000112070 001__ 112070 000112070 005__ 20230519145621.0 000112070 0247_ $$2doi$$a10.1021/acsnano.0c10014 000112070 0248_ $$2sideral$$a125654 000112070 037__ $$aART-2021-125654 000112070 041__ $$aeng 000112070 100__ $$aYoo D. 000112070 245__ $$aPlasmonic Split-Trench Resonator for Trapping and Sensing 000112070 260__ $$c2021 000112070 5060_ $$aAccess copy available to the general public$$fUnrestricted 000112070 5203_ $$aOn-chip integration of plasmonics and electronics can benefit a broad range of applications in biosensing, signal processing, and optoelectronics. A key requirement is a chip-scale manufacturing method. Here, we demonstrate a split-trench resonator platform that combines a high-quality-factor resonant plasmonic biosensor with radio frequency (RF) nanogap tweezers. The split-trench resonator can simultaneously serve as a dielectrophoretic trap and a nanoplasmonic sensor. Trapping is accomplished by applying an RF electrical bias across a 10 nm gap, thereby either attracting or repelling analytes. Trapped analytes are detected in a label-free manner using refractive-index sensing, enabled by interference between surface-plasmon standing waves in the trench and light transmitted through the gap. This active sample concentration mechanism enables detection of nanoparticles and proteins at a concentration as low as 10 pM. We can manufacture centimeter-long split-trench cavity resonators with high throughput via photolithography and atomic layer deposition, toward practical applications in biosensing, spectroscopy, and optoelectronics. © 2021 American Chemical Society. 000112070 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3-2-R 000112070 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000112070 590__ $$a18.027$$b2021 000112070 592__ $$a4.611$$b2021 000112070 594__ $$a24.3$$b2021 000112070 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b13 / 180 = 0.072$$c2021$$dQ1$$eT1 000112070 593__ $$aEngineering (miscellaneous)$$c2021$$dQ1 000112070 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b20 / 345 = 0.058$$c2021$$dQ1$$eT1 000112070 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ1 000112070 591__ $$aCHEMISTRY, PHYSICAL$$b12 / 165 = 0.073$$c2021$$dQ1$$eT1 000112070 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1 000112070 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b11 / 109 = 0.101$$c2021$$dQ1$$eT1 000112070 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000112070 700__ $$aBarik A. 000112070 700__ $$0(orcid)0000-0003-0381-3448$$aLeón-Pérez F. 000112070 700__ $$aMohr D.A. 000112070 700__ $$aPelton M. 000112070 700__ $$0(orcid)0000-0001-9273-8165$$aMartín-Moreno L. 000112070 700__ $$aOh S.-H. 000112070 773__ $$g15, 4 (2021), 6669-6677$$pACS Nano$$tACS NANO$$x1936-0851 000112070 8564_ $$s6572897$$uhttps://zaguan.unizar.es/record/112070/files/texto_completo.pdf$$yPostprint 000112070 8564_ $$s705346$$uhttps://zaguan.unizar.es/record/112070/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000112070 909CO $$ooai:zaguan.unizar.es:112070$$particulos$$pdriver 000112070 951__ $$a2023-05-18-16:16:01 000112070 980__ $$aARTICLE