Y and given a character χ : G → R, we can extend χ to a 
map χ : Y → R that we denote in the same way. To do that, map the vertex labeled by, say, g to χ(g) and 
extend linearly to the rest of Y .

For a ∈ R denote by Y [a,+∞)
χ the maximal subcomplex in Y ∩ χ−1([a, +∞)). Assuming a ≤ 0, the 

inclusion Y [0,+∞)
χ ⊆ Y

[a,+∞)
χ induces a map

πi(Y [0,+∞)
χ ) → πi(Y [a,+∞)

χ )

and we say that [χ] ∈ Σn(G) if there is some a such that this map is trivial for all i < n. The reader can find 
more details about Σn(G, Z), Σn(G) in [19]. We recall now only two well-known properties: both Σn(G, Z), 
Σn(G) are open subsets of S(G) that determine the cohomological and homotopical finiteness conditions of 
subgroups containing the commutator thanks to the following fundamental Theorem:

Theorem 2.1. Let G be a group of type FPn and G′ ≤ N ≤ G. Then N is also of type FPn if and only if

{[χ] ∈ S(G) | χ(N) = 0} ⊆ Σn(G,Z).

Moreover, if G is of type Fn, then N is of type Fn if and only if

{[χ] ∈ S(G) | χ(N) = 0} ⊆ Σn(G).

In particular, if χ : G → Z is discrete, we have that kerχ is of type FPn if and only if [χ], [−χ] ∈ Σn(G, Z).
If R is a commutative ring, one can also define R-Sigma-invariants Σn(G, R) by substituting the homology 

groups in the definition above by homology groups with coefficients in R. Theorem 2.1 remains true when 
FPn is substituted by FPn over R. Moreover we have

Σn(G) ⊆ Σn(G,Z) ⊆ Σn(G,R)

for any G, R and n ≥ 2 and

Σ1(G) = Σ1(G,Z) = Σ1(G,R).

We will also need the following useful result.

Lemma 2.2. [20, Lemma 2.1] Let G be any group of type Fn and χ : G → R a character with χ(Z(G)) �= 0
where Z(G) is the center of G. Then [χ] ∈ Σn(G) ⊆ Σn(G, Z).

Finally, we state here the following result which was proven by Meier-Meinert-VanWyk [19]. This Theorem 
will be the main tool in the proof of Theorem 1.2 as it was one of the main tools in their description of the 
Sigma-invariants for RAAGs.

Theorem 2.3. [19, Theorem 3.2] Let G be a group acting by cell-permuting homeomorphisms on a CW -
complex X with finite n-skeleton modulo G. Let χ : G → R be a character such that for any 0 ≤ p ≤ n and 
any p-cell σ of X the stabilizer Gσ is not inside kerχ. Then
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i) If X is (n − 1)-connected and [χ|Gσ
] ∈ Σn−p(Gσ) for any p-cell σ, 0 ≤ p ≤ n, then [χ] ∈ Σn(G).

ii) If X is (n − 1)-R-acyclic and [χ|Gσ
] ∈ Σn−p(Gσ, R) for any p-cell σ, 0 ≤ p ≤ n, then [χ] ∈ Σn(G, R).

3. Artin groups and their Sigma-invariants

As we have seen in the introduction, Artin groups can be defined in terms of a labeled graph. Using the 
symmetry of the standard presentation of an Artin group we can show the following.

Proposition 3.1. Let G = AΓ be an Artin group. Then −Σn(G) = Σn(G) and −Σn(G, Z) = Σn(G, Z).

Proof. Due to the symmetry of the relations in G, there is a well-defined map ϕ : G → G given as 
ϕ(v) := v−1 for v ∈ VΓ, which defines an automorphism of G. Since χ ◦ ϕ = −χ and both Σn(G) and 
Σn(G, Z) are invariant under automorphisms of G, the result follows. �

So we have:

Lemma 3.2. Let G = AΓ be an Artin group and χ : G → Z a discrete character. Then kerχ is of type 
FPn if and only if [χ] ∈ Σn(G, Z). In particular, if there is some field F and some 0 < i ≤ n such that 
dimF Hi(kerχ, F) is infinite, χ /∈ Σn(G, Z).

Proof. The first statement is a direct consequence of Theorem 2.1 and Proposition 3.1. For the second one, 
recall that if a group is of type FPn, then after tensoring a finite type resolution of the trivial module by 
F , one obtains a finite type resolution of projective modules over its group ring and thus it is also FPn

over F . �
3.1. Sigma-invariants for RAAGs

The explicit computation of the Sigma-invariants for a particular group is usually very difficult. In [21], 
Meier and VanWyk computed Σ1(AΓ) for AΓ a RAAG:

Theorem 3.3 (Meier-VanWyk [21]). Let G = AΓ be a RAAG and χ : G → R a character. Then

[χ] ∈ Σ1(G) if and only if Lχ
0 is connected and dominating in Γ.

Recall that Lχ
0 is the subgraph obtained from Γ by removing the vertices v with χ(v) = 0. As we are 

assuming that AΓ is a RAAG, Lχ
0 = Lχ is the living subgraph defined above. Also, we say that a subgraph 

Δ ⊆ Γ is dominating if for any v ∈ Γ \ Δ there is some w ∈ Δ linked to v. In other words, the condition 
of Lχ

0 being dominant is equivalent to saying that for every v ∈ Γ \ Lχ
0 , lkLχ

0
(v) �= ∅. And therefore the 

Theorem can be reformulated as follows: [χ] ∈ Σ1(G) if and only if

i) lkLχ
0
(∅) is 0-connected and,

ii) for every v ∈ Γ \ Lχ
0 , lkLχ

0
(v) is (-1)-connected.

This can be restated using the 1-link condition defined in the introduction:

[χ] ∈ Σ1(G) if and only if χ satisfies the homotopical 1-link condition.

Later on, in [19] Meier-Meinert-VanWyk, extending Theorem 3.3, were able to give a full description of 
the higher Sigma-invariants of a RAAG in terms of the n-link condition.
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Theorem 3.4. Let G = AΓ be a RAAG and χ : G → R a character. Then [χ] ∈ Σn(G, Z) if and only if the 
n-link condition holds for χ.

3.2. Some partial results for Artin groups

Not much is known about Σ-invariants of general Artin groups. Let χ : AΓ → R, AΓ an Artin group and 
Z(S) the center of S ⊂ AΓ. We highlight the following partial result.

Theorem 3.5 (Meier-Meinert-VanWyk [20, Theorem B]). Assume AΓ is of FC-type. If Γ̂ is (n − 1)-acyclic 
and χ(Z(AΔ)) �= 0 for any ∅ �= Δ ⊆ Γ clique, then [χ] ∈ Σn(G, Z).

We will see below that the hypothesis χ(Z(AΔ)) �= 0 for any ∅ �= Δ ⊆ Γ clique means that Bχ consists 
of the trivial subgroup only. Therefore this result is a particular case of our main Theorem 1.2.

A full characterization is available in few cases only.

Theorem 3.6 (Meier-Meinert-VanWyk [20], Almeida [2], Almeida-Kochloukova [3,4], Kochloukova [18]). 
Assume that one of the following conditions holds:

• Γ is a connected tree,
• Γ is connected and π1(Γ) is free of rank at most 2,
• Γ is even and whenever there is a closed reduced path in Γ with all labels bigger than 2, then the length 

of such path is always odd.

Then [χ] ∈ Σ1(AΓ) ⇐⇒ Lχ is connected and dominating.

Moreover, the class of Artin groups that satisfy the hypothesis in Theorem 3.6 is known to be closed 
under graph products and, as a consequence, every FC-type Artin group also does ([5]). Other concrete 
examples of Artin groups satisfying this hypothesis can be found in [4] and [1].

Note that by a similar observation as above, this result can be stated as follows: For Γ connected and 
with π1(Γ) = 1 or free of rank at most 2, then

[χ] ∈ Σ1(AΓ) ⇐⇒ χ satisfies the strong 1-link condition.

Observe also that here we are not assuming that AΓ is even.

3.3. An easier particular case: direct products of Artin dihedral groups

It will be important below to understand the Sigma-invariants of the finite type Artin subgroups AΔ of 
a given even Artin group of FC-type AΓ. In general, finite type Artin groups are direct products of finite 
type irreducible Artin groups and the only possible irreducible finite type Artin groups are those of dihedral 
type, which are the Artin groups associated to a single edge. In the even case the edge is labeled by an even 
integer, say 2� and the associated group is

DA2� = 〈x, y | (xy)� = (yx)�〉.

The (homotopical) Sigma-invariants for irreducible Artin groups of finite type have been described in 
[20, Section 2]. In the particular case of a dihedral Artin group we have the following result.

Lemma 3.7. [20, Pg 76] Let G = DA� be a dihedral Artin group and n ≥ 1. For any commutative ring R
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i) If � is odd, then S(G) is a 0-sphere and S(G) = Σn(G) = Σn(G, R) for any n.
ii) If � = 2�̃ is even S(G) is a 1-sphere. Denoting by x, y the standard generators, we have Σn(G) =

Σn(G, R) = S(G) \ {[χ], [−χ]} where χ(x) = 1, χ(y) = −1.

Proof. For the homotopical result, see [20, p. 76]. For the homological one note that Σ1(G) = Σ1(G, R) and

Σn(G) ⊆ Σn(G,R) ⊆ Σ1(G,R). �
If AΓ is an even Artin group of FC-type and AΔ is a finite type subgroup with Δ ⊆ Γ, then Δ must be a 

clique and AΔ is a direct product of even Artin dihedral groups and possibly a factor which is free abelian 
of finite rank. In this subsection we will give a full description of the Sigma-invariants of such an AΔ. But 
we will consider the slightly more general case of a product of arbitrary Artin dihedral groups and possibly 
a free abelian groups of finite rank. Assume

G = G1 × · · · ×Gs

where each of the Gi’s is either Z or Artin dihedral.
Using [7, Theorem 1.4] and the fact that according to Lemma 3.7 the R-Sigma-invariants for Artin 

dihedral groups for R = Z and R = Q coincide, we deduce (the upper script c means the complementary 
of the corresponding subset)

Σn(G,Z)c =
⋃

n1+...+ns=n,ni≥0
Σn1(G1,Z)c � · · · � Σns(Gs,Z)c,

where � is the join product in the corresponding spheres (see [7]). We have Σm(Gi, Z)c = ∅ unless m ≥ 1 and 
Gi is dihedral of even type, in that case Σm(Gi, Z)c = {[χi], −[χi]} where χi maps the standard generators 
of Gi to 1 and −1 resp. As a consequence, if we order the factors so that G1, . . . , Gt are precisely those 
which are dihedral of even type, we have

Σm(G,Z)c = ∅ if m < t

Σm(G,Z)c = {[χ] ∈ S(G) | me = 0 for e ∈ EΓ if �(e) > 2} if m ≥ t.

3.4. Coset posets

In this section we prove some results on coset posets that will be used in the main proofs later on.

Definition 3.8. Let G be a group and P a poset (ordered by inclusion) of subgroups of G. The coset complex
CG(P) (or simply C(P) if the group G is clear by the context) is the geometric realization of the poset 
GP of cosets gS where g ∈ G and S ∈ P. In other words, it is the geometric realization of the simplicial 
complex whose k-simplices are the chains

g0S0 ⊂ g1S1 ⊂ · · · ⊂ gkSk = g0(S0 ⊂ S1 ⊂ · · · ⊂ Sk), (1)

where g0, . . . , gk ∈ G and S0, . . . , Sk ∈ P. Let Pχ be the subposet of P consisting of those subgroups S ∈ P
such that χ|S �= 0. It yields a subcomplex C(P)χ of C(P). We identity C(P) with its geometric realization.

We will consider posets of subgroups P having a height function h : P → Z+ ∪ {0} such that whenever 
S � T both sit in P, we have h(S) < h(T ). We also assume that there is a bound for the height of the 
elements of P. We denote that bound by h(P). Now, assume we have a subposet H ⊆ P. Then C(H) is a 
subcomplex of C(P). We want to compare the homology of C(P) with the homology of C(H). Let
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σ : g(S0 ⊂ S1 ⊂ · · · ⊂ Sk)

be a k-simplex in C(P). Using the height function h we set

hHc(σ) =
{
−1 if Si ∈ H for every 0 ≤ i ≤ k,

max{h(Sj) | Sj /∈ H} in other case.

Note that if τ ⊆ σ is a face, then hHc(τ) ≤ hHc(σ). This implies that we can use this function to define 
a subcomplex

Ds := {σ ∈ C(P) | hHc(σ) ≤ s}

for −1 ≤ s ≤ h(P). So we have a filtration

C(Pχ) = D0 ⊆ D1 ⊆ · · · ⊆ Dh(P) = C(P).

For s ≥ 0, simplices in Ds but not in Ds−1 are of the form

σ : g(S0 ⊂ S1 ⊂ · · · ⊂ Sk)

such that there is some 0 ≤ i ≤ k with Si ∈ P \ H of height precisely s and Sj ∈ H for j > i.
Fix an S ∈ P \ H of height precisely s and consider the set of all simplices of the form

σ : g(S0 ⊆ S1 ⊆ · · · ⊆ Si ⊆ Si+1 ⊆ · · · ⊆ Sk) (2)

with Si = S and Sj ∈ H for each j > i. Those simplices lie in Ds. The boundary ∂σ of such a k-simplex σ
consists of k − 1-simplices τ which are of the same form except of the case when

τ : g(S0 ⊆ S1 ⊆ · · · ⊆ Si−1 ⊆ Si+1 ⊆ · · · ⊆ Sk)

and then τ ∈ Ds−1. Consider now the complex ZS which is the geometric realization of CS(PS) \ {S} for 
the poset PS = {S ∩ T | T ∈ P} (note that ZS could be empty if S is empty). And let J S be the poset

J S := {T ∈ H | S ⊆ T}.

The join ZS � |J S | is in a natural way an S-space and we may form the induced G-space G/S× (ZS � |J S |). 
Its chain complex is a G-complex that consists of induced modules of the form C•(ZS � |J S |) ↑GS . We claim 
that the quotient complex Ds+1/Ds can be decomposed as

⊕
S∈P\H,h(S)=s

C̃•+1(G/S × (ZS � |J S |) (3)

where C̃•+1 is the augmented chain complex shifted by one. To see it, consider a simplex σ as in (2) and 
put g = xy for y ∈ S so that

σ : x(yS0 ⊆ · · · ⊆ ySi−1 ⊆ S ⊆ Si+1 ⊆ · · · ⊆ Sk).

Then σ yields a free direct summand of the chain complex of Ds+1/Ds at dimension k that we map onto 
the summand of C̃•+1(G/S × (ZS � |J S |) associated to x ⊗ (σ1 � σ2) with
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σ1 : y(S0 ⊆ · · · ⊆ Si−1)

and

σ2 : Si+1 ⊆ · · · ⊆ Sk.

Lemma 3.9. With the previous notation, assume that for any S ∈ P \ H with h(S) = s we have that ZS is 
(s − 2)-acyclic or empty if s = 0 and |J S | is (n − 1 − s)-acyclic. Then, if C(P) is (n − 1)-acyclic, so is 
C(H).

Proof. Using Mayer-Vietoris one can determine the homology groups Hr(ZS � |J S |) in terms of Hi(ZS) and 
Hj(|J S |) for i +j < r so the hypotheses imply that the complex ZS � |J S | is (n −1 −s +s −2 +2) = (n −1)-
acyclic.

By equation (3),

Hj(Ds+1/Ds) =
⊕

S∈P\H,h(S)=s

H̃j−1(ZS � |J S |) ↑GS = 0

for 0 ≤ j ≤ n. And this implies the result: to see it assume by induction that Ds+1 is R-(n − 1)-acyclic (the 
beginning of the induction is Dh(P) = C(P) which is (n − 1)-acyclic) and consider the long exact homology 
sequence of the short exact sequence of complexes 0 → Ds → Ds+1 → Ds+1/Ds → 0

. . . → 0 = Hi+1(Ds+1) → Hi+1(Ds+1/Ds) → Hi(Ds) → Hi(Ds+1) = 0 → . . .

Thus also Ds is (n − 1)-acyclic. Eventually, C(H) = D0 is (n − 1)-acyclic. �
Remark 3.10. As noted by an anonymous referee of this paper, Lemma 3.9 can also be proven using Morse 
theory, having hHc as the Morse function. The complex ZS � |J S | is the link of S in Ds+1 so the hypothesis 
of Lemma 3.9 is in fact a condition on the acyclicity of the link. The proof presented in this paper exhibits 
the fact from Morse theory that acyclicity of the links yields isomorphisms between the homology groups 
of the involved subcomplexes.

Remark 3.11. In Lemma 3.9 we can substitute the instances of “being acyclic” by “being R acyclic” for any 
unital commutative ring R.

4. Proof of Theorem 1.2

As stated above, our proof of Theorem 1.2 is based in Theorem 2.3. To do that we need a suitable 
complex X.

Let AΓ be an Artin group and consider the clique poset

P = {AΔ | Δ ⊆ Γ clique}

(recall that a clique is a complete subgraph). If the Artin group AΓ is of FC-type, then any clique of Γ
generates a finite type Artin subgroup so the coset complex CG(P) = C(P) of P is the modified Deligne 
complex for AΓ considered by Charney and Davis in [16]. In [17] the modified Deligne complex is used to 
construct what is called the clique cube-complex which is a CAT-(0) cube complex.

For Artin groups of FC-type, the modified Deligne complex was shown to be contractible in [16] but for 
completeness, we give a direct easy proof of the fact that the coset complex CG(P) is contractible in general, 
i.e., for arbitrary Artin groups AΓ possibly without the FC condition.
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Lemma 4.1. Let G = AΓ be an Artin group and consider P the clique poset. The coset complex CG(P) =
C(P) is contractible.

Proof. We argue by induction on the number of vertices of Γ. Observe first that the result is obvious if Γ is 
complete, because then G itself lies in P. If Γ is not complete we may decompose Γ = Γ1∪Γ2 with Γ1, Γ2 � Γ
such that for Γ0 = Γ1∩Γ2 no vertex in Γ1 \Γ0 is linked to any vertex in Γ2 \Γ0. This decomposition induces 
a decomposition of G as the free product with amalgamation

G = AΓ1 �AΓ0
AΓ2 .

Let C(P1), C(P2) and C(P0) be the corresponding coset complexes for the clique posets of AΓ1, AΓ2 and 
AΓ0 . By induction we may assume that they are all contractible. Consider the poset

BS = {gAΓ1 | g ∈ G} ∪ {gAΓ2 | g ∈ G} ∪ {gAΓ0 | g ∈ G}.

The geometric realization of this poset is precisely the barycentric subdivision of the Bass-Serre tree asso-
ciated to the free amalgamated product above. Consider the map

f : C(P) → BS

gAΔ �→

⎧⎪⎪⎨
⎪⎪⎩
gAΓ0 if Δ ⊆ Γ0

gAΓ1 if Δ ⊆ Γ1, AΔ � AΓ0

gAΓ2 if Δ ⊆ Γ2, AΔ � AΓ0 .

Observe that each clique of Γ is a subgraph either of Γ1 or of Γ2. Moreover, if gS ⊆ gT with S and T both 
in P, then f(gS) ⊆ f(sT ) so it is a well-defined poset map and for any gAΓi

∈ BS,

{gS ∈ C(P) | f(gS) ≤ gAΓi
} = gCAΓi

(Pi)

i.e., it is the coset poset of the clique poset of AΓi
shifted by g. By induction, the posets CAΓi

(Pi) have con-
tractible geometric realizations for i = 0, 1, 2. So we may apply Quillen poset map Lemma ([6]) and deduce 
that f induces a homotopy equivalence between the geometric realizations. As the geometric realization 
|BS| is contractible, we deduce the same for the geometric realization |C(P)|. �

Note that the Artin group acts on the clique poset so we have a nice action on the geometric realization. 
However, this is not what we need to apply Theorem 2.3 because the stabilizers of this action are not nice 
enough. In order to construct our suitable X, we will also need an auxiliary Lemma.

Lemma 4.2. Let Δ be a (non empty) complete graph with s vertices and with S := AΔ even of FC-type and 
consider the simplicial complex ZS with simplices

hS0 ⊆ hS1 ⊆ · · · ⊆ hSr

for h ∈ AΔ and each Sj a special proper subgroup of AΔ. Then ZS is homotopy equivalent to a wedge of 
(s − 1)-spheres and therefore it is (s − 2)-acyclic.

Proof. We will consider a covering of ZS and will denote Δv = Δ \ {v}. For each v ∈ Δ and each i ∈ Z, 
consider the coset viAΔv

and let

Xv,i = {gS | gS ⊆ viAΔv
}.
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Observe that this is in fact a covering: each special proper subgroup of AΔ is inside one of those and we 
have A{Δv} 
 AΔ and {vi, i ∈ Z} ∼= AΔ/AΔv

. We claim that if {vi00 AΔv0
, . . . , vikk AΔvk

} is a set of pairwise 
distinct cosets, then they have non empty intersection if and only if the vertices v1 . . . , vk are also pairwise 
distinct and in that case

vi00 AΔv0
∩ . . . ∩ vikk AΔvk

= gAΔ{v0,...,vk}

for some g ∈ A{v0,...,vk}.
Note first that if two of the vertices were equal we would have two cosets of the form gS �= hS so 

gS ∩ hS = ∅. So it is enough to check that if the vertices v1 . . . , vk are pairwise distinct,

vi00 AΔv0
∩ . . . ∩ vikk AΔvk

= gAΔ{v0,...,vk}

for some g ∈ A{v0,...,vk}. We may assume by induction that

vi00 AΔv0
∩ . . . ∩ v

ik−1
k AΔvk−1

= g1AΔ{v0,...,vk−1}

for g1 an element in the corresponding special subgroup. Then

vi00 AΔv0
∩ . . . ∩ vikk AΔvk

= g1AΔ{v0,...,vk−1} ∩ vikk AΔvk
=

g1(AΔ{v0,...,vk−1} ∩ vikk v−ik
k g−1

1 vikk AΔvk
) =

g1(AΔ{v0,...,vk−1} ∩ vikk AΔvk
) � g1v

ik
k .

Thus

vi00 AΔv0
∩ . . . ∩ vikk AΔvk

= g1v
ik
k (AΔ{v0,...,vk−1} ∩AΔvk

) = gAΔ{v0,...,vk}

for g = g1v
ik
k ∈ A{v0,...,vk}.

The claim implies that each set {Xi0,v0 , . . . , Xik,vk} of elements in the covering have either empty inter-
section or

Xi0,v0 ∩ . . . ∩Xik,vk = {hS | hS ⊆ gAΔ{v0,...,vk}}

which is contractible. Therefore ZS is homotopy equivalent to the nerve of the covering (see [14, Chap. VII 
Theorem 4.4]). The nerve has k-simplices the sets {Xi0,v0 , . . . , Xik,vk} with non empty intersection and the 
discussion above implies that this nerve is the s-fold join of the discrete spaces

Ωv = {Xi,v | i ∈ Z}

where v ∈ Δ, i.e.,

ZS � �v∈ΔΩv.

Each Ωv can be seen as a wedge of 0-spheres and using induction and the fact that Sm � St � Sm+t+1 we 
get the result. �

At this point, we are able to construct the desired X. Note that Theorem 2.3, together with the next 
result, implies Theorem 1.2.
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In the introduction we have defined the subposet Bχ of P as those AΔ for Δ ⊆ Γ clique such that for 
each vertex v in Δ either v is dead or v ∈ e for e a dead edge in Δ, this includes the case when Δ = ∅. The 
hypothesis that AΓ is even of FC-type implies that AΔ is a direct product of dihedral groups (corresponding 
to edges with label bigger than 2) and of infinite cyclic groups (generated by dead vertices). Taking into 
account that the center of the dihedral group generated by, say, x and y is the infinite cyclic group generated 
by xy we see that for such a Δ we have χ(Z(AΔ)) = 0. The converse is also obvious. So we have

Bχ = {AΔ ∈ P | χ(Z(AΔ)) = 0}.

Denote

Hχ := P \ Bχ,

one has the following result on the homotopy of the geometric realization of the coset poset X := |CHχ|.

Proposition 4.3. Let AΓ be an even Artin group of FC-type. Let χ : AΓ → R be a character. If the strong 
n-link condition holds, then the geometric realization of the coset poset X := |CHχ| is (n − 1)-acyclic.

Proof. Use Lemma 3.9 for P the clique poset with h(AΔ) = |Δ|. Fix S = AΔ ∈ Bχ = P \Hχ with h(S) = s. 
The complex denoted ZS in Lemma 3.9 is the simplicial complex of Lemma 4.2 and J S is the poset

J S := {T ∈ P | S ⊆ T, χ(Z(T )) �= 0}.

Now, consider the poset

LS := {L = Aσ ∈ P | ∅ �= σ clique of lkLχ(Δ)}.

Let Aσ ∈ LS . Then for T = A(σ�Δ), we have S ≤ T and T ∈ P. We claim that T ∈ J S . To see it, note that 
as σ �= ∅ and σ ⊆ Lχ, Z(Aσ) �= 0. As Γ is even of FC-type, this implies that either there is some v ∈ σ, 
v ∈ Z(Aσ) with χ(v) �= 0 or there are v, w ∈ σ, (vw)k ∈ Z(Aσ) for some k with χ(v) + χ(w) �= 0. Again, 
the condition that Γ is of FC-type implies that in the second case, (vw)k ∈ Z(T ) so χ(Z(T )) �= 0. In the 
first case, either v ∈ Z(T ) so again χ(Z(T )) �= 0 or there is some w ∈ Δ with (vw)k ∈ Z(T ) for some k. In 
this case moreover w ∈ Z(S) thus χ(w) = 0. Therefore χ((vw)k) �= 0 and again χ(Z(T )) �= 0. The claim 
follows and therefore we have a well defined poset map

f : LS → J S

Aσ �→ A(σ�Δ).

We claim that this map induces a homotopy equivalence between the corresponding geometric realizations. 
To see it, let T ∈ J S and consider

f−1
≤T = {U ∈ LS | f(U) ≤ T}.

By Quillen’s poset map Theorem (see [6]) it suffices to check that the poset f−1
≤T has contractible geometric 

realization. Put T = Aν . Then ν is a clique of Γ such that ν = Δ � σ for some ∅ �= σ clique in lkΓ(Δ). We 
can describe σ as a join

σ = e1 � · · · � et � p1 � . . . ps
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where each ei is a single edge with label > 2 and each pi is a single point and all the edges not in some ei are 
labeled by 2. We may order them so that χ(e1), . . . , χ(el) = 0, χ(el+1), . . . , χ(et) �= 0, χ(p1), . . . , χ(pr) = 0, 
χ(pr+1), . . . , χ(ps) �= 0. Then

σ ∩ Lχ = w1 � · · · � wl � el+1 � · · · � et � pr+1 � · · · � ps

where each wi is the disconnected set consisting of the two vertices of each ei has as barycentric subdivision 
precisely the geometric realization of the poset f−1

≤T . As el+1 � · · · � et � pr+1 � · · · � ps is either contractible 
or empty, so show that f−1

≤T is contractible we only have to show that el+1 � · · · � et � pr+1 � · · · � ps is not 
empty. As T ∈ J S , χ(Z(T )) �= 0. If there is some v vertex of ν with v ∈ Z(T ) and χ(v) �= 0 then the fact 
that χ(Z(S)) = 0 implies v ∈ σ so v belongs to {pr+1, . . . , ps}. So we are left with the case when χ(vw) �= 0
for v, w vertices of an edge of ν with label > 2. If, say, v lies in Δ, then v ∈ Z(S) so χ(v) = 0 and we 
deduce χ(w) �= 0. Moreover, in this case the FC-condition implies that w is in the center of Aσ, i.e., w
belongs to {pr+1, . . . , ps}. So we may assume that both v, w lie in σ so the edge joining them lies in the set 
{el+1, . . . , et}. �

We finish this section with a couple of example to illustrate how to apply Theorem 1.2.

Example 4.4. Let Γ be the graph and χ the character

Γ

a1

0

-1

1

b

c d

4

4

2 22 Lχ

a1 -1

1

b

d

22

For Δ = (ab), Z(AΔ) is generated by ab so χ(Z(AΔ)) = 0.
For Δ = (a, b, d), Z(AΔ) is generated by ab, d so χ(Z(AΔ)) �= 0.
We get: P \ Hχ = {∅, (c), (ab)}. The links are:

lkLχ (∅) = Lχ lkLχ (c) =
d

a
lkLχ (ab) = d

All the links are contractible so χ ∈ Σ∞(AΓ, Z).

Example 4.5. Let Γ be the graph and χ the character

Γ

a1

0

-1

1

b

c d

4

4

2 2 Lχ

a1 -1

1

b

d

2

As before: P \ Hχ = {∅, (c), (ab)}. However, lkLχ(∅) = Lχ is not connected, so [χ] might not even be in 
Σ1(AΓ, Z).

Incidentally, in this case, the hypothesis of Corollary 5.7 below is satisfied for p = 2, hence the converse 
of Theorem 1.2 also holds true so
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[χ] /∈ Σ1(AΓ,Z).

5. The free part of the homology groups of Artin kernels

Let AΓ be an even Artin group of FC-type and χ : AΓ → Z a discrete character. In this section, we are 
interested in the homology groups Hn(Aχ

Γ, F) where F is a field of characteristic p (either zero or a prime). 
More precisely, we want to characterize when they are finite F dimensional and, more generally, to compute 
their free part when seen as F [t±1]-modules via χ.

To do that we first develop a p-local version of some of the notions that we used above.
We say that an edge e of Γ with label 2�̃e is p-dead if me = χ(v) + χ(w) = 0 and p | �̃. In [11], p-dead 

edges were called F -resonant (recall that F is a field of characteristic p).
We set Lχ

p for the subgraph of Γ that we get when we remove dead vertices and open p-dead edges. This 
notation is consistent with Lχ

0 because no edge can be 0-dead. Note that the set of dead edges is the union 
of the sets of p-dead edges where p runs over all prime numbers and therefore Lχ =

⋂
p prime Lχ

p .
Let Bχ

p be the set of those AΔ ∈ P for a clique Δ ⊆ Γ such that for each vertex v in Δ either v is dead 
or v ∈ e for e a dead edge in Δ (this includes the case when Δ = ∅). Note that as edges which are p-dead 
for some p are dead, this condition implies that χ(Z(AΔ)) = 0.

Definition 5.1. Assume that for any AΔ ∈ Bχ
p with |Δ| ≤ n the link l̂kLχ

p
(Δ) is p − (n − 1 − |Δ|)-acyclic, 

meaning that its homology up to degree (n − 1 −|Δ|) with coefficients in a field of characteristic p vanishes. 
Then we say that χ satisfies the strong p-n-link condition.

The homology groups Hn(Aχ
Γ, F) are precisely the homology groups of the F -chain complex Cn(SalχΓ)

described in [11, Section 2]. This complex was obtained using the χ-cyclic cover of the Salvetti complex of 
AΓ (see [24,15,22]) and has

Cn(SalχΓ) = F [t±1] ⊗F C̄(Γ̂)n−1

where C̄(Γ̂)n−1 is the augmented chain complex of the flag complex Γ̂ shifted by one. The differential of 
Cn(SalχΓ) can be described as follows (see [11], after Remark 2.3). For each edge e ∈ EΓ let 2�̃e be its label 
in Γ and denote qk(x) = (xk − 1)/(x − 1). Then for any X ⊆ Γ complete we have

∂χ
nσ

χ
X =

∑
v∈X

〈Xv | X〉bv,Xσχ
Xv

(4)

where we are denoting Xv the clique obtained from X by removing v and

bv,X := (tmv − 1)
∏

w ∈ Xv

e = {v, w} ∈ EΓ

q�̃e(t
me). (5)

In particular, if �̃e = 1, then q�̃e(t
me) = 1 and if me = 0, q�̃e(t

me) = �̃e. Recall that an edge e ∈ EΓ is 
called p-dead if me = 0 and p | �̃e; otherwise will be called p-living. So we see that in (4), the coefficient 
bv,X vanishes if either v is dead or belongs to a p-dead edge in X.

Let I be the augmentation ideal of the ring R = F [t±1], i.e., the kernel of the augmentation map R → F

with t �→ 1, R is a principal ideal domain and I is the ideal generated by t − 1. Since I is a prime ideal, 
we can localize and get a new ring RI . We can also localize the complex Cn(SalχΓ) and get a new complex 
Cn(SalχΓ)I with n-term

Cn(SalχΓ)I = RI ⊗F C̄(Γ̂)n−1
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whose differential we also denote by ∂χ
n . Since localizing is flat, the R-free part of the homology of (R ⊗F

C̄(Γ̂)n−1, ∂χ
n) has the same rank as the RI-free part of the homology of (RI ⊗F C̄(Γ̂)n−1, ∂χ

n). But in this 
complex we can normalize over the living vertices and p-living edges in the following way.

Let X ⊆ Γ be a clique and put

aX =
∏

v∈X living
(tmv − 1)

∏
e∈EX p-living

q�̃e(tme ).

Let μX be the multiplicity of t − 1 as a factor of aX . Then

aX = (t− 1)μXhX

where hX is a unit in our ring RI . Observe that for any v ∈ X we have

(t− 1)μXhX = aX = bv,XaXv
= bv,X(t− 1)μXvhXv

. (6)

We can choose an integer k such that k|X| ≥ μX for any X ⊆ Γ clique. Let X ⊆ Γ be a clique and set

σ̃X := (t− 1)k|X|−μX
1
hX

σX .

Then

∂χ
n(σ̃X) = (t− 1)k|X|−μX

1
hX

∂χ
n(σX) = (t− 1)k|X|−μX

1
hX

∑
v∈X

〈Xv | X〉bv,Xσχ
Xv

.

Recall that the summand associated to each v ∈ X vanishes if either v is dead or it belongs to a p-dead 
edge in X. Otherwise, using (6) we see that summand is, up to a sign,

(t− 1)k|X|−μX
bv,X
hX

σχ
Xv

= (t− 1)k|X|−μXv
1

hXv

σχ
Xv

= (t− 1)k(t− 1)k|Xv|−μXv
1

hXv

σχ
Xv

= σ̃χ
Xv

.

Hence, if we denote by Fχ
p (X) the subgraph that we get from X when we remove dead vertices and closed

p-dead edges we have

∂χ
n(σ̃X) = (t− 1)k

∑
v∈Fχ

p (X)

〈Xv | X〉σ̃Xv
. (7)

Observe that Fχ
p (X) ⊆ X ∩ Lχ

p where Lχ
p is the p-living subgraph defined in the introduction, i.e., the 

subgraph of Γ that we get when we remove dead vertices and open p-dead edges.
Now, for each n let C̃n(SalχΓ)I be the sub RI -module of Cn(SalχΓ)I generated by the σ̃X , |X| = n. 

The computations above imply that (C̃n(SalχΓ)I , ∂χ
n) is a subcomplex of (Cn(SalχΓ)I , ∂χ

n) and by definition 
each quotient Cn(SalχΓ)I/C̃n(SalχΓ)I is a RI -torsion module. Using the long exact homology sequence we 
see that the RI-free part of the homology of (Cn(SalχΓ)I , ∂χ

n) equals the RI -free part of the homology of 
(C̃n(SalχΓ)I , ∂χ

n). So from now on we consider this last complex.
We define a new map dχn : C̃n(SalχΓ)I → C̃n−1(SalχΓ)I by

dχn = 1
(t− 1)k ∂

χ
n .

Lemma 5.2. With the notation above we have
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i) ker ∂χ
n = ker dχn,

ii) im ∂χ
n ⊆ im dχn,

iii) im dχn ∩ IkC̃n(SalχΓ)I = im ∂χ
n ,

iv) dimF (im dχn/ im ∂χ
n) < ∞.

Proof. i) is obvious. For ii), take a ∈ im ∂χ
n . Then a = (t − 1)a1 and a = ∂χ

n(b) so a1 = dχn(b) ∈ im dχn
so a = (t − 1)a1 ∈ im dχn. For iii), the fact that im ∂χ

n ⊆ im dχn ∩ IkC̃n(SalχΓ)I is obvious because of ii). 
Conversely, take a ∈ im dχn ∩ IkC̃n(SalχΓ)I . Then a = dχn(b) and the fact that a ∈ IkC̃n(SalχΓ)I together with 
the definition of dχn implies that also b ∈ IkC̃n(SalχΓ)I so b = (t −1)kb1 and ∂χ

n(b1) = 1
(t−1)k ∂

χ
n(b) = dχn(b) = a

thus a ∈ im ∂χ
n . Finally, iv) follows from iii). �

Proposition 5.3. For each n, dimF Hn(Aχ
Γ, F) < ∞ if and only if the n-th homology of the localized chain 

complex IkC̃n(SalχΓ)I respect to dχ• has finite F-dimension, i.e., if and only if dimF ker dχn/ im dχn+1 < ∞.

Proof. Note that for each n there is a short exact sequence

0 → im dχn+1/ im ∂χ
n+1 → ker ∂χ

n/ im ∂χ
n+1 → ker ∂χ

n/ im dχn+1 → 0.

Since the left-hand side is of finite F -dimension by Lemma 5.2iv) and ker ∂χ
n = ker dχn by Lemma 5.2i), the 

result follows. �
Proposition 5.4.

ker dχn/ im dχn = RI ⊗F

⊕
AX∈Bχ

p ,|X|≤n

Hn−1−|X|(l̂kLχ
p
(X)).

Proof. From (7) we have

dχn(σ̃X) =
∑

v∈Fχ
p (X)

〈Xv | X〉σ̃Xv
.

Let ∅ �= X ⊆ Γ be a clique. Let Bχ
p (X) = Y be the subgraph of X generated by dead vertices and closed 

p-dead edges and Z = Fχ
p (X). Then any vertex of X lies either in Y or in Z, in other words, X is the 

subgraph generated by Y ∪ Z. Note that Z ⊆ lkLχ
p
(Y ) is a clique and AY ∈ Bχ

p , obviously Y is the biggest 
subgraph of X satisfying this.

Conversely, given AY ∈ Bχ
p and a clique Z ⊆ lkLχ

p
(Y ), then the subgraph X of Γ generated by Y ∪Z is a 

clique. We claim that Y = Bχ
p (X), obviously Y ⊆ Bχ

p (X). If there is some v ∈ Bχ
p (X), v /∈ Y , then v ∈ Z so 

it can not be dead and there must be some p-dead edge e ∈ X with e = (v, w). As Z is a clique we cannot 
have w ∈ Z so w ∈ Y . Then 0 = me = mv + mw so mw �= 0, in other words, w is not a dead vertex and as 
AY ∈ Bχ

p , we deduce that there must be some p-dead edge e1 ∈ Y with e1 = (w, u) for some other u ∈ Y . 
But then observe that the vertices v, u, w from a triangle in Γ and the fact that both e and e1 are p dead 
implies that both have labels bigger than 2 which contradicts the FC-condition. Moreover we also deduce 
that Z = Fχ

p (X).
We will check that for each AY ∈ Bχ

p there is a subcomplex (DY )• of (RI ⊗F C̄(Γ̂)•, dχ• ) so that, as 
complexes,

C̃•(SalχΓ)I =
⊕

AY ∈Bχ
p

(DY )•.

To see it, let (DY )k = 0 for 0 ≤ k ≤ |Y | − 1 and for k ≥ |Y |,
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(DY )k = ⊕{RI σ̃X | |X| = k,X ⊆ Γ clique, Y = Bχ
p (X)}.

The fact that this is a dχ• -subcomplex follows from the fact that for σ̃X ∈ (DY )n, dχn(σ̃X) vanishes in all the 
summands not in (DY )n−1, more explicitly:

dχn(σ̃X) =
∑

v∈Fχ
p (X)

〈Xv | X〉σ̃Xv

and as v ∈ Fχ
p (X), σ̃Xv

∈ (DY )n−1.
Moreover, the discussion above implies that we can identify

(DY )k = RI ⊗ Ck−|Y |−1(l̂kLχ
p
(Y ))

and the fact that each X determines uniquely Y = Bχ
p (X) implies that

RI ⊗F C̄(Γ̂)• =
⊕

AY ∈Bχ
p

RI ⊗ C•+1+|Y |(l̂kLχ
p
(Y )).

Therefore the result follows. �
As a consequence, we obtain the following result.

Theorem 5.5. Let G = AΓ be an even Artin group of FC-type, χ : G → Z a discrete character with kernel Aχ
Γ

and F a field of characteristic p. Then the free part of the homology groups Hn(Aχ
Γ, F) seen as F [t±1]-modules 

has rank
∑

AX∈Bχ
p ,|X|≤n

dimF Hn−1−|X|(l̂kLχ
p
(X),F).

Therefore,

Corollary 5.6. Let G = AΓ be an even Artin group of FC-type, χ : G → R a character and F a field of 
characteristic p. Then dimF Hi(Aχ

Γ, F) < ∞ for 0 ≤ i ≤ n if and only if χ satisfies the strong p-n-link 
condition.

In the particular case p = 0, note that Bχ
0 is just the set of those AX ∈ P with X ⊆ Γ \ Lχ

0 .
We also deduce a partial converse to Theorem 1.2.

Corollary 5.7. Let G = AΓ be an even Artin group of FC-type, and 0 �= χ : G → R be a character such 
that Lχ

p = Lχ for some p either zero or prime. Assume that the strong p-n-link condition fails for χ. Then 
[χ] /∈ Σn(G, Z).

Proof. Let χ be a character that does not satisfy the strong p-n-link condition. Assume first that χ is 
discrete, i.e., χ(G) ⊆ Z. Let F be a field of characteristic p. By Proposition 5.4 and the discussion above 
we deduce that some of the homology groups Hi(Aχ

Γ, F) has infinite dimension as an F -vector space, thus 
Aχ

Γ is not of type FPn thus [χ] /∈ Σn(G, Z). For the general case, i.e., when χ : G → R is not necessarily 
discrete, consider the set

{[ϕ] | ϕ : G → Z,Lϕ = Lχ}.

Observe that [χ] lies in the closure of this set. The discrete case considered above implies
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{[ϕ] | ϕ : G → Z,Lϕ = Lχ
0 } ⊆ Σc(G,Z)

and as Σc(G, Z) is closed we deduce that also [χ] ∈ Σc(G, Z). �
Example 5.8. Let G = DA� be the dihedral Artin group associated to a graph Γ which consists of a single 
edge e with vertices v, w and label � = 2�̃ and let χ : G → Z given by χ(v) = 1, χ(w) = −1. Let F be a 
field of characteristic p. In this case the homology groups Hn(Aχ

Γ, F) vanish for n > 1 and one can compute 
directly H1(Aχ

Γ, F) for a field F using the description of the differential (4) above and gets:

H1(Aχ
Γ;F) =

{
F [t±1] if p|�̃
F [t±1]
(t−1) otherwise.

This is precisely what Theorem 5.5 predicts: if p � �̃, there are no p-dead edges and no dead vertices 
which means Bχ

p = {1} and Lχ
p = Γ. The link lkLχ

p
(∅) is the whole Γ so the associated flag complex is 

contractible and the associated reduced homology groups vanish. By contrast, if p|�̃, the edge (v, w) is 
p-dead so Bχ

p = {1, e} and Lχ
p consists of 2 isolated points. According to Theorem 5.5, the free rank of 

H1(Aχ
Γ, F) is

∑
AX∈Bχ

p ,|X|≤1

dimF H0−|X|(l̂kLχ
p
(X),F) = dimF H0(l̂kLχ

p
(∅),F) = dimF H0(L̂χ

p ,F) = 1.

Example 5.9. Let G = DA4 × DA6 where DA4 (resp. DA6) is the dihedral Artin group associated to the edge 
with label 4 (resp. 6). Then G = AΓ, where Γ is a full graph with 4 vertices and two disjoint edges labeled 
with 4 and 6. Denote the standard generators of the factor DA4 by v, w and the standard generators of the 
factor DA6 by x, y and consider the character χ : G → Z induced by χ(v) = χ(x) = 1, χ(w) = χ(y) = −1. 
Taking into account the computation of the Sigma-invariants for this type of groups that we performed in 
Subsection 3.3, we see that [χ] /∈ Σ2(G, Z) so its kernel Aχ

Γ is not of type FP2. In fact G does not satisfy 
the strong 2-link condition. To see it, note that Bχ = {∅, e1, e2} where e1 = (v, w) and e2 = (x, y) and 
Lχ is a square with vertices v, x, w, y (that we get when we remove the interior of e1 and e2 from Γ). For 
X = ∅ ∈ Bχ we have lkLχ(∅) = Lχ. Then

H2−1−|X|(l̂kLχ(X)) = H1(L̂χ) = Z �= 0.

It is easy to see that also the strong 3-link condition fails: to check it consider for example X = e1, its link 
in Lχ consists of the isolated vertices x and y.

We claim however that this χ does satisfy the strong p-n-link condition for each p (zero or a prime). As 
a consequence, for any field F ,

dimF H2(Aχ
Γ,F) < ∞.

Assume first that p = 2. Then Bχ
2 = {∅, e1} and Lχ

2 is the graph obtained from Γ when we remove the 
open edge e1. Then lkLχ

2
(∅) = Lχ

2 and lkLχ
2
(e1) = e2 and both associated flag complexes are contractible.

The argument for p = 3 is analogous. Finally, if p �= 2, 3, Bχ
p = {∅} and Lχ

p = Γ. Again, the flag complex 
is contractible.

Example 5.10. Things are very different if we consider for example G1 = DA4 × DA4 and χ as before. Then 
one easily checks that the strong 2-2-link condition fails so dimF H2(Aχ, F) is infinite.
Γ
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6. The homotopic invariants

In this section we explain how to modify the statement of Theorem 1.2 to obtain the analogous homotopic 
result.

Basically, we have to change the hypothesis to the homotopic version. As we have said in Definition 1.1, 
we define the strong homotopic n-link condition as follows:

Consider again the set Bχ ⊂ P of those AΔ in the clique poset such that χ(Z(AΔ)) = 0. Assume that 
for any AΔ ∈ Bχ with |Δ| ≤ n the link lkLχ(σ) is (n − 1 − |σ|)-connected. Then we say that χ satisfies the 
strong homotopic n-link condition.

Theorem 6.1. Let G = AΓ be an even Artin group of FC-type, and 0 �= χ : G → R a character such that the 
strong homotopic n-link condition holds for χ. Then [χ] ∈ Σn(G).

Proof. The proof follows that of Theorem 1.2 in its homotopic version. The homotopic analogue of 
Lemma 3.9 can be proved using relative homotopy groups, and the (n − 1)-connectedness of ZS � |J S |
(see [25, p. 57 (2.5)]). �
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